Auto-learning of SMTP TCP Transport-Layer Features for Spam and Abusive Message Detection

Georgios Kakavelakis, Robert Beverly, Joel Young

Center for Measurement and Analysis of Network Data
Naval Postgraduate School, Dept. Computer Science
{gkakavel, rbeverly, jdyoung}@cmand.org
December 8, 2011

USENIX LISA 2011
Outline

1. Motivation
2. Detecting Bot-Generated Spam
3. SpamFlow Architecture
4. SpamFlow Results
5. Conclusions
Motivation

Background

2011Q3 MAWAWG email metrics: 89% of email is abusive.
Huge volumes of spam, spammers quickly adapt to defenses.
Whether user, provider, or vendor, spam is still a problem!

Our Prior SpamFlow Work Asked:
- What is the *transport* (TCP/IP packet stream) character of spam?
- Are there *differences* between spam and ham flows?
- How to exploit differences in a way which spammers cannot easily evade?
Understanding SpamFlow

- Not looking at IP header (reputation)
- Not looking at data (content)
- SpamFlow: TCP stream, incl timing
- FINs, RSTs, Duplicates, OOO pkts, 3WHS timing, packet jitter, receive window, maximum idle time, etc. (20 features in total)
“Exploiting Transport-Level Characteristics of Spam” [BS08]:

- Utilize statistical machine learning methods
- Offline analysis
- Demonstrate $> 90\%$ accuracy, precision, recall (w/o content or reputation!)
- Correctly identify $\approx 78\%$ of false negatives from content filtering alone
Obstacles to Deployment

But ... Obstacles to Deployment:

- Lots of “plumbing,” i.e. exposing transport-features to higher layers
- Must be real-time
- Must be on-line
- Training a supervised learner

USENIX LISA 2011 Contributions:

- Tackle these deployment issues, did the “hard” work
- Built an opensource SpamFlow plugin for SpamAssassin
- (And show performance numbers – it really works!)
Outline

1. Motivation
2. Detecting Bot-Generated Spam
3. SpamFlow Architecture
4. SpamFlow Results
5. Conclusions
Why does SpamFlow work?

Two Observations on Spam

1. Low Penetration:
 - due to existing filters, user ambivalence
 - \(\rightarrow \) huge volumes of spam

2. Sending Method:
 - Botnets, dialup, etc.
 - \(\rightarrow \) Low asymmetric bandwidth, widely distributed
Combining Observations: Low Penetration + Sending Methods

Volume + Methods + Economics → link/host resource contention

Contestion:

Contenion manifests as TCP/IP loss, retransmission, reordering, jitter, flow control, etc. Particularly with the large buffers in consumer cable/DSL modems.
Transmission Control Protocol:

- Simple Mail Transport Protocol (SMTP) uses TCP for transport
- Sequence of SMTP commands between Mail Transport Agents (MTAs)
- Mail contents are packetized

How do Spam Connections Behave?
How do Spam Connections Behave?
...or, a quick look at `netstat`

<table>
<thead>
<tr>
<th>RcvQ</th>
<th>SndQ</th>
<th>Local</th>
<th>Foreign Addr</th>
<th>State</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>srv:25</td>
<td>92.47.129.89:49014</td>
<td>SYN_RECV</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>srv:25</td>
<td>ppp83-237-106-114:29081</td>
<td>SYN_RECV</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>srv:25</td>
<td>88.200.227.123:25068</td>
<td>SYN_RECV</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>srv:25</td>
<td>92.47.129.89:49014</td>
<td>SYN_RECV</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>srv:25</td>
<td>ppp83-237-106-114:29084</td>
<td>SYN_RECV</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>srv:25</td>
<td>88.200.227.123:25068</td>
<td>SYN_RECV</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>srv:25</td>
<td>88.200.227.123:25069</td>
<td>SYN_RECV</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>srv:25</td>
<td>88.200.227.123:25070</td>
<td>SYN_RECV</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>srv:25</td>
<td>88.200.227.123:25074</td>
<td>SYN_RECV</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>srv:25</td>
<td>84.255.150.15:4232</td>
<td>SYN_RECV</td>
</tr>
<tr>
<td>0</td>
<td>25</td>
<td>srv:25</td>
<td>222.123.147.41:50282</td>
<td>LAST_ACK</td>
</tr>
<tr>
<td>0</td>
<td>28</td>
<td>srv:25</td>
<td>adsl-pool-222.123:1720</td>
<td>LAST_ACK</td>
</tr>
<tr>
<td>0</td>
<td>31</td>
<td>srv:25</td>
<td>222.123.147.41:50152</td>
<td>LAST_ACK</td>
</tr>
<tr>
<td>0</td>
<td>15</td>
<td>srv:25</td>
<td>222.123.147.41:50889</td>
<td>LAST_ACK</td>
</tr>
<tr>
<td>0</td>
<td>9</td>
<td>srv:25</td>
<td>88.245.3.19:venus</td>
<td>LAST_ACK</td>
</tr>
<tr>
<td>0</td>
<td>25</td>
<td>srv:25</td>
<td>78.184.155.70:1854</td>
<td>FIN_WAIT1</td>
</tr>
<tr>
<td>0</td>
<td>23</td>
<td>srv:25</td>
<td>190-48-30-225.spe:50920</td>
<td>FIN_WAIT1</td>
</tr>
<tr>
<td>0</td>
<td>23</td>
<td>srv:25</td>
<td>dsl.dynamic812132:48154</td>
<td>FIN_WAIT1</td>
</tr>
<tr>
<td>0</td>
<td>23</td>
<td>srv:25</td>
<td>ip-85-160-91-16.e:48093</td>
<td>FIN_WAIT1</td>
</tr>
<tr>
<td>0</td>
<td>23</td>
<td>srv:25</td>
<td>88.234.141.158:48389</td>
<td>FIN_WAIT1</td>
</tr>
<tr>
<td>0</td>
<td>23</td>
<td>srv:25</td>
<td>p5B0FBB5D.dip.t-d:11965</td>
<td>FIN_WAIT1</td>
</tr>
</tbody>
</table>

...
How do Spam Connections Behave?

...or, a quick look at `netstat`

<table>
<thead>
<tr>
<th>RcvQ</th>
<th>SndQ</th>
<th>Local</th>
<th>Foreign Addr</th>
<th>State</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>srv:25</td>
<td>92.47.129.89:49014</td>
<td>SYN_RECV</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>srv:25</td>
<td>ppp83-237-106-114.:29081</td>
<td>SYN_RECV</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>srv:25</td>
<td>88.200.238:934</td>
<td>SYN_RECV</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>srv:25</td>
<td>92.47.129.89:49014</td>
<td>FIN_WAIT1</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>srv:25</td>
<td>ppp83-237-106-114.:29084</td>
<td>SYN_RECV</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>srv:25</td>
<td>88.200.238:94</td>
<td>SYN_RECV</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>srv:25</td>
<td>88.200.238:95</td>
<td>SYN_RECV</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>srv:25</td>
<td>88.200.238:96</td>
<td>SYN_RECV</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>srv:25</td>
<td>88.200.238:98</td>
<td>SYN_RECV</td>
</tr>
<tr>
<td>0</td>
<td>25</td>
<td>srv:25</td>
<td>222.123.147.41:50282</td>
<td>LAST_ACK</td>
</tr>
<tr>
<td>0</td>
<td>28</td>
<td>srv:25</td>
<td>adsl-pool:1720</td>
<td>LAST_ACK</td>
</tr>
<tr>
<td>0</td>
<td>31</td>
<td>srv:25</td>
<td>222.123.147.41:50152</td>
<td>LAST_ACK</td>
</tr>
<tr>
<td>0</td>
<td>15</td>
<td>srv:25</td>
<td>88.200.238:934</td>
<td>LAST_ACK</td>
</tr>
<tr>
<td>0</td>
<td>9</td>
<td>srv:25</td>
<td>88.200.238:94</td>
<td>FIN_WAIT1</td>
</tr>
<tr>
<td>0</td>
<td>25</td>
<td>srv:25</td>
<td>78.184.123.41:50920</td>
<td>FIN_WAIT1</td>
</tr>
<tr>
<td>0</td>
<td>31</td>
<td>srv:25</td>
<td>222.123.147.41:50889</td>
<td>FIN_WAIT1</td>
</tr>
<tr>
<td>0</td>
<td>9</td>
<td>srv:25</td>
<td>88.200.238:934</td>
<td>FIN_WAIT1</td>
</tr>
<tr>
<td>0</td>
<td>23</td>
<td>srv:25</td>
<td>ip-85-160-91-16.e:48154</td>
<td>FIN_WAIT1</td>
</tr>
<tr>
<td>0</td>
<td>23</td>
<td>srv:25</td>
<td>88.234.141.41:48389</td>
<td>FIN_WAIT1</td>
</tr>
<tr>
<td>0</td>
<td>23</td>
<td>srv:25</td>
<td>88.234.141.41:48093</td>
<td>FIN_WAIT1</td>
</tr>
<tr>
<td>0</td>
<td>23</td>
<td>srv:25</td>
<td>p5B0FBB5D.dip.t-d:11965</td>
<td>FIN_WAIT1</td>
</tr>
</tbody>
</table>

TCP Stuck in States

- **Stays in these states for minutes**
- **Half-open connections**
- **Remote MTAs that “disappear” mid-connection**
- **Remote MTAs that send FIN and disappear**
What about RTT?
...building more intuition

Received: from vms044pub.verizon.net
From: "Dr. Beverly, MD" <b@ex.com>
Subject: thoughts
Dear Robert,
I hope you have had a great week!

Received: from unknown (59.9.86.75)
From: Erich Shoemaker <ried@ex.com>
Subject: Repl1ca for you
A T4g Heuer w4tch is a luxury statement on its own.
In Prest1ge Repl1cas, any T4g Heuer...

[Graphs showing rtt (ms) vs. time for Ham Flow and Spam Flow]
Outline

1. Motivation
2. Detecting Bot-Generated Spam
3. SpamFlow Architecture
4. SpamFlow Results
5. Conclusions
SpamAssassin Plugin

So... we built it.

Moving from research to production:

1. SMTP Traffic
2. MTA (postfix)
3. SpamAssassin
4. SF Plugin
5. Classifier
6. Model

- SMTP Traffic
- MTA (postfix)
- SpamAssassin
- SF Plugin
- Classifier
- Model

- features
- prediction
- score
- msgid
- packets
- email
- features
Email traffic enters the system, MTA passes to SpamAssassin.
SpamAssassin Plugin

Architecture:

SMTP Traffic

MTA (postfix) -> email

Spam Assassin

pcap -> packets

SpamFlow

Concurrently, SpamFlow daemon collects packets and produces per-flow features.
SpamAssassin Plugin

Architecture:

SMTP Traffic

MTA (postfix) → Spam Assassin

msgid

SpamFlow plugin takes a msg ID.

SF Plugin

pcap → SpamFlow

packets
SpamFlow Architecture

Matching Emails and Flows

SpamAssassin Plugin

Architecture:

MTA (postfix) → Spam Assassin

SMTP Traffic

SF Plugin

pcap

Plugin communicates with SpamFlow daemon via XML-RPC to query for msg ID.

msgid

email

msgid

packets

SpamFlow
Mapping Traffic Flows to Email

Querying SpamFlow by Message ID:

- SF Plugin queries SpamFlow for traffic features corresponding to an email message
- How to determine which network traffic flow (and its packets) belongs to a given email message?

Mapping Traffic Flows to Email:

- **Message-ID**: RFC2822, §3.6.4: “Though optional, every message SHOULD have a Message-ID: field. The Message-ID: field contains a single unique message identifier.”
- **IP:Port Tuple**: Modify the MTA to record in the email header the ephemeral port of the remote MTA.
Mapping Traffic Flows to Email

Message-ID:
- Not guaranteed to be present
- Requires SpamFlow to perform Deep Packet Inspection
- Increases SpamFlow complexity to reassemble transport stream

IP:Port Tuple:
- Reliable, fast, simple
- Requires trivial change to MTA
- No DPI

SpamFlow:
We use **IP:Port** as the message identifier. Message-ID support planned in next version.
Postfix:

```c
if (!proxy || state->xforward.flags == 0) {
    out_fprintf(out_stream, REC_TYPE_NORM,
    "Received: from %s (%s [%s])",
    state->helo_name ? state->helo_name : state->name,
    state->name, state->rfc_addr);
    + state->name, state->rfc_addr, state->port);
```

Qmail:

```c
char *remoteport;

safeput(qqt,remoteip);
+ remoteport = getenv("TCOREMOTEPORT");
+ qmail_puts(qqt,":");
+ safeput(qqt,remoteport);
qmail_puts(qqt,"\n by ");
```
SpamFlow Architecture

Architecture:

MTA (postfix) → Spam Assassin

SMTP Traffic

SF Plugin

pcap

SpamFlow

SpamFlow daemon returns the feature vector for traffic flow corresponding to email msg ID.
SpamAssassin Plugin

Architecture:

MTA (postfix) → Spam Assassin

Spam Assassin → SF Plugin

SF Plugin → Classifier

SMTP Traffic

pcap → SpamFlow

Traffic features passed to classifier.
SpamAssassin Plugin

Architecture:

MTA (postfix) → Spam Assassin

SMTP Traffic

SF Plugin

Classifier

Model

Classifier returns a prediction based on model.

Kakavelakis, Beverly, Young (NPS)
Auto-learning SMTP TCP Features for Spam
LISA 2011 24 / 39
Example Email:

From Josephine@rsi.com Tue Feb 01 23:21:58 2011
Return-Path: <Josephine@rsi.com>
X-Spam-Checker-Version: SpamAssassin 3.3.1 (2010-03-16) on ralph.rbeverly.net
X-Spam-Level: **
X-Spam-Status: No, score=2.9 required=5.0 tests=BAYES_40,HTML_MESSAGE,SPAMFLOW,
UNPARSEABLE_RELAY autolearn=no version=3.3.1
X-Spam-Spamflow-Tag: 3792891725:37689,12,10,0,0,0,1,1,0,53248,34.464852,0.162818,
120.441156,148.297699,51.891697,5840,48,1,64
X-Spam-SpamFlow-Predict: 1
Received: (qmail 30920 invoked from network); 1 Feb 2011 23:21:57 -0000
Received: from cm-static-18-226.telekabel.ba (77.239.18.226:37689)
Received: from vdhvjcivjvbwyhxnxscvfwq (192.168.1.185) by bluebellgroup.com (77.239.18.226)
with Microsoft SMTP
Message-ID: <4D489025.504060@etisbew.com>
Date: Wed, 2 Feb 2011 00:20:48 +0100
From: Essie <Essie@hermes.com>
User-Agent: Mozilla/5.0 (Windows; U; Windows NT 5.1; en-US; rv:1.9.2.12)
Auto-Learning

Training:

- Central problem in any supervised learner – how to train?
- Attacks and traffic features evolve
- Every installation environment is different, we observe very different traffic characteristics
- Can't distribute “canned” or ”stock” trained traffic – how to customize per site?
SpamAssassin Scoring:

- Many rules, e.g.
 - In header, subject contains a gappy version of 'cialis':
 `SUBJECT_DRUG_GAP_C: 2.108 0.989`
 - In body, HTML font color similar to background:
 `HTML_FONT_LOW_CONTRAST: 0.713 0.001`

- Each rule hit contributes to final continuous message score

+99 5.0 0.0 -99

Spammy Good
Some messages are clearly spam (hit many rules), or clearly ham (very low score). Two random examples:

Non-Spammy Message (-1.5):

```
X-Spam-Status: No, score=-1.5 required=5.0
tests=BAYES_00,RP_MATCHES_RCVD,
      UNPARSEABLE_RELAY autolearn=ham version=3.3.2
```

Very Spammy Message (30.8):

```
From: Wellsfargo Internet Banking Alerts!!! <services@wellsfargo.com>
Subject: You Have 1 New Security Message Alerts!!!
X-Spam-Status: Yes, score=30.8 required=5.0
tests=BAYES_50,DATE_IN_PAST_96_XX,
      DOS_OF_TO_MX_IMAGE,FORGED_MUA_OUTLOOK,FORGED_OUTLOOK_HTML,FROM_MISSP_DKIM,
      FROM_MISSP_MSFT,FROM_MISSP_NO_TO,FROM_MISSP_USER,FSL_HELO_NON_FQDN_1,
      HELO_NO_DOMAIN,HTML_MESSAGE,MIME_HTML_ONLY,MISSING_HEADERS,NSL_RCVD_FROM_USER,
      RCVD_IN_BRBL_LASTTEXT,RCVD_IN_XBL,RDNS_NONE,SHORT_HELO_AND_INLINE_IMAGE,
      TO_NO_BRKTS_DIRECT,TO_NO_BRKTS_MSFT,UNPARSEABLE_RELAY,
      XMAILER_MIMEOLE_OL_1EC5 autolearn=no version=3.3.2
```
Auto-Learning:

- If other modalities (e.g. keywords, rule tests) indicate strong possibility of spam (high score) or ham (low score), use that as an *training example*
- Incrementally build the model
- Requires *no* human labeling or work!
Outline

1 Motivation

2 Detecting Bot-Generated Spam

3 SpamFlow Architecture

4 SpamFlow Results

5 Conclusions
January-March, 2011:

- Auto-learning thresholds based on spam distribution (normal, $\mu = 16.3, \delta = 7.7$)
- $\tau^+ = 16$ and $\tau^- = 1$
- Yields training of 2,685/5,510 (48.7%) spam and 267/416 (64.2%) ham messages
- Experiments using Naive Bayes, C4.5 decision trees, SVM
Auto-Learning Performance

Auto-Learning Accuracy ($\tau^+ = 16, \tau^- = 1$):

![Graph showing classification accuracy over incoming email number for different classifiers: Spam Prior, Naive Bayes, Decision Tree, SVM]
Auto-Learning Performance

Auto-Learning Accuracy ($\tau^+ = 30, \tau^- = 1$):

![Graph showing classification accuracy for different models (Spam Prior, Naive Bayes, Decision Tree, SVM) over incoming email numbers.]
Auto-Learning Performance

Auto-Learning F-Score ($\tau^+ = 16$, $\tau^- = 1$):

![Graph showing classification F-score for Naive Bayes, Decision Tree, and SVM.](image)

- **Naive Bayes**
- **Decision Tree**
- **SVM**

Incoming Email Number vs. Classification F-score
Auto-Learning Performance

SpamFlow Results

SpamFlow Weight in Composite Score

- Currently a (configurable) fixed weight vote by SpamFlow that contributes to final score
- We experimented with two weights
- Working on optimizing and providing continuous weight depending on SpamFlow confidence

Real-World Benefit

<table>
<thead>
<tr>
<th></th>
<th>tp</th>
<th>fp</th>
<th>tn</th>
<th>fn</th>
<th>F-Score</th>
</tr>
</thead>
<tbody>
<tr>
<td>SpamAssassin</td>
<td>5288</td>
<td>3</td>
<td>137</td>
<td>87</td>
<td>0.991</td>
</tr>
<tr>
<td>SpamFlow</td>
<td>5224</td>
<td>65</td>
<td>75</td>
<td>151</td>
<td>0.980</td>
</tr>
<tr>
<td>SA+SpamFlow(1)</td>
<td>5299</td>
<td>3</td>
<td>137</td>
<td>76</td>
<td>0.992</td>
</tr>
<tr>
<td>SA+SpamFlow(2)</td>
<td>5335</td>
<td>19</td>
<td>121</td>
<td>40</td>
<td>0.995</td>
</tr>
</tbody>
</table>

Kakavelakis, Beverly, Young (NPS)
Auto-learning SMTP TCP Features for Spam

LISA 2011 35 / 39
Outline

1 Motivation

2 Detecting Bot-Generated Spam

3 SpamFlow Architecture

4 SpamFlow Results

5 Conclusions
Application to Other Domains:

- Attacks (automated) against web servers
- Can’t rely on reputation/ports (as compared to SMTP)
- Scam-hosting infrastructure, Botnet CDNs (e.g. Canadian pharma, proxying, relaying, etc.)

Utilizing Transport Features:

- Adversarial TCP/IP stack to cause suspected bot to perform more work, contributing to the feedback loop such that transport features are exacerbated
- LISA 2011 poster with details, come see us!
SpamFlow Availability:

- Final testing phases
- Running in production at several installations
- autoconf’d, packaged, etc.
- January, 2012 release
- OpenSource license
- Tested with Postfix/Qmail and SpamAssassin
- Please contact us, or sign-up on mailing list for release updates

http://www.cmand.org/spamflow/
Thanks!

- Attacking spam at a **different layer**
- Created SpamFlow SpamAssassin plugin + architecture:
 - *On-line* and *real-time* transport-layer classification of live email messages on a production MTA.
 - Auto-learning of transport features to build model across different operating environments without human training.

Questions?

http://www.cmand.org/spamflow/