
Sequencer: smart control of hardware and software components in

clusters (and beyond).

Dr. Pierre Vignéras

pierre.vigneras@bull.net

Extreme Computing R&D

Bull, Architect of an Open World

www.bull.com

September 15, 2011

Abstract

Starting/stopping a whole cluster or a part of it is
a real challenge considering the di�erent commands
related to various device types and manufacturers,
and the order that should be respected. This arti-
cle presents a solution called the sequencer that al-
lows the automatic shutting down and starting up
of clusters, subset of clusters or even data-centers.
It provides two operation modes designed for ease
of use and emergency conditions. Our product has
been designed to be e�cient and it is currently used
to power on and power o� one of the largest cluster
in the world: the Tera-100, made of more than 4000
nodes.
Keywords: emergency power o�, start/stop

procedure, actions sequencing, work�ow,
planning, cluster management, automation,
case study.

1 Introduction

Emergency Power O� (EPO) is often not consid-
ered from a system administration point of view in
traditionnal clusters1. Even for Tier-IV infrastruc-

1In this article, we consider clusters because they are the
�rst target of our solution. However, this solution also applies
to general data-centers.

tures [1], EPO may happen for various reasons. In
such cases, stopping (or starting, both cases are ad-
dressed) macro components such as a whole rack or a
rack set requires an appropriate sequence of actions.
Considering the vast number of di�erent components
a cluster is composed of:

nodes: compute nodes2, login nodes, management
nodes, io (nfs, lustre, ...) nodes, ...

hardware: power switches (also called Power Dis-
tribution Units or PDUs), ethernet switches, in-
�niband [2] switches, cold doors3, disk arrays,
...

powering on/o� a whole set of racks can be a real
challenge.
First, since it is made of a set of heterogeneous

devices, starting/stopping each component of a clus-
ter is not straightforward: usually each device type
comes with its own poweron/o� command. For ex-
ample, shutting down a node can be as simple as an

2From a hardware perspective, a node in a cluster is just a
computer. A distinction is made however between nodes de-
pending on their roles in the cluster. For example, user might
connect to a login node for development, and job submission.
The batch scheduler runs on the management node and dis-
patch jobs to compute nodes. Compute nodes access storage
through io nodes and so on.

3A cold door is a water-based cooling system produced by
Bull that allows high density server in the order of 40 kW per
rack.

1

'ssh host /sbin/halt -p'. However, it might be
preferable to use an out of band command through
the IPMI BMC4 if the node is unresponsive for ex-
ample. Starting a node can be done using a wake on
lan [3] command or an IPMI [4] command. Some de-
vices cannot be powered on/o� remotely (in�niband
or ethernet switches for example). Those devices
might be connected to manageable Power Distribu-
tion Units (PDUs) that can remotely switch their
outlets on/o� using SNMP [5] commands. On the
extreme case, manual intervention might be required
to switch on/o� the electrical power.
For software components, there is also a need

to manage the shutdown of multiple components
on di�erent nodes. Considering high availability
framework, virtualization, localization, and clients,
using standard calls to /etc/init.d/service

[start|stop] is often inappropriate.
Finally, the set of instructions for the powering

on/o� of each cluster's components should be or-
dered. Trivial examples include:

• powering o� an ethernet switch too soon may
prevent other components, including nodes, from
being powered o�;

• powering o� a cold door should be done at the
very end to prevent cooled components from be-
ing burnt out.

By the way, this ordering problem is not only relevant
to hardware devices. A software component can also
require that a sequence of instructions is executed
before being stopped. As a trivial example, when
an NFS daemon is stopped, one may prefer that all
NFS clients unmount their related directories �rst in
order to prevent either the �ll of syslog with NFS
mount error (when NFS mount option is 'soft') or
the load average brutal increase due to the freezing
of softwares accessing the NFS directories (when NFS
mount option is 'hard').
Therefore, in this article, the generic term 'com-

ponent' may de�ne a hardware component such as a
node, a switch, or a cold door, or a software compo-
nent such as a lustre server or an NFS server.

4Baseboard Management Controller.

Our proposition � called the sequencer � ad-
dresses the problem of starting/stopping a cluster (or
a data-center). Its design takes into account emer-
gency conditions. Those conditions impose various
constraints addressed by our solution:

• Predictive: an EPO should have been validated
before being used. It should not perform un-
known actions.

• Easy: an EPO should be easy to launch. The
emergency cause may happen at any time, espe-
cially when skilled sta� is not present. There-
fore, the EPO procedure should be launchable
by �unskilled� humans.

• Fast: an EPO should be as fast as possible.

• Smart: an EPO should power o� each compo-
nent of a cluster in the correct order so most
resources will be preserved.

• Robust: an EPO should be tolerant to failure.
For example, if a shutdown on a node cooled by
a cold door returned an error, the corresponding
cold door should not be switched o� to prevent
the burnout of the node. On the other side, the
rest of the cluster can continue the EPO process.

This article is organized as follow: section 2 exposes
the design of our solution while some implementation
details are dealt with in section 3 following by scala-
bility issues in section 4. Some results of our initial
implementation are given section 5. Section 6 com-
pares our solution to related works. Finally, section 7
presents future works.

2 Design

Three major di�culties arise when considering the
starting/stopping of a cluster or of a subset of it:

1. the computing of the dependency graph between
components (power o� a cold door after all com-
ponents of the related rack have been powered
o�);

2

2. the de�ning of an e�cient (scalable) instructions
sequence where the order de�ned by the depen-
dency graph is respected (powering o� nodes
might be done in parallel);

3. the execution of the instructions set itself, taking
failure into account properly (do not power o�
the cold door, if related rack's nodes have failed
to power o�).

Therefore, the sequencer is made of three distinct
functional layers:

Dependency Graph Maker (DGM): this layer
computes the dependency graph according to de-
pendency rules de�ned by the system adminis-
trator in a database.

Instructions Sequence Maker (ISM): this layer
computes the instructions sequence that should
be executed for starting/stopping the given list
of components and that satis�es dependency
constraints de�ned in the dependency graph
computed by the previous layer.

Instructions Sequence Executor (ISE): this
layer executes the instructions sequence com-
puted by the previous layer and manages the
handling of failures.

Finally, a chaining of those layers is supported
through an �all-in-one� command.
This design provides therefore two distinct pro-

cesses for the starting/stopping of components:

Incremental Mode: in this mode, each stage is run
separately. The output of each stage can be ver-
i�ed and modi�ed before being passed to the
next stage as shown on �gure 2.1. The incre-
mental mode generates a script from constraints
expressed in a database table and from a com-
ponents list. This script is optimized in terms
of scalability and is intepretable by the instruc-
tions sequence executor that deals with paral-
lelism and failures. This mode is the one de-
signed for emergency cases. The instructions set
computed should be validated before being used
in production.

Figure 2.1: Incremental Mode: each stage output can
be veri�ed and modi�ed before being passed to the
next one.

Figure 2.2: Black Box Mode: using the sequencer for
simple non-critical usage.

Black Box Mode: in this mode, illustrated in �g-
ure 2.2, chaining feature is used to start/stop
components as shown by the following syntax:
clmsequencer \ # command name

stop \ # ruleset name

colddoor3 node[100-200] # components list

This command is somewhat equivalent to the fol-
lowing:
clmsequencer \ # command name

depmake \ # dgm stage

stop \ # ruleset name

colddoor3 node[100-200] \ # components list

|clmsequencer seqmake \ # ism stage

|clmsequencer seqexec # ise stage

and can therefore be seen as a syntactic sugar.

The computation of the dependency graph and of
the instruction set can take a signi�cant amount of
time, especially on very large clusters such as the

3

Tera-1005. This is another good reason for choosing
the incremental mode in emergency conditions where
each minute is important.

3 Implementation

3.1 Dependency Graph Maker
(DGM)

The Dependency Graph Maker (DGM) is the �rst
stage of the sequencer. It takes a components list
in parameter, and produces a dependency graph in
output. It uses a set of dependency rules described
in a database table. The CLI has the following usage:
clmsequencer depgraph [--out file]

ruleset cl_1...cl_N

The output is a human readable description of the
computed dependency graph in XML format that the
Instructions Sequence Maker can parse. By default,
the computed dependency graph is produced on the
standard output.
The --output file option allows the computed

dependency graph to get written in the speci�ed
file.
The ruleset parameter de�nes which ruleset

should be used to compute the dependency graph.
Ruleset will be explained in section 3.1.2 on the se-
quencer table.
Finally, other parameters cl_1...cl_N de�ne on

which components the dependency graph should be
computed. Each parameter describes a list of com-
ponent in a speci�c format describes in next sec-
tion 3.1.1.

3.1.1 Components list speci�cation

The �rst stage of the sequencer takes as an input a
list of components. This list is of the form:

prefix[a-b,c-d,...][#type][@category]

where:

5Tera-100 is ranked #6 in the Top500 november 2010 list
of fastest supercomputers in the world and #1 in Europe. It
is composed of several thousands of Bull bullx series S servers.
See http://www.top500.org/ for details.

pre�x[a-b,c-d,...]: is the standard contracted nota-
tion for designing a set of names pre�xed by
'prefix' and su�xed by a number taken in
the range given by intervals [a − b], [c − d], and
so on. For example, compute[1-3,5,7-8] de-
�nes names: compute1, compute2, compute3,
compute5, compute7, compute8.

category: is optionnal and de�nes the table6 where
given names should be looked for their type

(if not given). The type of a component is
used in the de�nition of the dependency table
as described in section 3.1.2. Category exam-
ples (with some related types) are: node (io,
nfs, login,compute), hwmanager (bmc, cmc,

coldoor7) and soft (nfsd, nagios, sshd).

Some examples of full component list names are given
below:

R-[1-3]#io@rack: the io racks R-1, R-2 and R-3;

bullx[10-11]#mds@node: the lustre mds node
bullx10 and bullx11;

colddoor1#coldoor@hwmanager: the cold door
numbered 1;

esw-1#eth@switch: the ethernet switch esw-1;

server[1-2]#nfsd@soft: NFS daemons running on
server1 and server2.

3.1.2 Sequencer Dependency Rules: the se-
quencer table

The Dependency Graph Maker requires dependency
rules to be speci�ed in a database table. This table
describes multiple sets of dependency rules. A ruleset
is de�ned as a set of dependency rules. For example,
there is one ruleset called smartstart containing all

6It is considered a good practice to have a database where
the cluster is described. In a bullx cluster, each component
is known and various informations are linked to it such as its
model, its status, its location and so on. There should be a
way to �nd a type from a component name. In this article, we
use a database for that purpose, any other means can be used
though.

7Cold doors are spelled 'coldoor' in bullx cluster database.

4

http://www.top500.org/

the dependency rules required for the starting of com-
ponents. Another ruleset containing all dependency
rules required for the stopping of components would
be called smartstop.
The format of this table is presented below. One

line in the table represents exactly one dependency
rule. Table columns are:

ruleset: the name of the ruleset this dependency
rule is a member of.

name: the rule name, this name is used as a reference
in the dependson column, it should be unique
in the ruleset;

types: the component types the rule should be ap-
plied to. A type is speci�ed using the full name
(that is, 'type@category'). Multiple types
should be separated by the "pipe" symbol as
in compute@node|io@node. The special string
'ALL' acts like a joker: 'ALL@node' means
any component from table node matches, while
'ALL@ALL' means any component matches, and
is equivalent to 'ALL' alone.

filter: an expression of the following two forms:

• %var =~ regexp

• %var !~ regexp

where '%var' is a variable that will be replaced
by its value on execution (see table 1 for the
list of available variables). The operator '=~'

means that component will be �ltered in only if
a match occurs while '!~'means the component
will be �ltered in only if a match does not oc-
cur (said otherwise, it a match occurs, it will be
�ltered out).

If the expression does not start with a known
'%var' then, the expression is interpreted as a
(shell) command that when called speci�es if the
given component should be �ltered in (returned
code is 0) or out (returned code is di�erent than
0). Variables will also be replaced before com-
mand execution, if speci�ed. As an example, to
�lter out any component which name starts with
the string 'bullx104', one would use: '%name

=~ ^bullx104'. On the other side, to let a
script decide on the component id, one would
use: '/usr/bin/my_filter %id'.

Finally, two special values are reserved for spe-
cial meanings here:

• String 'ALL': any component is �ltered in
(i.e. accepted);

• The 'NULL' special DB value: any compo-
nent is �ltered out (i.e. refused).

action: the (shell) command that should be exe-
cuted for each component that matches the rule
type (and that have been �ltered in). Variables
will be replaced, if speci�ed (see table 1 for the
list of available variables). If the action is pre-
�xed with the '@' symbol, the given action will
be executed on the component using an 'ssh' in-
ternal connexion. Depending on the action exit
code, the Instruction Sequence Executor may
continue its execution, or abort. This will be
discussed in section 3.3.

depsfinder: the (shell) command that speci�es
which components the current component de-
pends on. The command should return the com-
ponents set on its standard output, one compo-
nent per line. A component should be of the
following format: 'name#type@category'. Vari-
ables will be replaced, if speci�ed (see table 1 for
the list of available variables). When set to the
'NULL' special DB value, rule names speci�ed in
the dependson column are simply ignored.

dependson: a comma-separated list of rule names,
this rule depends on. For each dependency re-
turned by the deps�nder, the sequencer looks
if the dependency type matches one of the rule
type speci�ed by this �eld (rule names speci�ed
should be in the same ruleset). If such a match
occurs, the rule is applied on the dependency.
When set to the 'NULL' special DB value, the
script speci�ed in the 'depsfinder' column is
simply ignored.

comments: a free form comment.

5

Name Value Example

%id The full name of the component bullx12#compute@node
%name The name of the component bullx12
%type The type of the component compute

%category The category of the component node
%ruleset The current ruleset being processed smartstop
%rulename The current rule being processed compute_o�

Table 1: List of available variables.

The framework does not allow the speci�cation of a
timeout for a given action for two main reasons:

1. Granularity: if such a speci�cation was provided
at that level (in the sequencer table), the time-
out would be speci�ed for all components type
speci�ed by the 'type' column whereas it seems
preferable to have a lower granularity, per com-
ponent. This is easily achievable by the ac-
tion script itself for which the component can
be given as a parameter.

2. The action script, for a given component, knows
what to do when a timeout occurs much better
that the sequencer itself. Therefore, if a spe-
ci�c process is required after a command time-
out (such as a retry), the action script should
implement itself the required behavior when the
timeout occurs and returns the appropriate re-
turn code.

As an example we will consider the sequencer table
presented in table 2.

3.1.3 Algorithm

The objective of the Dependency Graph Maker is to
output the dependency graph based on the depen-
dency rules de�ned in the related table and on the
components list given as a parameter. The comput-
ing of the dependency graph involves the following
steps:

1. Components List Expansion: from the
given components list, the expansion should be
done. It returns a list of names of the form:
'name#type@category'. Such name is called id
in the following.

2. Dependency Graph Creation: the depen-
dency graph is created as a set of disconnected
nodes where each node is taken from the list
of ids. A node in the dependency graph has
the following form: 'id [actionsList]' where
'actionsList' is the list of actions that should
be executed for the component with the corre-
sponding 'id'. This graph is updated during the
process by:

(a) Node additions: when processing a given
component 'c', through a dependency
rule (one row in the related ruleset ta-
ble), the command line speci�ed by column
'depsfinder' is executed. This execution
may return a list of components that should
be processed before the current one. Each
of those components will therefore be added
to the dependency graph if it is not already
present.

(b) Arc additions: for each components re-
turned by the 'depsfinder' script, an arc
is added between 'c' and that returned
component;

(c) Node modi�cation: when processing a
given component, the content of the column
'action' of the ruleset table of the related
dependency rule is added to the node ac-
tions list.

3. Rules Graph Making: from the dependency
rules table, and for a given ruleset, the corre-
sponding graph � called the rules graph � is cre-
ated. A node in that graph is a pair (s, t) where

6

T
a
b
le
2
:
A
n
ex
a
m
p
le
o
f
a
se
q
u
en
ce
r
ta
b
le
.

7

Figure 3.1: Rules Graph of the 'stop' ruleset de�ned
in the sequencer table 2.

s is the rule symbolic name, and t is the com-
ponent types de�ned by the 'types' column in
the dependency rule table. This graph is used
for the selection of a component in the compo-
nents list to start the dependency graph update
process. From table 2, the rules graph of the
stop ruleset is shown �gure 3.1. Note that cy-
cles are possible in this graph. As an example, a
PDU (related to a switch type in the sequencer
table) that connects (power) an ethernet switch
which itself connects (network) a PDU.

4. Updating the Dependency Graph: from
each ids (resulting from the expansion of each
initial components list), the corresponding rule
in the given ruleset of the sequencer table should
be found. For that purpose, a potential root
is looked for in the ids set. A potential root
is an id that matches one root8 in the rules
graph. A match between an id of the form
'name#type@category' and a rule 'R' occurs
when type is in 'R.types' and when id has
been �ltered in. If such a match cannot be found,
then, a new rules graph is derived from the pre-

8A node in the graph with no parent.

ceding one by removing all roots and their re-
lated edges. Then, the root �nding is done on
that new graph, and so on recursively until ei-
ther:

• the rule graph is empty: in this case,
the given components list cannot be
started/stopped (entirely);

• the rule graph is only made of cycles: any
id can be used as the starting point;

• a match occurs between 'id' and 'R': in
this case, the dependency graph is updated
from the application of rule 'R' to 'id'.
Each time such an application is made,
'id' is removed from the initial id set.

As an example, consider a rack cooled by a bullx cold
door 'cd0' containing an NFS server 'nfs1' and
a compute node 'c1'. Consider also another NFS
server 'nfs2' that is not in the same rack. We also
suppose that:

• 'c1' is client of both 'nfs1' and 'nfs2';

• 'nfs1' is client of 'nfs2';

• 'nfs2' is client of 'nfs1'9.

Using table 2, and the component list:
'nfs1#nfsd@soft, cd0, nfs2', objectives are:

• power o� 'c1' and 'nfs1' before 'cd0', be-
cause powering o� a cold door requires that each
equipement cooled are powered o� �rst;

• stop NFS daemons on 'nfs1' because it is re-
quested (this should be done before powering o�
'nfs1');

• power o� 'nfs2' because it is requested (but the
NFS daemon will have to be stopped before);

• for each NFS client10 a warning should be writ-
ten before the actual stopping of used NFS
server.

9Yes, it might seem strange here. This serves the purpose
of our example.

10One might use the content of /var/lib/nfs/rmtab for an
(inaccurate) list of NFS clients, the 'showmounts' command
or any other means.

8

Figure 3.2: The initial dependency graph.

Figure 3.3: The dependendy graph after the call to
the 'cd0#coldoor@hwmanager' deps�nder.

With the table, the ruleset and the component
list, the sequencer starts to expand the com-
ponent list into an id set: 'nfs1#nfsd@soft,

cd0#coldoor@hwmanager, nfs2#nfs@node'. Then
the dependency graph is initialized: each id in the
set has a related node in the graph as shown in �g-
ure 3.2.
Then the sequencer looks for a potential root

using the rules graph (shown on �gure 3.1).
A match exists between rule 'coldoorOff' and
'cd0#coldooor@hwmanager'. Therefore, the se-
quencer starts applying rule 'coldoorOff' to
'cd0#coldooor@hwmanager'. The deps�nder of the
rule is called. For each id returned by the deps-
�nder11, the graph is updated: a node with an empty
action list is made and an edge from the current id to
the dependency is created. Each returned id is added
to the id set.
Then, for each dependency, the sequencer checks

if a match exists with one of the rules de�ned in the
'dependson' column, and for each match, the match-
ing rule is applied recursively.
In our case, the cold door deps�nder returns

every cooled component: 'nfs1#nfs@node' and
'c1#compute@node'. Therefore, the graph is up-
dated as shown in �gure 3.3. The 'coldoorOff' rule
de�nes a single dependency in its 'dependson' col-

11Note that it is not required that deps�nder returns ids
with a prede�ned category as soon as a match occurs in the
sequencer table. Prede�ned categories are used to ease the
mapping between a given component and a type. In a large
cluster (or data-center), it may not be easy to determine what
is the real type of a given component name.

Figure 3.4: The dependency graph after
the application of rule 'coldoorOff' on
'cd0#coldoor@hwmanager'.

umn: 'nodeOff'. Both components match, the rule
is applied. The application of the rule 'nodeOff'

on 'c1#compute@node' leads to the execution of the
deps�nder which does not return anything. There-
fore, the application of the rule ends by adding the
action 'nodectrl poweroff %name' to the related
node in the dependency graph and by the removal of
the related id from the id set.
This implies that a given rule is applied at most

once on a given id.
The sequencer continues with the next depen-

dency which is 'nfs1#nfs@node'. The applica-
tion of the rule 'nodeOff' leads to the execution
of the deps�nder which returns 'nfs1#nfsd@soft'.
This node is already in the graph (it is in
the initial id set). Therefore, the depen-
dency graph is just updated with a new edge.
This id matches the dependency rule speci�ed
'nfsDown' and this last rule is applied on that
id. The deps�nder on 'nfs1#nfsd@soft' returns all
known clients which are 'c1#unmountNFS@soft' and
'nfs2#unmountNFS@soft'.
Finally both dependencies match the rule

'umountNFS' but its application does not lead to
any new node in the dependency graph. However,
the graph is updated so each node is mapped to
its related action, recursively, up to the node the
sequencer started with: 'cd0#coldoor@hwmanager'

as show on �gure 3.4.
At that stage, the id set contains only the

last element from the originial component list:

9

Figure 3.5: The rules graph with �rst level roots re-
moved.

'nfs2#nfs@node' (others were removed by preced-
ing rule applications). Unfortunately that id does
not match any root rule in the rules graph. Thus,
the rules graph is (virtually) modi�ed so roots are
removed. This leaves us with the rules graph shown
on �gure 3.5.

From that graph, id 'nfs2#nfs@node' matches
root rule 'nodeOff' which is therefore applied.
The deps�nder returns 'nfs2#nfsd@soft'

which is new and therefore added in the de-
pendency graph. The rule 'nfsDown' is applied
on that id (since a match occurs) giving us
two dependencies 'c1#unmountNFS@soft' and
'nfs1#unmountNFS@soft'.

The algorithm ends after the mapping of those new
ids with their related actions as shown in the �nal
graph shown on �gure 3.6.

Remember that a rule is never applied twice
on a given id. Therefore, the action from
rule 'unmountNFS' which is 'echo WARNING: NFS

mounted!' on id 'c1#unmountNFS@soft' is not
added twice.

The sequencer displays this dependency graph
in an XML format (using the open-source python-
graph library available at http://code.google.

com/p/python-graph/) on its standard output. This
output can be given directly to the second stage of
the sequencer. Note that contrary to the rules graph,
the dependency graph should not contain a cycle (this
will be detected by the next stage and refused as an

Figure 3.6: The �nal dependency graph.

input).

3.2 Instructions Sequence Maker
(ISM)

The Instructions Sequence Maker (ISM) is the second
stage of the sequencer. Its role is to transform a de-
pendency graph into a set of instructions that can be
given as an input to the third stage, the Instructions
Sequence Executor (ISE).
A set of instructions is speci�ed as an XML doc-

ument, within an <instructions> XML tag. Three
kind of instructions can be speci�ed:

Action: de�ned by the <action> tag. It speci�es
the actual command that should be executed.
Attributes are:

• 'id': Each action should be identi�ed
by a unique string. This attribute is
mandatory. It is usually12 of the form
'name#type@category!rule'

• 'deps': a list of ids this action depends
on (explicit dependencies). This attribute
is optionnal. Default is the empty string.

• 'remote': the command should be exe-
cuted using the current shell unless this at-
tribute is set to 'true'. In this case, an

12It is not required for the instructions sequence XML doc-
ument to be created by the Instructions Sequence Maker. It
may be created/modi�ed by hand or by any other programs.

10

http://code.google.com/p/python-graph/
http://code.google.com/p/python-graph/

internal ssh connexion is made to execute
the given command on each components de-
scribed by the 'component_set' attribute
(see below). This attribute is optionnal.
Default is 'false'.

• 'component_set': the set of com-
ponents this action should be ex-
ecuted on in the following format:
'name[range]#type@category'. This
attribute is ignored by the ISE unless
the remote attribute is set to 'true'.
This attribute is optionnal. Default is
'localhost#type@cat'.

Sequence: de�ned by the <seq> tag. It speci�es
a set of instructions (hence, one of Action, Se-
quence or Parallel) that must be executed in the
given order. This de�nes implicit dependencies
between instructions as opposed to explicit de-
pendencies de�ned by the 'deps' attribute of
an Action.

Parallel: de�ned by the <par> tag. It speci�es a set
of instructions (hence one of Action, Sequence or
Parallel) that can be executed in any order. This
explicitly de�nes that there is no dependency be-
tween each instruction. The ISE is free to exe-
cute them in parallel. Note that the ISE may
or may not execute those instructions in paral-
lel. This is not a requirement for the successful
completion of a parallel instruction.

Transforming a dependency graph into an instruc-
tions sequence is straightforward if performance is
not the main goal. A simple topological sort [6] on
the input dependency graph returns a sequence of
actions where constraints are respected.
For example, on our example where the �nal de-

pendency graph computed by the DGM is given on
�gure 3.6, a topological sort13 gives the sequence
shown on sample 1.

This sequence is valid, but not e�cient: it requires
9 sequential steps. This transformation algorithm is

13For a given directed acyclic graph, several valid topological
sort outputs can be found.

called 'seq' in the sequencer and it can be selected.
Three other algorithms are provided within the se-
quencer:

• 'par': this algorithm inserts each node in the
dependency graph using a single parallel (<par>
XML tag) instruction and explicit dependencies
('deps' attribute of the <action> XML tag).
Such an algorithm is optimal in terms of perfor-
mance, but it produces an instructions sequence
�le that is di�cult to read by a human because
of all those explicit dependencies.

• 'mixed': this algorithm inserts each leaf nodes
in the dependency graph using a parallel instruc-
tion, then remove those leaf nodes from the de-
pendency graph and starts again. Every such
parallel instructions are included in a global se-
quence one (<seq> XML tag). This algorithm
tends to execute set of actions by steps: all leaf
nodes are executed in parallel. Once they have
terminated, they are removed from the graph,
and another batch of leaf nodes are executed in
parallel up to the end.

• 'optimal': this algorithm produces an instruc-
tions sequence that is as e�cient as the 'par'

algorithm but much more readable. It uses im-
plicit dependencies as much as possible14 using
sequence instructions. This algorithm is selected
by default.

Describing in details those algorithms with their ad-
vantages and constraints is beyond the scope of this
paper.

3.3 Instructions Sequence Executor
(ISE)

The Instructions Sequence Executor (ISE) is the last
stage of the sequencer. It takes in input an in-
structions sequence as computed by the ISM or cre-
ated/edited by hand or by any other means. It then
runs the instructions speci�ed taking into account:

14Our XML instructions sequence format can only express
trees if implicit dependencies are used exclusively.

11

Sample 1 Result of the topological sort on the dependency graph given �gure 3.6.
<instructions>

<seq>

<action id=�c1#unmountNFS@soft!unmountNFS�>echo WARNING: NFS mounted!</action>

<action id=�nfs1#unmountNFS@soft!unmountNFS�>echo WARNING: NFS mounted!</action>

<action id=�nfs2#unmountNFS@soft!unmountNFS�>echo WARNING: NFS mounted!</action>

<action id=�nfs1#nfsd@node!nfsDown� remote=�true� component_set=�nfs1#nfsd@node�>

/etc/init.d/nfsd stop

</action>

<action id=�nfs1#nfs@node!nodeOff�>nodectrl poweroff nfs1</action>

<action id=�nfs2#nfsd@soft!nfsDown� remote=�true� component_set=�nfs2#nfs@node�>

/etc/init.d/nfsd stop

</action>

<action id=�c1#compute@node�>nodectrl poweroff c1</action>

<action id=�nfs2#nfs@node!nodeOff�>nodectrl poweroff nfs2</action>

<action id=�cd0#coldoor@hwmanager!coldoorOff�>bsmpower -a off cd0</action>

</seq>

</instructions>

• parallelism: actions that do not have dependen-
cies between them might be executed in paral-
lel. There is a customizable maximum limit on
the number of actions that can be executed in
parallel by the ISE. This helps limiting the load
increase of the system due to a vast number of
forks in a large cluster.

• dependencies: an action is not executed unless
all its dependencies (explicit and implicit) have
completed successfully. An executed action is
considered successful in two cases:

� its returned code is 0 (alias OK);

� its returned code is 75 (alias WARN-
ING also known as EX_TEMPFAIL in
sysexits.h) and the option '--Force' has
been given to the ISE.

The implementation of the ISE uses the Cluster-
Shell [7] python library as the backend execution en-
gine. Describing the implementation of the ISE is
beyond the scope of this article.

4 Scalability Issues

Using the sequencer on a large cluster such as the
Tera-100 can lead to several issues related to scala-

bility.

4.1 Complexity

Several complexity in space and time can be identi�ed
for:

1. the production of the dependency graph pro-
duced by the DGM;

2. the production of the actions graph produced by
the ISM;

3. the execution of the actions graph by the ISE.

This last complexity was our �rst concern due to our
customer requirements. If theorical complexity has
not (yet) been formally determined, the execution
time of the sequencer for the production of the de-
pendency graph of the Tera-100 is:

• 13 minutes 40 seconds for the start ruleset with
9216 nodes and 8941 edges in the dependency
graph;

• 2 minutes 1 second for the stop ruleset with 9222
nodes and 13304 edges in the dependency graph.

The time taken by the ISM for the production of the
actions graph from the previously computed depen-
dency graph using the 'optimal' algorithm is:

12

• 4.998 seconds for the start with 4604 nodes and
8742 edges in the actions graph;

• 6.343 seconds for the stop with 4606 nodes and
9054 edges in the actions graph.

Finally, the time taken by the ISE to execute these
actions graph is:

• 4 minutes 27 seconds for the start with:

� 99.7% of actions executed (successfully or
not);

� 6.6% of actions that ends on error for vari-
ous reasons;

� 0.3% of actions not executed because some
of their dependencies ends on error or was
not executed.

• 9 minutes 23 seconds for the stop ruleset with:

� 96.7% of actions executed (successfully or
not);

� 15.3% of actions that ends on error for var-
ious reasons;

� 3.3% of actions not executed because some
of their dependencies ends on error or was
not executed

Explaining di�erences between those metrics is be-
yond the scope of this paper. However, from such
results, the sequencer can be considered has quite
scalable.

4.2 Mantainability

The maintenance of the various graph used by the
sequencer:

• rules graph;

• the DGM produced dependency graph;

• the ISM produced actions graph XML �le;

is also an issue on large systems. Identifying wrong
dependencies in a �at �le can be hard, especially
with large graph represented with several thousands
of lines.
The sequencer can exports those graph in the DOT

format. It therefore delegates to speci�c graph tools,
the identi�cation of non trivial problems for mainte-
nance purposes. For instance, rules graph are usually
small and the standard 'dot' command that comes
within the graphviz [8] open-source standard product
can be used for their vizualisation. This is fast and
easy. For other much larger graph, however, special-
ized tools such as Tulip [9] might be used instead.

4.3 Usability

In the context of large systems, giving correct inputs
to a tool, and getting back a usable output can be a
big challenge in itself. In the case of the sequencer,
inputs are the sequencer table and the components
list.
For the maintenance of the table, the sequencer

provides a management tool that helps adding, re-
moving, updating, copying and even checksuming
rules. For the components list, the sequencer uses
what is called a guesser that given a simple compo-
nent name fetches its type and category. This allows
the end user to specify only the name of a component.
Apart from the output produced by the �rst two

stages that have already been discussed in the previ-
ous section on maintanability, the last output of great
interest for the end-user, is the ISE output. To in-
crease further the usability of the sequencer, several
features are provided:

Pre�x Notation: each executed action output is
pre�xed by its id. When the ISE executes an
action graph produced by previous stages, those
ids contain various informations such as the type,
the category, and the rulename this action comes
from. This helps identifying which action pro-
duced which output (the bare mininum). More-
over, such an output can be passed to vari-
ous �lters such as grep or even gathering com-
mands such as 'clubak' from ClusterShell [7]
or 'dshbak' from pdsh [10]. In the case of

13

'clubak' command, the separator can be given
as an option. As a side e�ect, this allows the
end-user to group similar output by node, type
or category.

Reporting: The ISE can produce various reports:

• 'model': each action with their dependen-
cies (implicit and explicit) are shown; this
is used to determine what the ISE will
do before the actual execution (using a
'--noexec' option);

• 'exec': each executed action is displayed
along with various timing informations and
the returned code;

• 'error': each executed action that exited
with an error code is displayed along with
their reversed dependencies (their parent in
the dependency graph); this is used to know
which action has not been executed because
of a given error;

• 'unexec': each non executed action is dis-
played along with its missing dependencies
� a dependency that exited with an error
code and that prevented the action from
being executed; this is used to know why a
given action has not been executed.

5 Results

The sequencer has been designed for two main pur-
poses:

1. Emergency Power O�: this is the reason of the
three di�erent independent stages;

2. Common management of resources in clusters
(and data-centers): this is the main reason for
the chaining mechanism.

Our �rst experiment with our tool shows that it is
quite e�cient. Our main target was the powering
on/o� of the whole Tera-100 system which leads to
the execution of more than 4500 actions in less than
5 minutes for the start and in less than 10 minutes
for the stop.

6 Related Works

Dependency graph makers exist in various products:

• Make [11], SCons [12], Ant [13] for example are
used for the building of softwares; they focus
on �les rather that cluster components and are
therefore not easily adaptable to our problem.

• Old System V init [14], BSD init [15], Gentoo
init[16] and their successors Solaris SMF [17],
Apple launchd [18], Ubuntu upstart [19] and Fe-
dora systemd [20] are used during the boot of
a system and for managing daemons. To our
knowledge none of those products can be given
a components list as an input so actions are ex-
ecuted based on it.

Solutions for starting/stopping a whole cluster are
most of the time manual, described in a step-
by-step chapter of the product documentation and
hard wired. This is the case for example with
the Sun/Oracle solution [21] (command 'cluster

shutdown'). It is not clear whether all components
in the cluster are taken into account (switches, cool-
ing components, softwares, ...) and whether new
components can be added to the shutdown process.
IBM uses the open-source xcat [22] project and its
'rpower' command which does not provide depen-
dencies between cluster components.
From a high level perspective, the sequencer, can

be seen as a command dispatching framework simi-
lar to Fabric [23], Func [24] and Capistrano [25] for
example. But the ability to deal with dependencies
lacks in these products making them unsuitable for
our initial problem.
The sequencer can also be seen as a work�ow man-

agement system where the pair DGM/ISM acts as
a work�ow generator, and the ISE acts as a work-
�ow executor. However, the sequencer has not been
designed for human interactive actions. It does not
deal for example with user access rights or tasks
list for example. It is therefore much lighter than
common user oriented work�ow management systems
such as YAWL [26], Bonita [27], Intalio|BPMS [28],
jBPM [29] or Activiti [30] among others.
We �nally found a single real product for which

a comparison has some meaning: ControlTier [31].

14

ControlTier shares with the sequencer various fea-
tures such as possible parallel execution of indepen-
dent actions and failure handling. However, the
main di�erence is in the way work�ows are produced:
they are dynamically computed in the sequencer case
through dependency rules (deps�nder scripts) and
the component input list whereas they are hard wired
through con�guration �les in the case of ControlTier.
To our knowledge, our solution is the �rst one to

address directly the problem of starting/stopping a
whole cluster or a part of it, taking dependencies
into considerations, still remaining integrated, e�-
cient, customizable and robust in the case of failure.
We suppose the main reason is that clusters are not
designed to get started/stopped entirely. Long up-
time is an objective! However automated tools ease
the management of clusters, making start/stop proce-
dure faster, reproducible, and reducing human errors
to a minimum.

7 Conclusion and Future

Works

The sequencer solution presented in this article is the
�rst of its kind to our knowledge. It has been de-
signed with EPO in mind. This is the reason for its 3
independent stages and for the incremental mode of
execution. Still the sequencer provides the chaining
feature making its use pertinent for small clusters or
small part of a big one.
The sequencer ful�lls our initial objectives:

• Predictive: the incremental mode allows a com-
puted instructions sequence to be veri�ed, mod-
i�ed and recorded before being run.

• Easy: executing a recorded instructions
sequence requires a single command:
'clmsequencer < instructions.sequence'

• Fast: the sequencer can execute independent in-
structions in parallel with a customizable upper
limit.

• Smart: the order in which instructions are exe-
cuted comes from a dependency graph computed

from customizable dependency rules and a given
cluster components list.

• Robust: failures are taken into account by the
sequencer component by component.

Our solution is highly �exible in that most of its inner
working is con�gurable such as:

• the dependency rules,

• the dependency fetching scripts,

• the action to be taken on each component,

• the dependency graph,

• the �nal instruction sets.

The sequencer has been validated on the whole Tera-
100 system. A shutdown can be done in less than
10 minutes, and a power on takes less than 5 min-
utes (more than 4500 actions for both rulesets).
The sequencer framework will be released under an
open-source license soon. Several enhancements are
planned for the end of this year including:

• smarter failure handling;

• live reporting/monitoring;

• performance improvement of dependency graph
generation through caching;

• post-mortem reporting;

• replaying.

8 Aknowledgment

The author would like to thank Matthieu Pérotin for
his helpful review, Marc Girard for his support dur-
ing the development of the solution presented in this
paper and the reviewers for their very clear comments
and remarks.

15

References

[1] W. Turner, J. Seader, and K. Brill, �Industry
standard tier classi�cations de�ne site infras-
tructure performance,� tech. rep., Uptime Insti-
tute, 2005. 1

[2] P. Grun, �Introduction to in�niband for end
users,� tech. rep., In�niBand Trade Association,
April 2010.
http://members.infinibandta.org/kwspub/

Intro_to_IB_for_End_Users.pdf. 1

[3] AMD, �Magic packet technology.� White Paper,
November 1995. Publication# 20213, Rev: A
Amendment/0
http://support.amd.com/us/Embedded_

TechDocs/20213.pdf. 2

[4] N. D. Intel, Hewlett-Packard, �Ipmi v2.0 rev. 1.0
speci�cation markup for ipmi v2.0/v1.5 errata
revision 4,� 2009.
http://download.intel.com/design/

servers/ipmi/IPMI2_0E4_Markup_061209.

pdf. 2

[5] S. R. International, �Snmp rfcs.�
http://www.snmp.com/protocol/snmp_rfcs.

shtml. 2

[6] A. B. Kahn, �Topological sorting of large net-
works,� Commun. ACM, vol. 5, pp. 558�562,
November 1962. 11

[7] �Clustershell opensource project,� 2011.
http://sourceforge.net/apps/trac/

clustershell. 12, 13

[8] AT&T Labs Research and Contributors,
�Graphviz.� Web page, June 2011.
http://graphviz.org/. 13

[9] D. Auber, �Tulip : A huge graph visualisa-
tion framework,� in Graph Drawing Softwares
(P. Mutzel and M. Jünger, eds.), Mathematics
and Visualization, pp. 105�126, Springer-Verlag,
2003. 13

[10] J. Garlick, �pdsh: Parallel distributed shell.�
http://sourceforge.net/projects/pdsh/.
13

[11] Free Software Foundation, �GNU Make.� Web
page, July 2004.
http://www.gnu.org/software/make/. 14

[12] The SCons Foundation, �SCons.� Web page,
June 2011.
http://www.scons.org/. 14

[13] The Apache Software Foundation, �The Apache
Ant Project.� Web page, July 2004.
http://ant.apache.org/. 14

[14] Novell, Inc (now SCO), System V Interface
De�nition, Fourth Edition, Volume 2, June
1995.
http://www.sco.com/developers/devspecs/

vol2.pdf. 14

[15] FreeBSD, FreeBSD System Manager's Manual,
init(8), Sept. 2005.
http://www.freebsd.org/cgi/man.cgi?

query=init&sektion=8. 14

[16] �Gentoo Initscripts,� Mar. 2011.
http://www.gentoo.org/doc/en/handbook/

handbook-x86.xml?part=2&chap=4. 14

[17] R. Romack, �Service managemen facility (smf)
in the solaris 10 operating system.� Sun
BluePrints OnLine, Feb. 2006.
http://www.linux.com/archive/feature/

125977. 14

[18] J. Wisenbaker, �launchd in depth.� AFP548,
July 2005.
http://www.afp548.com/article.php?

story=20050620071558293. 14

[19] M. Sobell, �Ubuntu's upstart event-based init
daemon,� Feb. 2008.
http://www.linux.com/archive/feature/

125977. 14

[20] L. Poettering, �Rethinking pid 1,� Apr. 2010.
http://0pointer.de/blog/projects/

systemd.html. 14

16

http://members.infinibandta.org/kwspub/Intro_to_IB_for_End_Users.pdf
http://members.infinibandta.org/kwspub/Intro_to_IB_for_End_Users.pdf
http://support.amd.com/us/Embedded_TechDocs/20213.pdf
http://support.amd.com/us/Embedded_TechDocs/20213.pdf
http://download.intel.com/design/servers/ipmi/IPMI2_0E4_Markup_061209.pdf
http://download.intel.com/design/servers/ipmi/IPMI2_0E4_Markup_061209.pdf
http://download.intel.com/design/servers/ipmi/IPMI2_0E4_Markup_061209.pdf
http://www.snmp.com/protocol/snmp_rfcs.shtml
http://www.snmp.com/protocol/snmp_rfcs.shtml
http://sourceforge.net/apps/trac/clustershell
http://sourceforge.net/apps/trac/clustershell
http://graphviz.org/
http://sourceforge.net/projects/pdsh/
http://www.gnu.org/software/make/
http://www.scons.org/
http://ant.apache.org/
http://www.sco.com/developers/devspecs/vol2.pdf
http://www.sco.com/developers/devspecs/vol2.pdf
http://www.freebsd.org/cgi/man.cgi?query=init&sektion=8
http://www.freebsd.org/cgi/man.cgi?query=init&sektion=8
http://www.gentoo.org/doc/en/handbook/handbook-x86.xml?part=2&chap=4
http://www.gentoo.org/doc/en/handbook/handbook-x86.xml?part=2&chap=4
http://www.linux.com/archive/feature/125977
http://www.linux.com/archive/feature/125977
http://www.afp548.com/article.php?story=20050620071558293
http://www.afp548.com/article.php?story=20050620071558293
http://www.linux.com/archive/feature/125977
http://www.linux.com/archive/feature/125977
http://0pointer.de/blog/projects/systemd.html
http://0pointer.de/blog/projects/systemd.html

[21] Oracle, Oracle Solaris Cluster System Adminis-
tration Guide.
http://download.oracle.com/docs/cd/

E18728_01/html/821-1257/ghfwr.html. 14

[22] L. Octavian, A. Brindeyev, D. E. Quintero,
V. Sermakkani, R. Simon, and T. Struble,
�xCAT 2 Guide for the CSM System Adminis-
trator.� IBM Red Paper, 2008.
http://www.redbooks.ibm.com/redpapers/

pdfs/redp4437.pdf. 14

[23] Je� Forcier, �Fabric.� Web page, June 2011.
http://fabfile.org/. 14

[24] MichaelDeHaan, AdrianLikins, and SethVidal,
�Func: Fedora Uni�ed Network Controller.�
Web page, June 2011.
https://fedorahosted.org/func/. 14

[25] Jamis Buck, �Capistrano.� Web page, June
2011.
http://github.com/capistrano/

capistrano/wiki/. 14

[26] M. Adams, S. Clemens, M. L. Rosa, and
A. H. M. ter Hofstede, �Yawl: Power through
patterns,� in BPM (Demos), 2009. 14

[27] M. V. Faura, �Bonita.�
http://www.bonitasoft.com/. 14

[28] I. Ghalimi, �Intalio|bpms.�
http://www.intalio.com/bpms. 14

[29] T. Baeyens, �Jbpm.�
http://www.jboss.org/jbpm. 14

[30] T. Baeyens, �Activiti.�
http://www.activity.org/. 14

[31] Alex Honor, �Control Tier.� Web page, June
2011.
http://controltier.org/. 14

17

http://download.oracle.com/docs/cd/E18728_01/html/821-1257/ghfwr.html
http://download.oracle.com/docs/cd/E18728_01/html/821-1257/ghfwr.html
http://www.redbooks.ibm.com/redpapers/pdfs/redp4437.pdf
http://www.redbooks.ibm.com/redpapers/pdfs/redp4437.pdf
http://fabfile.org/
https://fedorahosted.org/func/
http://github.com/capistrano/capistrano/wiki/
http://github.com/capistrano/capistrano/wiki/
http://www.bonitasoft.com/
http://www.intalio.com/bpms
http://www.jboss.org/jbpm
http://www.activity.org/
http://controltier.org/

	1 Introduction
	2 Design
	3 Implementation
	3.1 Dependency Graph Maker (DGM)
	3.1.1 Components list specification
	3.1.2 Sequencer Dependency Rules: the sequencer table
	3.1.3 Algorithm

	3.2 Instructions Sequence Maker (ISM)
	3.3 Instructions Sequence Executor (ISE)

	4 Scalability Issues
	4.1 Complexity
	4.2 Mantainability
	4.3 Usability

	5 Results
	6 Related Works
	7 Conclusion and Future Works
	8 Aknowledgment

