
Improving Virtual Appliance Management through
Virtual Layered File Systems

Shaya Potter Jason Nieh
Computer Science Department

Columbia University
{spotter, nieh}@cs.columbia.edu

Abstract
Managing many computers is difficult. Recent virtual-
ization trends exacerbate this problem by making it easy
to create and deploy multiple virtual appliances per phys-
ical machine, each of which can be configured with dif-
ferent applications and utilities. This results in a huge
scaling problem for large organizations as management
overhead grows linearly with the number of appliances.

To address this problem, we introduce Strata, a system
that combines unioning file system and package manage-
ment semantics to enable more efficient creation, pro-
visioning and management of virtual appliances. Un-
like traditional systems that depend on monolithic file
systems, Strata uses a collection of individual sotware
layers that are composed together into the Virtual Lay-
ered File System (VLFS) to provide the traditional file
system view. Individual layers are maintained in a cen-
tral repository and shared across all file systems that use
them. Layer changes and upgrades only need to be done
once in the repository and are then automatically propa-
gated to all virtual appliances, resulting in management
overhead independent of the number of appliances. Our
Strata Linux prototype requires only a single loadable
kernel module providing the VLFS support and doesn’t
require any application or source code level kernel mod-
ifications. Using this prototype, we demonstrate how
Strata enables fast system provisioning, simplifies sys-
tem maintenance and upgrades, speeds system recovery
from security exploits, and incurs only modest perfor-
mance overhead.

1 Introduction

A key problem organizations face is how to efficiently
provision and maintain the large number of machines de-
ployed throughout their organizations. This problem is
exemplified by the growing adoption and use of virtual
appliances (VAs). VAs are pre-built software bundles run
inside virtual machines (VMs). Since VAs are often tai-
lored to a specific application, these configurations can
be smaller and simpler, potentially resulting in reduced
resource requirements and more secure deployments.

While VAs simplify application deployment and de-
crease hardware costs, they can tremendously increase
the human cost of administering these machines As VAs
are cloned and modified, organizations that once had a
few hardware machines to manage now find themselves
juggling many more VAs with diverse system configura-
tions and software installations.

This causes many management problems. First, as
these VAs share a lot of common data, they are inefficient
to store, as there are multiple copies of many common
files. Second, by increasing the number of systems in
use, we increase the number of systems needing security
updates. Finally, machine sprawl, especially non actively
maintained machines, can give attackers many places to
hide as well as make attack detection more difficult. In-
stead of a single actively used machine, administrators
now have to monitor many irregularly used machines.

Many approaches have been used to address these
problems, including diskless clients [5], traditional pack-
age management systems [6, 1], copy-on-write disks [9],
deduplication [16] and new VM storage formats [12, 4].
Unfortunately, they suffer from various drawbacks that
limit their utility and effectiveness in practice. They ei-
ther do not directly help with management, incur man-
agement overheads that grow linearly with the number of
VAs, or require a homogenous configuration, eliminating
the main advantages of VAs.

The fundamental problem with previous approaches is
that they are based on a monolithic file system or block
device. These file systems and block devices address
their data at the block layer and are simply used as a stor-
age entity. They have no direct concept of what the file
system contains or how it is modified. However, man-
aging VAs is essentially done by making changes to the
file system. As a result, any upgrade or maintenance op-
eration needs to be done to each VA independently, even
when they all need the same maintenance.

We present Strata, a novel system that integrates file
system unioning with package management semantics
and uses the combination to solve VA management prob-
lems. Strata makes VA creation and provisioning fast.
It automates the regular maintenance and upgrades that
must be performed on provisioned VA instances. Finally,

1

it improves the ability to detect and recover from security
exploits.

Strata achieves this by providing three architectural
components: layers, layer repositories, and the Virtual
Layered File System (VLFS). A layer is a set of files that
are installed and upgraded as a unit. Layers are analo-
gous to software packages in package management sys-
tems. Like software packages, a layer may require other
layers to function correctly, just as applications often re-
quire various system libraries to run. Strata associates
dependency information with each layer that defines re-
lationships among distinct layers. Unlike software pack-
ages, which are installed into each VA’s file system, lay-
ers can be shared directly among multiple VAs.

Layer repositories are used to store layers centrally
within a virtualization infrastructure, enabling them to
be shared among multiple VAs. Layers are updated and
maintained in the layer repository. When a new version
of an application becomes available, due to added fea-
tures or a security patch, a new layer is added to the
repository. Different versions of the same application
may be available through different layers in the layer
repository. The layer repository is typically stored in a
shared storage infrastructure accessible by the VAs, such
as an SAN. Storing layers on the SAN does not impact
VA performance because an SAN is where a traditional
VA’s monolithic file system is stored.

The VLFS implements Strata’s unioning mechanism
and provides the file system for each VA. Like a tradi-
tional unioning file system, it is a collection of individual
layers composed into a single view. It enables, a file sys-
tem to be built out of many shared read-only layers while
providing each file system with its own private read-write
layer to contain all file system modifications that occur
during runtime. In addition, it provides new semantics
that enable unioning file systems to be used as the ba-
sis for package management type system. These include
how layers get added and removed from the union struc-
ture as well as how the file system handles files deleted
from a read-only layer.

Strata, by combining the unioning and package man-
agement semantics, provides a number of management
benefits. First, Strata is able to create and provision
VAs quickly and easily. By leveraging each layer’s de-
pendency information, Strata allows an administrator to
quickly create template VAs by only needing to explicitly
select the application and tool layers of interest. These
template VAs can then be instantly provisioned by end
users as no copying or on demand paging is needed to
instantiate any file system as all the layers are accessed
from the shared layer repository.

Second, Strata automates upgrades and maintenance
of provisioned VAs. If a layer contains a bug to be fixed,
the administrator only updates the template VA with a

replacement layer containing the fix. This automatically
informs all provisioned VAs to incorporate the updated
layer into their VLFS’s namespace view, thereby requir-
ing the fix to only be done once no matter how many
VAs are deployed. Unlike traditional VAs, who are up-
dated by replacing an entire file system [12, 4], Strata
does not need to be rebooted to have these changes take
effect. Unlike package management, all VLFS changes
are atomic as no time is spent deleting and copying files.

Finally, this semantic allows Strata to easily recover
VAs in the presence of security exploits. The VLFS al-
lows Strata to distinguish between files installed via its
package manager, which are stored in a shared read-only
layer, and the changes made over time, which are stored
in the private read-write layer. If a VA is compromised,
the modifications will be confined to the VLFS’s pri-
vate read-write layer, thereby making the changes easy
to both identify and remove.

We have implemented a Strata Linux prototype with-
out any application or source code operating system ker-
nel changes and provide the VLFS as a loadable kernel
module. We show that by combining traditional pack-
age management with file system unioning we provide
powerful new functionality that can help automate many
machine management tasks. We have used our proto-
type with VMware ESX virtualization infrastructure to
create and manipulate a variety of desktop and server
VAs to demonstrate its utility for system provisioning,
system maintenance and upgrades, and system recovery.
Our experimental results show that Strata can provision
VAs in only a few seconds, can upgrade a farm of fifty
VAs with several different configurations in less than two
minutes, and has scalable storage requirements and mod-
est file system performance overhead.

2 Related Work

The most common way to provision and maintain ma-
chines today is using the package management system
built into the operating system [6, 1]. Package manage-
ment provides a number of benefits. First, it divides the
installable software into independent chunks called pack-
ages. When one wants to install a piece of software or
upgrade an already installed piece of software, all one
has to do is download and install that single item. Sec-
ond, these packages can include dependency information
that instructs the system about what other packages must
be installed with this package. This enables tools [2, 10]
to automatically determine the entire set of packages one
needs to install when one wants to install a piece of soft-
ware, making it significantly easier for an end-user to in-
stall software.

However, package managers view the file system as a
simple container for files and not as a partner in the man-

2

agement of the machine. This causes them to suffer from
a number of flaws in their management of large numbers
of VAs. They are not space or time efficient, as each pro-
visioned VA requires time-consuming copying of many
megabytes or gigabytes into each VA’s file system. These
inefficiencies affect both provisioning and updating of a
system as a lot of time is spent, downloading, extract-
ing and installing the individual packages into the many
independent VAs.

As the package manager does not work in partnership
with the file system, the file system does not distinguish
between a file installed from a package and a file modi-
fied or created in the course of usage. Specialized tools
are needed to traverse the entire file system to determine
if a file has been modified and therefore compromised.
Finally, package management systems work in the con-
text of a running system to modify the file system di-
rectly. These tools often cannot not work if the VA is
suspended or turned off.

For local scenarios, the size and time efficiencies of
provisioning a VA can be improved by utilizing copy-
on-write (COW) disks, such as QEMU’s QCOW2 [9]
format. These enables VAs to be provisioned quickly,
as little data has to be written to disk immediately due
to the COW property. However, once provisioned, each
COW copy is now fully independent from the original, is
equivalent to a regular copy, and therefore suffers from
all the same maintenance problems as a regular VA. Even
if the original disk image is updated, the changes would
be incompatible with the cloned COW images. This is
because COW disks operate at the block level. As files
get modified, they use different blocks on their underly-
ing device. Therefore, it is likely that the original and
cloned COW images address the same blocks for differ-
ent pieces of data. For similar reasons, COW disks do not
help with VA creation, as multiple COW disks cannot be
combined together into a single disk image.

Both the Collective [4] and Ventana [12] attempt to
solve the VA maintenance problem by building upon
COW concepts. Both systems enable VAs to be provi-
sioned quickly by performing a COW copy of each VA’s
system file system. However, they suffer from the fact
that they manage this file system at either the block de-
vice or monolithic file system level, providing users with
only a single file system. While ideally an administra-
tor could supply a single homogeneous shared image for
all users, in practice, users want access to many heteroge-
neous images that must be maintained independently and
therefore increase the administrator’s work. The same
is true for VAs provisioned by the end user, while they
both enable the VAs to maintain a separate disk from the
shared system disk that persists beyond upgrades.

Mirage [17] attempts to improve the disk image sprawl
problem by introducing a new storage format, the Mi-

rage Index Format (MIF), to enumerate what files be-
long to a package. However, it does not help with the
actual image sprawl in regard to machine maintenance,
because each machine reconstituted by Mirage still has a
fully independent file system, as each image has its own
personal copy. Although each provisioned machine can
be tracked, they are now independent entities and suffer
from the same problems as a traditional VA.

Stork [3] improves on package management for
container-based systems by enabling containers to hard
link to an underlying shared file system so that files are
only stored once across all containers. By design, it can-
not help with managing independent machines, virtual
machines, or VAs, because hard links are a function in-
ternal to a specific file system and not usable between
separate file systems.

Union file systems [11, 19] provide the ability to com-
pose multiple different file namespaces into a single
view. Unioning file systems are commonly used to pro-
vide a COW file system from a read-only copy, such as
with Live-CDs. However, unioning file system by them-
selves do not directly help with VA management, as the
underlying file system has to be maintained using regular
tools. Strata builds upon and leverages this mechanism
by improving its ability to handle deleted files as well
as managing the layers that belong to the union. This
allows Strata to provide a solution that enables efficient
provisioning and management of VAs.

Strata focuses on improving virtual appliance manage-
ment, but the VLFS idea can be used to address other
management and security problems as well. For exam-
ple, our previous work on Apiary [14] demonstrates how
the VLFS can be combined with containers to provide
a transparent desktop application fault containment ar-
chitecture that is effective at limiting the damage from
exploits to enable quick recovery while being as easy to
use as a traditional desktop system.

3 Strata Basics

Figure 1 shows Strata’s three architectural components:
layers, layer repositories, and VLFSs. A layer is a dis-
tinct self-contained set of files that corresponds to a spe-
cific functionality. Strata classifies layers into three cat-
egories: software layers with self-contained applications
and system libraries, configuration layers with configu-
ration file changes for a specific VA, and private layers
allowing each provisioned VA to be independent. Lay-
ers can be mixed and matched, and may depend on other
layers. For example, a single application or system li-
brary is not fully independent, but depends on the pres-
ence of other layers, such as those that provide needed
shared libraries. Strata enables layers to enumerate their
dependencies on other layers. This dependency scheme

3

MySQL

Apache

Firefox

OpenOffice

Gnome

Template VLFSs/

Appliances

MySQL Config Layer

MySQL

.

Apache Config Layer

Apache

.

Private Layer

MySQL Template

Private Layer

MySQL+Apache Template

Private Layer

Apache Template

Private Layer

MySQL+Apache Template

/usr/sbin/mysqld, /etc/init.d/mysql,..

1) Layer

MySQL

Template

Apache

Template

MySQL+Apache Config Layer

MySQL Config Layer

Apache Config Layer

MySQL

Apache

.

MySQL+Apache

Template

Provisioned VLFSs/

Appliances

3) VLFS

2) Layer

Repository

Figure 1: How Strata’s Components Fit Together

allows automatic provisioning of a complete, fully con-
sistent file system by selecting the main features desired
within the file system.

Layers are provided through layer repositories. As
Figure 1 shows, a layer repository is a file system share
containing a set of layers made available to VAs. When
an update is available, the old layer is not overwritten.
Instead, a new version of the layer is created and placed
within the repository, making it available to Strata’s
users. Administrators can also remove layers from the
repository, e.g., those with known security holes, to pre-
vent them from being used. Layer repositories are gen-
erally stored on centrally managed file systems, such as
a SAN or NFS, but they can also be provided by proto-
cols such as FTP and HTTP and mirrored locally. Layers
from multiple layer repositories can form a VLFS as long
as they are compatible with one another. This allows lay-
ers to be provided in a distributed manner. Layers pro-
vided by different maintainers can have the same layer
names, causing a conflict. This, however, is no different
from traditional package management systems as pack-
ages with the same package name, but different function-
ality, can be provided by different package repositories.

As Figure 1 shows, a VLFS is a collection of layers
from layer repositories that are composed into a single
file system namespace. The layers making up a particu-
lar VLFS are defined by the VLFS’s layer definition file
(LDF), which enumerates all the layers that will be com-
posed into a single VLFS instance. To provision a VLFS,
an administrator selects software layers that provide the
desired functionality and lists them in the VLFS’s LDF.

Within a VLFS, layers are stacked on top of another
and composed into a single file system view. An impli-
cation of this composition mechanism is that layers on
top can obscure files on layers below them, only allow-
ing the contents of the file instance contained within the

higher level to be used. This means that files in the pri-
vate or configuration layers can obscure files in lower
layers, such as when one makes a change to a default
version of a configuration file located within a software
layer. However, to prevent an ambiguous situation from
occurring, where the file system’s contents depend on the
order of the software layers, Strata prevents software lay-
ers that contain a subset of the same file from being com-
posed into a single VLFS.

4 Using Strata

Strata’s usage model is centered around the usage of lay-
ers to quickly create VLFSs for VAs as shown in Fig-
ure 1. Strata allows an administrator to compose together
layers to form template VAs. These template VAs can be
used to form other template appliances that extend their
functionality, as well as to provide the VA that end users
will provision and use. Strata is designed to be used
within the same setup as a traditional VM architecture.
This architecture includes a cluster of physical machines
that are used to host VM execution as well as a shared
SAN that stores all of the VM images. However, instead
of storing complete disk images on the SAN, Strata uses
the SAN to store the layers that will be used by the VMs
it manages.

4.1 Creating Layers and Repositories

Layers are first created and stored in layer repositories.
Layer creation is similar to the creation of packages in
a traditional package management system, where one
builds the software, installs it into a private directory,
and turns that directory into a package archive, or in
Strata’s case, a layer. For instance, to create a layer
that contains the MySQL SQL server, the layer main-
tainer would download the source archive for MySQL,
extract it, and build it normally. However, instead of in-
stalling it into the system’s root directory, one installs
it into a virtual root directory that becomes the file sys-
tem component of this new layer. The layer maintainer
then defines the layer’s metadata, including its name
(mysql-server in this case) and an appropriate ver-
sion number to uniquely identify this layer. Finally, the
entire directory structure of the layer is copied into a file
system share that provides a layer repository, making the
layer available to users of that repository.

4.2 Creating Appliance Templates

Given a layer repository, an administrator can then cre-
ate template VAs. Creating a template VA involves: (1)
Creating the template VA with an identifiable name. (2)

4

Determining what repositories are available to it. (3) Se-
lecting a set of layers that provide the functionality de-
sired.

To create a template VA that provides a MySQL
SQL server, an administrator creates an appliance/VLFS
named sql-server and selects the layers needed for a
fully functional MySQL server file system, most impor-
tantly, the mysql-server layer. Strata composes these lay-
ers together into the VLFS in a read-only manner along
with a read-write private layer, making the VLFS us-
able within a VM. The administrator boots the VM and
makes the appropriate configuration changes to the tem-
plate VA, storing them within the VLFS’s private layer.
Finally, the private layer belonging to the template appli-
ance’s VLFS is converted into the template’s read-only
configuration layer by being moved to a SAN file-system
that the VAs can only access in a read-only manner. As
another example, to create an Apache web server appli-
ance, an administrator creates an appliance/VLFS named
web-server, and selects the layers required for an
Apache web server, most importantly, the layer contain-
ing the Apache program.

Strata extends this template model by allowing multi-
ple template VAs to be composed together into a single
new template. An administrator can create a new tem-
plate VA/VLFS, sql+web-server, composed of the
MySQL and Apache template VAs. The resulting VLFS
has the combined set of software layers from both tem-
plates, both of their configuration layers, and a new con-
figuration layer containing the configuration state that in-
tegrates the two services together, for a total of three con-
figuration layers.

4.3 Provisioning and Running Appliance
Instances

In Strata, a VLFS can be created by building off a pre-
viously defined VLFS set of layers and combining those
layers with a new read-write private layer. Therefore,
given previously defined templates, Strata enables VAs
to be efficiently and quickly provisioned and deployed
by end users. Provisioning a VA involves (1) creating
a virtual machine container with a network adapter and
an empty virtual disk, (2) using the network adapter’s
unique MAC address as the machine’s identifier for iden-
tifying the VLFS created for this machine, and (3) form-
ing the VLFS by referencing the already existing respec-
tive template VLFS and combining the template’s read-
only software and configuration layers with a read-write
private layer provided by the VM’s virtual disk.

As each VM managed by Strata does not have a phys-
ical disk off which to boot, Strata network boots each
VM. When the VM boots, its BIOS discovers a network
boot server which provides it with a boot image, includ-

ing a base Strata environment. The VM boots this base
environment, which then determines which VLFS should
be mounted for the provisioned VM using the MAC ad-
dress of the machine. Once the proper VLFS is mounted,
the machine transitions to using it as its root file system.

4.4 Updating Appliances
Strata upgrades provisioned VAs efficiently using a sim-
ple three-step process. First, an updated layer is installed
into a shared layer repository. Second, administrators are
able to modify the template appliances under their con-
trol to incorporate the update. Finally, all provisioned
VAs based on that template will automatically incorpo-
rate the update as well. Note that updating appliances
is much simpler than updating generic machines, as ap-
pliances are not independently managed machines. This
means that extra software that can conflict with an up-
grade will not be installed into a centrally managed ap-
pliance. Centrally managed appliance updates are lim-
ited to changes to their configuration files and what data
files they store.

Strata’s updates propagate automatically even if the
VA is not currently running. If a provisioned VA is shut
down, the VA will compose whatever updates have been
applied to its templates automatically, never leaving the
file system in a vulnerable state, because it composes its
file system afresh each time it boots. If it is suspended,
Strata delays the update to when the VA is resumed, as
updating layers is a quick task. Updating is significantly
quicker than resuming, so this does not add much to its
cost.

Furthermore, VAs are upgraded atomically, as Strata
adds and removes all the changed layers in a single oper-
ation. In contrast, traditional package management sys-
tem, when upgrading a package, first uninstalls it before
reinstalling the newer version. This traditional method
leaves the file system in an inconsistent state for a short
period of time. For instance, when the libc package is up-
graded, its contents are first removed from the file system
before being replaced. Any application that tries to exe-
cute during the interim will fail to dynamically link be-
cause the main library on which it depends is not present
within the file system at that moment.

4.5 Improving Security
Strata makes it much easier to manage VAs that have had
their security compromised. By dividing a file system
into a set of shared read-only layers and storing all file
system modifications inside the private read-write layer,
Strata separates changes made to the file system via layer
management from regular runtime modifications. This
enables Strata to easily determine when system files have

5

been compromised, because making a compromise per-
sistent requires the file system be modified, modifying or
adding files to the file system to create a compromise will
be readily visible in the private layer. This allows Strata
to not rely on tools like Tripwire [8] or maintain sepa-
rate databases to determine if files have been modified
from their installed state. Similarly, this check can be
run external to the VA, as it just needs access to the pri-
vate layer, thereby preventing an attacker from disabling
it. This reduces management load due to not requiring
any external databases be kept in sync with the file sys-
tem state as it changes. While an attacker could try to
compromise files on the shared layers, they would have
to exploit the SAN containing the layer repository. In
a regular virtualization architecture, if an attacker could
exploit the SAN, he would also have access to all

This segregation of modified file system state also en-
ables quick recovery from a compromised system. By
sreplacing the VA’s private layer with a fresh private
layer, the compromised system is immediately fixed and
returned to its default, freshly provisioned state. How-
ever, unlike reinstalling a system from scratch, replacing
the private layer does not require throwing away the con-
tents of the old private layer. Strata enables the layer
to be mounted within the file system, enabling admin-
istrators to have easy access to the files located within
it to move the uncompromised files back to their proper
place.

5 Strata Architecture

Strata introduces the concept of a virtual layered file
system in place of traditional monolithic file systems.
Strata’s VLFS allows file systems to be created by com-
posing layers together into a single file system names-
pace view. Strata allows these layers to be shared by
multiple VLFSs in a read-only manner or to remain read-
write and private to a single VLFS.

Every VLFS is defined by a layer definition file, which
specifies what software layers should be composed to-
gether. An LDF is a simple text file that lists the layers
and their respective repositories. The LDF’s layer list
syntax is repository/layer version and can be
proceeded by an optional modifier command. When an
administrator wants to add or remove software from the
file system, instead of modifying the file system directly,
they modify the LDF by adding or removing the appro-
priate layers.

Figure 2 contains an example LDF for a MySQL SQL
server template appliance. The LDF lists each individual
layer included in the VLFS along with its correspond-
ing repository. Each layer also has a number indicating
which version will be composed into the file system. If
an updated layer is made available, the LDF is updated

main/mysql-server 5.0.51a-3

main/base 1
main/libdb4.2 4.2.52-18
main/apt-utils 0.5.28.6
main/liblocale-gettext-perl 1.01-17
main/libtext-charwidth-perl 0.04-1
main/libtext-iconv-perl 1.2-3
main/libtext-wrapi18n-perl 0.06-1
main/debconf 1.4.30.13
main/tcpd 7.6-8
main/libgdbm3 1.8.3-2
main/perl 5.8.4-8
main/psmisc 21.5-1
main/libssl0.9.7 0.9.7e-3
main/liblockfile1 1.06
main/adduser 3.63
main/libreadline4 4.3-11
main/libnet-daemon-perl 0.38-1
main/libplrpc-perl 0.2017-1
main/libdbi-perl 1.46-6
main/ssmtp 2.61-2
=main/mailx 3a8.1.2-0.20040524cvs-4

Figure 2: LDF for MySQL Server Template

to include the new layer version instead of the old one.
If the administrator of the VLFS does not want to up-
date the layer, they can hold a layer at a specific version,
with the = syntax element. This is demonstrated by the
mailx layer in Figure 2, which is being held at the ver-
sion listed in the LDF.

Strata allows an administrator to select explicitly only
the few layers corresponding to the exact functionality
desired within the file system. Other layers needed in
the file system are implicitly selected by the layers’ de-
pendencies as described in Section 5.2. Figure 2 shows
how Strata distinguishes between explicitly and implic-
itly selected layers. Explicitly selected layers are listed
first and separated from the implicitly selected layers
by a blank line. In this case, the MySQL server has
only one explicit layer, mysql-server, but has 21 implic-
itly selected layers. These include utilities such as Perl
and TCP Wrappers (tcpd), as well as libraries such as
OpenSSL (libssl). Like most operating systems that re-
quire a minimal set of packages to always be installed,
Strata also always includes a minimal set of shared layers
that are common to all VLFSs that it denotes as base. In
our Strata prototype, these are the layers that correspond
to packages that Debian makes essential and are there-
fore not removable. Strata also distinguishes explicit lay-
ers from implicit layers to allow future reconfigurations
to remove one implicit layer in favor of another if depen-
dencies need to change.

When an end user provisions an appliance by cloning a
template, an LDF is created for the provisioned VA. Fig-

6

@main/sql-server

Figure 3: LDF for Provisioned MySQL Server VA

ure 3 shows an example introducing another syntax ele-
ment, @, that instructs Strata to reference another VLFS’s
LDF as the basis for this VLFS. This lets Strata clone the
referenced VLFS by including its layers within the new
VLFS. In this case, because the user wants only to de-
ploy the SQL server template, this VLFS LDF only has
to include the single @ line. In general, a VLFS can refer-
ence more than one VLFS template, assuming that layer
dependencies allow all the layers to coexist.

5.1 Layers
Strata’s layers are composed of three components: meta-
data files, the layer’s file system, and configuration
scripts. They are stored on disk as a directory tree
named by the layer’s name and version. For instance,
version 5.0.51a of the MySQL server, with a strata
layer version of 3, would be stored under the directory
mysql-server 5.0.51a-3. Within this directory,
Strata defines a metadata file, a filesystem di-
rectory, and a scripts directory corresponding to the
layer’s three components.

The metadata files define the information that de-
scribes the layer. This includes its name, version, and
dependency information. This information is impor-
tant to ensure that a VLFS is composed correctly. The
metadata file contains all the metadata that is speci-
fied for the layer. Figure 4 shows an example metadata
file. Figure 5 shows the full metadata syntax. The meta-
data file has a single field per line with two elements, the
field type and the field contents. In general, the metadata
file’s syntax is Field Type: value, where value
can be either a single entry or a comma-separated list of
values.

The layer’s file system is a self-contained set of files
providing a specific functionality. The files are the indi-
vidual items in the layer that are composed into a larger
VLFS. There are no restrictions on the types of files that
can be included. They can be regular files, symbolic
links, hard links, or device nodes. Similarly, each di-
rectory entry can be given whatever permissions are ap-
propriate. A layer can be seen as a directory stored on
the shared file system that contains the same file and di-
rectory structure that would be created if the individual
items were installed into a traditional file system. On a
traditional UNIX system, the directory structure would
typically contain directories such as /usr, /bin and
/etc. Symbolic links work as expected between layers
since they work on path names, but one limitation is that
hard links cannot exist between layers.

The layer’s configuration scripts are run when a layer

Layer: mysql-server
Version: 5.0.51a-3
Depends: ..., perl (>= 5.6),

tcpd (>= 7.6-4),...

Figure 4: Metadata for MySQL-Server Layer

Layer: Layer Name
Version: Version of Layer Unit
Conflicts: layer1 (opt. constraint), ...
Depends: layer1 (...),

layer2 (...) | layer3, ...
Pre-Depends: layer1 (...), ...
Provides: virtual_layer, ...

Figure 5: Metadata Specification

is added or removed from a VLFS to allow proper in-
tegration of the layer within the VLFS. Although many
layers are just a collection of files, other layers need to
be integrated into the system as a whole. For example,
a layer that provides mp3 file playing capability should
register itself with the system’s MIME database to allow
programs contained within the layer to be launched au-
tomatically when a user wants to play an mp3 file. Simi-
larly, if the layer were removed, it should remove the pro-
grams contained within itself from the MIME database.

Strata supports four types of configuration scripts: pre-
remove, post-remove, pre-install, and post-install. If they
exist in a layer, the appropriate script is run before or
after a layer is added or removed. For example, a pre-
remove script can be used to shut down a daemon before
it is actually removed, while a post-remove script can
be used to clean up file system modifications in the pri-
vate layer. Similarly, a pre-install script can ensure that
the file system is as the layer expects, while the post-
install script can start daemons included in the layer. The
configuration scripts can be written in any scripting lan-
guage. The layer must include the proper dependencies
to ensure that the scripting infrastructure is composed
into the file system in order to allow the scripts to run.

5.2 Dependencies

A key Strata metadata element is enumeration of the de-
pendencies that exist between layers. Strata’s depen-
dency scheme is heavily influenced by the dependency
scheme in Linux distributions such as Debian and Red
Hat. In Strata, every layer composed into Strata’s VLFS
is termed a layer unit. Every layer unit is defined by its
name and version. Two layer units that have the same
name but different layer versions are different units of
the same layer. A layer refers to the set of layer units
of a particular name. Every layer unit in Strata has a
set of dependency constraints placed within its metadata.
There are four types of dependency constraints: (a) de-

7

pendency, (b) pre-dependency, (c) conflict and (d) pro-
vide.

Dependency and Pre-Dependency: Dependency and
pre-dependency constraints are similar in that they re-
quire another layer unit to be integrated at the same
time as the layer unit that specifies them. They differ
only in the order the layer’s configuration scripts are ex-
ecuted to integrate them into the VLFS. A regular de-
pendency does not dictate order of integration. A pre-
dependency dictates that the dependency has to be inte-
grated before the dependent layer. Figure 4 shows that
the MySQL layer depends on TCP Wrappers, (tcpd),
because it dynamically links against the shared library
libwrap.so.0 provided by TCP Wrappers. MySQL
cannot run without this shared library, so the layer units
that contain MySQL must depend on a layer unit contain-
ing an appropriate version of the shared library. These
constraints can also be versioned to further restrict which
layer units satisfy the constraint. For example, shared
libraries can add functionality that breaks their applica-
tion binary interface (ABI), breaking in turn any applica-
tions that depend on that ABI. Since MySQL is compiled
against version 0.7.6 of the libwrap library, the depen-
dency constraint is versioned to ensure that a compatible
version of the library is integrated at the same time.

Conflict: Conflict constraints indicate that layer units
cannot be integrated into the same VLFS. There are mul-
tiple reasons this can occur, but it is generally because
they depend on exclusive access to the same operating
system resource. This can be a TCP port in the case of
an Internet daemon, or two layer units that contain the
same file pathnames and therefore would obscure each
other. For this reason, Strata defines that two layer units
of the same layer are by definition in conflict because
they will contain some of the same files.

An example of this constraint occurs when the ABI
of a shared library changes without any source code
changes, generally due to an ABI change in the tool
chain that builds the shared library. Because the ABI
has changed, the new version can no longer satisfy any
of the previous dependencies. But because nothing else
has changed, the file on disk will usually not be renamed
either. A new layer must then be created with a different
name, ensuring that the library with the new ABI is never
used to satisfy an old dependency on the original layer.
Because the new layer contains the same files as the old
layer, it must conflict with the older layer to ensure that
they are not integrated into the same file system.

Provide: Provide dependency constraints introduce
virtual layers. A regular layer provides a specific set of
files, but a virtual layer indicates that a layer provides
a particular piece of general functionality. Layer units
that depend on a certain piece of general functionality
can depend on a specific virtual layer name in the normal

manner, while layer units that provide that functionality
will explicitly specify that they do. For example, layer
units that provide HTML documentation depend on the
presence of a web server to enable a user to view them,
but which one is not important. Instead of depending
on a particular web server, they depend on the virtual
layer name httpd. Similarly, layer units containing a
web server and obeying system policy for the location of
static html content, such as Apache or Boa, are defined
to provide the httpd virtual layer name and therefore
satisfy those dependencies. Unlike regular layer units,
virtual layers are not versioned.

Example: Figure 2 shows how dependencies can af-
fect a VLFS in practice. This VLFS has only one ex-
plicit layer, mysql-server, but 21 implicitly selected lay-
ers. The mysql-server layer itself has a number of di-
rect dependencies, including Perl, TCP Wrappers, and
the mailx program. These dependencies in turn de-
pend on the Berkeley DB library and the GNU dbm li-
brary, among others. Using its dependency mechanism,
Strata is able to automatically resolve all the other lay-
ers needed to create a complete file system by specifying
just a single layer

Returning to Figure 4, this example defines a subset
of the layers that the mysql-server layer requires to be
composed into the same VLFS to allow MySQL to run
correctly. More generally, Figure 5 shows the complete
syntax for the dependency metadata. Provides is the sim-
plest, with only a comma separated list of virtual layer
names. Conflicts adds an optional version constraint to
each conflicted layer to limit the layer units that are actu-
ally in conflict. Depends and Pre-Depends add a boolean
OR of multiple layers in their dependency constraints to
allow multiple layers to satisfy the dependency.

Resolving Dependencies: To allow an administra-
tor to select only the layers explicitly desired within the
VLFS, Strata automatically resolves dependencies to de-
termine which other layers must be included implicitly.

Linux distributions already face this problem and tools
have been developed to address it, such as Apt [2] and
Smart [10]. To leverage Smart, Strata adopts the same
metadata database format that Debian uses for packages
for its own layers. In Strata, when an administrator
requests that a layer be added to or removed from a tem-
plate appliance, Smart also evaluates if the operation can
succeed and what is the best set of layers to add or re-
move. Instead of acting directly on the contents of the
file system, however, Strata only has to update the tem-
plate’s VLFS’s definition file with the set of layers to be
composed into the file system.

8

5.3 Layer Creation

Strata allows layers to be created in two ways. First,
Strata allows the .deb packages used by Debian-derived
distributions and the .rpm packages used by RedHat-
derived distributions to be converted into layers that
Strata users can use. Strata converts packages into lay-
ers in two steps. First, Strata extracts the relevant meta-
data from the package, including its name and version.
Second, Strata extracts the package’s file contents into a
private directory that will be the layer’s file system com-
ponents. When using converted packages, Strata lever-
ages the underlying distribution’s tools to run the con-
figuration scripts belonging to the newly created layers
correctly. Instead of using the distribution’s tools to un-
pack the software package, Strata composes the layers
together and uses the distribution’s tools as though the
packages have already been unpacked. Although Strata
is able to convert packages from different Linux distri-
butions, it cannot mix and match them because they are
generally ABI incompatible with one another.

More commonly, Strata leverages existing packaging
methodologies to simplify the creation of layers from
scratch. In a traditional system, when administrators in-
stall a set of files, they copy the files into the correct
places in the file system using the root of the file sys-
tem tree as their starting point. For instance, an admin-
istrator might run make install to install a piece of
software compiled on the local machine. But in Strata
layer creation is a three step process. First, instead of
copying the files into the root of the local file system,
the layer creator installs the files into their own specific
directory tree. That is, they make a blank directory to
hold a new file system tree that is created by having the
make install copy the files into a tree rooted at that
directory, instead of the actual file system root.

Second, the layer maintainer extracts programs that in-
tegrate the files into the underlying file system and cre-
ates scripts that run when the layer is added to and re-
moved from the file system. Examples of this include
integration with Gnome’s GConf configuration system,
creation of encryption keys, or creation of new local
users and groups for new services that are added. This
leverages skills that package maintainers in a traditional
package management world already have.

Finally, the layer maintainer needs to set up the meta-
data correctly. Some elements of the metadata, such as
the name of the layer and its version, are simple to set,
but dependency information can be much harder. But
because package management tools have already had to
address this issue, Strata is able to leverage the tools they
have built. For example, package management systems
have created tools that infer dependencies using an exe-
cutable dynamically linking against shared libraries [15].

Instead of requiring the layer maintainer to enumerate
each shared library dependency, we can programmati-
cally determine which shared libraries are required and
populate the dependency fields based on those versions
of the library currently installed on the system where the
layer is being created.

5.4 Layer Repositories

Strata provides local and remote layer repositories. Local
layer repositories are provided by locally accessible file
system shares made available by a SAN. They contain
layer units to be composed into the VLFS. This is sim-
ilar to a regular virtualization infrastructure in which all
the virtual machines’ disks are stored on a shared SAN.
Each layer unit is stored as its own directory; a local layer
repository contains a set of directories, each of which
corresponds to a layer unit. The local layer repository’s
contents are enumerated in a database file providing a
flat representation of the metadata of all the layer units
present in the repository. The database file is used for
making a list of what layers can be installed and their de-
pendency information. By storing the shared layer repos-
itory on the SAN, Strata lets layers be shared securely
among different users’ appliances. Even if the machine
hosting the VLFS is compromised, the read-only layers
will stay secure, as the SAN will enforce the read-only
semantic independently of the VLFS.

Remote layer repositories are similar to local layer
repositories, but are not accessible as file system shares.
Instead, they are provided over the Internet, by protocols
such as FTP and HTTP, and can be mirrored into a local
layer repository. Instead of mirroring the entire remote
repository, Strata allows on-demand mirroring, where all
the layers provided by the remote repository are acces-
sible to the VAs, but must be mirrored to the local mir-
ror before they can be composed into a VLFS. This al-
lows administrators to store only the needed layers while
maintaining access to all the layers and updates that the
repository provides. Administrators can also filter which
layers should be available to prevent end users from us-
ing layers that violate administration policy. In general,
an administrator will use these remote layer repositories
to provide the majority of layers, much as administrators
use a publicly managed package repository from a regu-
lar Linux distribution.

Layer repositories let Strata operate within an enter-
prise environment by handling three distinct yet related
issues. First, Strata has to ensure that not all end users
have access to every layer available within the enterprise.
For instance, administrators may want to restrict certain
layers to certain end users for licensing or security rea-
sons. Second, as enterprises get larger, they gain levels
of administration. Strata must support the creation of an

9

enterprise-wide policy while also enabling small groups
within the enterprise to provide more localized admin-
istration. Third, larger enterprises supporting multiple
operating systems cannot rely on a single repository of
layers because of inherent incompatibilities among oper-
ating systems.

By allowing a VLFS to use multiple repositories,
Strata solves these three problems. First, multiple reposi-
tories let administrators compartmentalize layers accord-
ing to the needs of their end users. By providing end
users with access only to needed repositories, organiza-
tions prevent their end users from using the other layers.
Strata depends on traditional file system access control
mechanisms to enforce these permissions. Second, by al-
lowing sub-organizations to set up their own repositories,
Strata lets a sub-organization’s administrator provide the
layers that end users need without requiring intervention
by administrators of global repositories. Finally, multi-
ple repositories allow Strata to support multiple operat-
ing systems, as each distinct operating system has its own
set of layer repositories.

5.5 VLFS Composition

To create a VLFS, Strata has to solve a number of file
system-related problems. First, Strata has to support the
ability to combine numerous distinct file system layers
into a single static view. This is equivalent to installing
software into a shared read-only file system. Second, be-
cause users expect to treat the VLFS as a normal file sys-
tem, for instance, by creating and modifying files, Strata
has to let VLFSs be fully modifiable. By the same token,
users must also be able to delete files that exist on the
read-only layer.

By basing the VLFS on top of unioning file sys-
tems [11, 19], Strata solves all these problems. Unioning
file systems join multiple layers into a single namespace.
Unioning file systems have been extended to apply at-
tributes such as read-only and read-write to their layers.
The VLFS leverages this property to force shared lay-
ers to be read-only, while the private layer remains read-
write. If a file from a shared read-only layer is mod-
ified, it is copied-on-write (COW) to the private read-
write layer before it is modified. For example, Live-CDs
use this functionality to provide a modifiable file system
on top of the read-only file system provided by the CD.
Finally, unioning file systems use white-outs to obscure
files located on lower layers. For example, if a file lo-
cated on a read-only layer is deleted, a white-out file will
be created on the private read-write layer. This file is in-
terpreted specially by the file-system and is not revealed
to the user while also preventing the user from seeing
files with the same name.

But end users need to be able to recover deleted files

by reinstalling or upgrading the layer containing them.
This is equivalent to deleting a file from a traditional
monolithic file system, but reinstalling the package con-
taining the file in order to recover it. Also, Strata sup-
ports adding and removing layers dynamically without
taking the file system off line. This is equivalent to
installing, removing, or upgrading a software package
while a monolithic file system is online.

Unlike a traditional file system, where deleted system
files can be recovered simply by reinstalling the package
containing that file, in Strata, white-outs in the private
layer persist and continue to obscure the file even if the
layer is replaced. To solve this problem, Strata provides
a VLFS with additional writeable layers associated with
each read-only shared layer. Instead of containing file
data, as does the topmost private writeable layer, these
layers just contain white-out marks that will obscure files
contained within their associated read-only layer. The
user can delete a file located in a shared read-only layer,
but the deletion only persists for the lifetime of that par-
ticular instance of the layer. When a layer is replaced
during an upgrade or reinstall, a new empty white-out
layer will be associated with the replacement, thereby
removing any preexisting white-outs. In a similar way,
Strata handles he case where a file belonging to a shared
read-only layer is modified and therefore copied to the
VLFS’s private read-write layer. Strata provides a revert
command that lets the owner of a file that has been mod-
ified revert the file to its original pristine state. While a
regular VLFS unlink operation would have removed the
modified file from the private layer and created a white-
out mark to obscure the original file, revert only removes
the copy in the private layer, thereby revealing the origi-
nal below it.

Strata also allows a VLFS to be managed while be-
ing used. Some upgrades, specifically of the kernel, will
require the VA to be rebooted, but most should be able
to occur without taking the VA off line. However, if a
layer is removed from a union, the data is effectively re-
moved as well because unions operate only on file system
namespaces and not on the data the underlying files con-
tain. If an administrator wants to remove a layer from
the VLFS, they must take the VA off line, because layers
cannot be removed while in use.

To solve this problem, Strata emulates a traditional
monolithic file system. When an administrator deletes
a package containing files in use, the processes that are
currently using those files will continue to work. This
occurs by virtue of unlink’s semantic of first removing
a file from the file system’s namespace, and only remov-
ing its data after the file is no longer in use. This lets
processes continue to run because the files they need will
not be removed until after the process terminates. This
creates a semantic in which a currently running program

10

can be using versions of files no longer available to other
programs.

Existing package managers use this semantic to allow
a system to be upgraded online, and it is widely under-
stood. Strata applies the same semantic to layers. When
a layer is removed from a VLFS, Strata marks the layer
as unlinked, removing it from the file system names-
pace. Although this layer is no longer part of the file
system namespace and thus cannot be used by any oper-
ations such as open that work on the namespace, it does
remain part of the VLFS, enabling data operations such
as read and write to continue working correctly for
previously opened files.

6 Experimental Results

We have implemented Strata’s VLFS as a loadable kernel
module on an unmodified Linux 2.6 series kernel as well
as a set of userspace management tools. The file system
is a stackable file system and is an extended version of
UnionFS [19]. We present experimental results using our
Strata Linux prototype to manage various VAs, demon-
strating its ability to reduce management costs while
incurring only modest performance overhead. Experi-
ments were conducted on VMware ESX 3.0 running on
an IBM BladeCenter with 14 IBM HS20 eServer blades
with dual 3.06 GHz Intel Xeon CPUs, 2.5 GB RAM,
and a Q-Logic Fibre Channel 2312 host bus adapter con-
nected to an IBM ESS Shark SAN with 1 TB of disk
space. The blades were connected by a gigabit Ether-
net switch. This is a typical virtualization infrastructure
in an enterprise computing environment where all vir-
tual machines are centrally stored and run. We compare
plain Linux VMs with a virtual block device stored on
the SAN and formatted with the ext3 file system to VMs
managed by Strata with the layer repository also stored
on the SAN. By storing both the plain VM’s virtual block
device and Strata’s layers on the SAN, we eliminate any
differences in performance due to hardware architecture.

To measure management costs, we quantify the time
taken by two common tasks, provisioning and updating
VAs. We quantify the storage and time costs for pro-
visioning many VAs and the performance overhead for
running various benchmarks using the VAs. We ran ex-
periments on five VAs: an Apache web server, a MySQL
SQL server, a Samba file server, an SSH server provid-
ing remote access, and a remote desktop server provid-
ing a complete GNOME desktop environment. While the
server VAs had relatively few layers, the desktop VA has
very many layers. This enables the experiments to show
how the VLFS performance scales as the number of lay-
ers increases. To provide a basis for comparison, we pro-
visioned these VAs using (1) the normal VMware virtu-
alization infrastructure and plain Debian package man-

Apache MySQL Samba SSH Desktop
Plain 184s 179s 183s 174s 355s
Strata 0.002s 0.002s 0.002s 0.002s 0.002s
QCOW2 0.003s 0.003s 0.003s 0.003s 0.003s

Table 1: VA Provisioning Times

agement tools, and (2) Strata. To make a conservative
comparison to plain VAs and to test larger numbers of
plain VAs in parallel, we minimized the disk usage of
the VAs. The desktop VA used a 2 GB virtual disk, while
all others used a 1 GB virtual disk.

6.1 Reducing Provisioning Times
Table 1 shows how long it takes Strata to provision VAs
versus regular and COW copying. To provision a VA us-
ing Strata, Strata copies a default VMware VM with an
empty sparse virtual disk and provides it with a unique
MAC address. It then creates a symbolic link on the
shared file system from a file named by the MAC address
to the layer definition file that defines the configuration
of the VA. When the VA boots, it accesses the file de-
noted by its MAC address, mounts the VLFS with the
appropriate layers, and continues execution from within
it. To provision a plain VA using regular methods, we
use QEMU’s qemu-img tool to create both raw copies
and COW copies in the QCOW2 disk image format.

Our measurements for all five VAs show that using
COW copies and Strata takes about the same amount of
time to provision VAs, while creating a raw image takes
much longer. Creating a raw image for a VAs takes 3 to
almost 6 minutes and is dominated by the cost of copy-
ing data to create a new instance of the VA. For larger
VAs, these provisioning times would only get worse. In
contrast, Strata provisions VAs in only a few millisec-
onds because a null VMware VM has essentially no data
to copy. Layers do not need to be copied, so copying
overhead is essentially zero. While COW images can
be created in a similar amount of time, they do not pro-
vide any of the management benefits of Strata, as each
new COW image is independent of the base image from
which it was created.

6.2 Reducing Update Times
Table 2 shows how long it takes to update VAs us-
ing Strata versus traditional package management. We
provisioned ten VA instances each of Apache, MySQL,
Samba, SSH, and Desktop for a total of 50 provisioned
VAs. All were kept in a suspended state. When a se-
curity patch was made available for the tar package
installed in all the VAs, we updated them [18]. Strata
simply updates the layer definition files of the VM tem-
plates, which it can do even when the VAs are not active.
When the VA is later resumed during normal operation,

11

1.0

10.0

100.0

1000.0

10000.0

100000.0

1 VM 5 VMs 50 VMs

S
iz

e
 (

M
B

)
Raw VM Disk

COW VM Disk
Strata

Figure 6: Storage Requirements

it automatically checks to see if the layer definition file
has been updated and updates the VLFS namespace view
accordingly, an operation that is measured in microsec-
onds. To update a plain VA using normal package man-
agement tools, each VA instance needs to be resumed and
put on the network. An administrator or script must ssh
into each VA, fetch and install the update packages from
a local Debian mirror, and finally re-suspend the VA.

Table 2 shows the total average time to update each
VA using traditional methods versus Strata. We break
down the update time into times to resume the VM, get
access to the network, actually perform the update, and
re-suspend the VA. The measurements show that the cost
of performing an update is dominated by the manage-
ment overhead of preparing the VAs to be updated and
not the update itself. Preparation is itself dominated by
getting an IP address and becoming accessible on a busy
network. While this cost is not excessive on a quiet net-
work, on a busy network it can take a significant amount
of time for the client to get a DHCP address, and for the
ARP on the machine controlling the update to find the
target machine. The average total time to update each
plain VA is about 73 seconds. In contrast, Strata takes
only a second to update each VA. As this is an order
of magnitude shorter even than resuming the VA, Strata
is able to delay the update to a point when the VA will
be resumed from standby normally without impacting its
ability to quickly respond. Strata provides over 70 times
faster update times than traditional package management
when managing even a modest number of VAs. Strata’s
ability to decrease update times would only improve as
the number of VAs being managed grows.

Plain Strata
VM Wake 14.66s NA
Network 43.72s NA
Update 10.22s 1.041s
Suspend 3.96s NA
Total 73.2s 1.041s

Table 2: VA Update Times

6.3 Reducing Storage Costs

Figure 6 shows the total storage space required for dif-
ferent numbers of VAs stored with raw and COW disk
images versus Strata. We show the total storage space
for 1 Apache VA, 5 VAs corresponding to an Apache,
MySQL, Samba, SSH, and Desktop VA, and 50 VAs cor-
responding to 10 instances of each of the 5 VAs. As ex-
pected, for raw images, the total storage space required
grows linearly with the number of VA instances. In con-
trast, the total storage space using COW disk images and
Strata is relatively constant and independent of the num-
ber of VA instances. For one VA, the storage space re-
quired for the disk image is less than the storage space
required for Strata, as the layer repository used contains
more layers than those used by any one of the VAs. In
fact, to run a single VA, the layer repository size could
be trimmed down to the same size as the traditional VA.

For larger numbers of VAs, however, Strata provides
a substantial reduction in the storage space required, be-
cause many VAs share layers and do not require dupli-
cate storage. For 50 VAs, Strata reduces the storage
space required by an order of magnitude over the raw
disk images. Table 3 shows that there is much dupli-
cation among statically provisioned virtual machines, as
the layer repository of 405 distinct layers needed to build
the different VLFSs for multiple services is basically the
same size as the largest service. Although initially Strata
does not have an significant storage benefit over COW
disk images, as each COW disk image is independent
from the version it was created from, it now must be
managed independently. This increases storage usage, as
the same updates must be independently applied to many
independent disk images

6.4 Virtualization Overhead

To measure the virtualization cost of Strata’s VLFS,
we used a range of micro-benchmarks and real appli-
cation workloads to measure the performance of our
Linux Strata prototype, then compared the results against
vanilla Linux systems within a virtual machine. The vir-
tual machine’s local file system was formatted with the
Ext3 file system and given read-only access to a SAN
partition formatted with Ext3 as well. We performed
each benchmark in each scenario 5 times and provide the
average of the results.

Repo Apache MySQL Samba SSH Desktop
1.8GB 217MB 206MB 169MB 127MB 1.7GB
Layer 43 23 30 12 404
Shared 191MB 162MB 152MB 123MB 169MB
Unique 26MB 44MB 17MB 4MB 1.6GB

Table 3: Layer Repository vs. Static VAs

12

0.0

200.0

400.0

600.0

800.0

1000.0

1200.0

1400.0

Postmark Kernel Apache

T
im

e
 (

s
)

Plain VM
Strata VM

Figure 7: Application Benchmarks

To demonstrate the effect that Strata’s VLFS has on
system performance, we performed a number of bench-
marks. Postmark [7], the first benchmark, is a synthetic
test that measures how the system would behave if used
as a mail server. Our postmark test operated on files be-
tween 512 and 10K bytes, with an initial set of 20,000
files, and performed 200,000 transactions. Postmark is
very intensive on a few specific file system operations
such as lookup(), create(), and unlink(), be-
cause it is constantly creating, opening, and removing
files. Figure 7 shows that running this benchmark within
a traditional VA is significantly faster than running it in
Strata. This is because as Strata composes multiple file
system namespaces together, it places significant over-
head on those namespace operations.

To demonstrate that postmark’s results are not indica-
tive of application oriented performance, we ran two
application benchmarks to measure the overhead Strata
imposes in a desktop and server VA scenario. The
first benchmark was a multi-threaded build of the Linux
2.6.18.6 kernel with two concurrent jobs using the two
CPUs allocated to the VM. In all scenarios, we added the
8 software layers required to build a kernel to the layers
needed to provide the service. Figure 7 shows that while
Strata imposes a slight overhead on the kernel build com-
pared to the underlying file system it uses, the cost is
minimal, under 5% at worst.

The second benchmark measured the amount of HTTP
transactions that were able to be completed per second to
an Apache web server placed under load. We imported
the database of a popular guitar tab search engine and
used the http load [13] benchmark to continuously
performed a set of 20 search queries on the database
until 60,000 queries in total have been performed. For
each case that did not already contain Apache, we added
the appropriate layers to the layer definition file to make
Apache available. Figure 7 shows that Strata imposes a
minimal overhead of only 5%.

While the Postmark benchmark demonstrated that the
VLFS is not an appropriate file system for workloads that
are heavy with namespace operations, this shouldn’t pre-
vent Strata from being used in those scenarios. No file
system is appropriate for all workloads and no system
has to be restricted to simply using one file system. One
can use Strata and the VLFS to manage the system’s con-
figuration while also providing an additional traditional
file system on a seperate partition or virtual disk drive
to avoid all the overhead the VLFS imposes. This will
be very effective for workloads, such as the mail server
Postmark is emulating, where namespace heavy opera-
tions, such as a mail server processing its mail queue,
can be kept on a dedicated file system.

7 Conclusions and Future Work

Strata introduces a new and better way for system admin-
istrators to manage virtual appliances using virtual lay-
ered file systems. Strata integrates package management
semantics with the file system by using a novel form of
file system unioning enable dynamic composition of file
system layers. This provides powerful new management
functionality for provisioning, upgrading, securing, and
composing VAs. VAs can be quickly and simply provi-
sioned as no data needs to be copied into place. VAs can
be easily upgraded as upgrades can be done once cen-
trally and applied atomically, even for a heterogeneous
mix of VAs and when VAs are suspended or turned off.
VAs can be more effectively secured since file system
modifications are isolated so compromises can be eas-
ily identified. VAs can be composed as building blocks
to create new systems since file system composition also
serves as the core mechanism for creating and maintain-
ing VAs. We have implemented Strata on Linux by pro-
viding the VLFS as a loadable kernel modules, but with-
out requiring any source code level kernel changes, and
have demonstrated how a Strata can be used in real life
situations to improve the ability of system administra-
tors to manage systems. Strata significantly reduces the
amount of disk space required for multiple VAs, and al-
lows them to be provisioned almost instantaneously and
quickly updated no matter how many are in use.

While Strata just exists as a lab prototype today, there
are few steps that could make it significantly more de-
ployable. First, our changes to UnionFS should either be
integrated with the current version of UnionFS or with
another unioning file system. Second, better tools should
be created for managing the creation and management of
individual layers. This can include better tools for con-
verting layers from existing Linux distributions as well
as new tools that enable layers to be created in a way
that takes full advantage of Strata’s concepts. Third, the
ability to to integrate Strata’s concepts with cloud com-

13

puting infrastructures, such as Eucalyptus, should be in-
vestigated.

Acknowledgments

Carolyn Rowland provided helpful comments on earlier
drafts of this paper. This work was supported in part by
AFOSR MURI grant FA9550-07-1-0527 and NSF grants
CNS-1018355, CNS-0914845, and CNS-0905246.

References

[1] The RPM Package Manager. http://www.
rpm.org/.

[2] B. Byfield. An Apt-Get Primer. http://www.
linux.com/articles/40745, Dec. 2004.

[3] J. Capps, S. Baker, J. Plichta, D. Nyugen,
J. Hardies, M. Borgard, J. Johnston, and J. H.
Hartman. Stork: Package Management for Dis-
tributed VM Environments. In The 21st Large In-
stallation System Administration Conference, Dal-
las, TX, Nov. 2007.

[4] R. Chandra, N. Zeldovich, C. Sapuntzakis, and
M. S. Lam. The Collective: A Cache-Based System
Management Architecture. In The 2nd Symposium
on Networked Systems Design and Implementation,
pages 259–272, Boston, MA, Apr. 2005.

[5] D. R. Cheriton. The V Distributed System. Com-
munications of the ACM, 31(3):314–333, Mar.
1988.

[6] J. Fernandez-Sanguino. Debian GNU/Linux
FAQ - Chapter 8 - The Debian Package Man-
agement Tools. http://www.debian.org/
doc/FAQ/ch-pkgtools.en.html.

[7] J. Katcher. PostMark: A New File System Bench-
mark. Technical Report TR3022, Network Appli-
ance, Inc., Oct. 1997.

[8] G. Kim and E. Spafford. Experience with Tripwire:
Using Integrity Checkers for Intrusion Detection.
In The 1994 System Administration, Networking,
and Security Conference, Washington, DC, Apr.
1994.

[9] M. McLoughlin. QCOW2 Image Format.
http://www.gnome.org/˜markmc/
qcow-image-format.htm, Sept. 2008.

[10] G. Niemeyer. Smart Package Manager. http:
//labix.org/smart.

[11] J.-S. Pendry and M. K. McKusick. Union Mounts
in 4.4BSD-lite. In The 1995 USENIX Technical
Conference, New Orleans, LA, Jan. 1995.

[12] B. Pfaff, T. Garfinkel, and M. Rosenblum. Virtu-
alization Aware File Systems: Getting Beyond the
Limitations of Virtual Disks. In 3rd Symposium
on Networked Systems Design and Implementation,
pages 353–366, San Jose, CA, May 2006.

[13] J. Poskanzer. http://www.acme.com/
software/http_load/.

[14] S. Potter and J. Nieh. Apiary: Easy-to-Use Desk-
top Application Fault Containment on Commodity
Operating Systems. In The 2010 USENIX Annual
Technical Conference, pages 103–116, June 2010.

[15] D. Project. DDP Developers’ Manuals. http://
www.debian.org/doc/devel-manuals.

[16] S. Quinlan and S. Dorward. Venti: A New Ap-
proach to Archival Storage. In 1st USENIX confer-
ence on File and Storage Technologies, Monterey,
CA, Jan. 2002.

[17] D. Reimer, A. Thomas, G. Ammons, T. Mummert,
B. Alpern, and V. Bala. Opening Black Boxes: Us-
ing Semantic Information to Combat Virtual Ma-
chine Image Sprawl. In The 2008 ACM Interna-
tional Conference on Virtual Execution Environ-
ments, pages 111–120, Seattle, WA, Mar. 2008.

[18] F. Weimer. DSA-1438-1 Tar – Several Vul-
nerabilities. http://www.ua.debian.org/
security/2007/dsa-1438, Dec. 2007.

[19] C. P. Wright, J. Dave, P. Gupta, H. Krishnan, D. P.
Quigley, E. Zadok, and M. N. Zubair. Versa-
tility and Unix Semantics in Namespace Unifica-
tion. ACM Transactions on Storage, 2(1):1–32,
Feb. 2006.

14

http://www.rpm.org/
http://www.rpm.org/
http://www.linux.com/articles/40745
http://www.linux.com/articles/40745
http://www.debian.org/doc/FAQ/ch-pkgtools.en.html
http://www.debian.org/doc/FAQ/ch-pkgtools.en.html
http://www.gnome.org/~markmc/qcow-image-format.htm
http://www.gnome.org/~markmc/qcow-image-format.htm
http://labix.org/smart
http://labix.org/smart
http://www.acme.com/software/http_load/
http://www.acme.com/software/http_load/
http://www.debian.org/doc/devel-manuals
http://www.debian.org/doc/devel-manuals
http://www.ua.debian.org/security/2007/dsa-1438
http://www.ua.debian.org/security/2007/dsa-1438

	Introduction
	Related Work
	Strata Basics
	Using Strata
	Creating Layers and Repositories
	Creating Appliance Templates
	Provisioning and Running Appliance Instances
	Updating Appliances
	Improving Security

	Strata Architecture
	Layers
	Dependencies
	Layer Creation
	Layer Repositories
	VLFS Composition

	Experimental Results
	Reducing Provisioning Times
	Reducing Update Times
	Reducing Storage Costs
	Virtualization Overhead

	Conclusions and Future Work

