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Abstract

This work presents the Web Classifying Immune System
(WCIS) which is a prototype system to detect zero-day
attacks against web servers by examining web server re-
quests. WCIS is intended to work in conjunction with
more traditional intrusion detection systems to detect
new and emerging threats that are not detected by the
traditional IDS database. WCIS is at its core an artifi-
cial immune system, but WCIS expands on the concept
of artificial immune systems by adding a classifier for
web server requests. This gives the system administra-
tor more information about the nature of the detected
threat which is not given by a traditional artificial im-
mune system. This prototype system also seeks to im-
prove the efficiency of an artificial immune system by
employing back-end, batch processing so that WCIS can
detect threats on higher capacity networks. This work
shows that WCIS is able to achieve a high rate of ac-
curacy at detecting and classifying attacks against web
servers with very few false positives.

Tags: Research, Security, Web, Artificial Immune Sys-
tem

1 Introduction

Traditional intrusion detection systems (IDS) are very ef-
ficient at detecting known threats and even some emerg-
ing variants, but are not as effective at detecting zero-day
attacks. Artificial immune systems (AIS) are appealing
for detecting zero-day attacks because they are inspired
by the adaptive concepts of biological immune systems.
Biological immune systems are alluring to the computer
security realm because they can innately adapt to new
pathogens or variations on previously seen pathogens,
something which even modern intrusion detection sys-
tems struggle to do. The primary goal of an artificial
immune system is to apply these biological principles to

the problem of distinguishing normal traffic or data from
abnormal traffic or data, even if the abnormal traffic cor-
responds to a completely new attack.

This work presents a variation of the artificial immune
system concept called Web Classifying Immune System
(WCIS). WCIS is intended to work in concert with a tra-
ditional IDS, scanning the traffic that the IDS has labeled
as normal to see if there is a zero-day attack, or even just
a new, unknown variant of an existing attack, present in
the traffic. As the name implies, WCIS focuses on at-
tacks conveyed in web server requests. While the con-
cepts can apply to other problem domains, this work fo-
cuses on web server requests as a “proof of concept”.

There are limitations to the traditional AIS model that
WCIS seeks to overcome. Most traditional artificial im-
mune systems only provide this binary classification of
traffic or data as “normal” or “attack”. For many prob-
lem domains, particularly the problem domain of mali-
cious web server requests, this simple classification is not
sufficient. There are a variety of web server attacks rang-
ing from simple information gathering via HEAD or OP-
TIONS requests to attacks that attempt to execute code
on the web server. The administrative response to an at-
tack will vary based on the type of attack. The prototype
system presented in this work overcomes this limitation
by adding classifications to a traditional AIS.

Since WCIS classifies the attacks as they are detected,
this provides the web administrator with more informa-
tion about the nature of the attack than a simple alert
would provide. For example, an attack which has a di-
rectory traversal component would require different con-
figuration changes than a CGI or PHP script with a buffer
overflow. By providing classifications along with alerts,
WCIS can help direct the administrative response to a
zero-day attack more effectively. The administrators
might not know the name of the attack, but if they know
it’s a buffer overflow on index.ida, that will allow them
to focus their response far more than they could with an
“attack detected” alert provided by traditional artificial
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immune systems.
Another limitation of traditional artificial immune sys-

tems is the training of the immune system “antibodies”,
e.g. the sensors for detecting attacks. The traditional AIS
model assumes a continual process of evolution occur-
ring in real-time as it sees and classifies network traffic.
Most evolutionary algorithms require extensive memory
and CPU cycles to operate. This leads to two main is-
sues using AISes when high-volume, real-time detection
is desired: the sensors take a long time to train, during
which they are not capable of accurately labeling traffic,
and sensor refinement after initial training can cause a
CPU and/or memory bottleneck that limits the volume of
traffic that the sensors can process.

WCIS seeks to minimize these issues by separating
the evolutionary processes from the detection process.
The evolutionary processes, pre-deployment training and
sensor refinement, occur “offline” on a back-end system.
The detection process, monitoring the network traffic,
occurs “online” in real-time on the network. The “of-
fline” evolutionary processes produce a set of sensors,
which essentially detect patterns in the traffic, that are
deployed to monitor the network traffic in real-time. It
should be noted that the “online” mode of WCIS is in-
tended to work in conjunction with a traditional IDS by
scanning the traffic which the traditional IDS has not
alerted upon. WCIS however does not produce tradi-
tional IDS rules as those rules would be unable to gather
the statistics at the sensor, classification population and
overall population levels that are needed for sensor re-
finement.

In order to maintain one highly desirable feature of an
AIS, the customization of the sensors for that particular
network’s traffic, WCIS uses a system profile to train the
sensors in the pre-deployment phase. These profiles in-
clude a sampling of normal traffic for the network which
will be used to train the AIS and a set of labeled attacks
that will be used to “prime” the classifier. The proto-
type implementation of WCIS takes Apache logs as the
source of these two datasets, which makes customization
of the datasets very easy. One simply has to copy log
entries over into the appropriate dataset file and rerun the
pre-deployment phase of WCIS.

To enable “offline” sensor refinement, the “online”
WCIS sensors record statistics about their detection and
classification rates at the individual sensor, classification
population and overall sensor population levels. This in-
formation can be sent to a back-end system, which will
enable WCIS to run the sensor refinement process as a
batch process on the back-end system while the live sen-
sors keep detecting. Once the batch process is complete,
the live sensors can be replaced with the newly refined
(“next generation”) sensors. The current prototype does
not yet implement this aspect as the prototype could not

be run on live network traffic due to policies and bu-
reaucratic limitations about collecting data that may con-
tain personal or confidential information at the university.
However, it is already supported by the internal structure
of the sensors and merely requires a live network (or iso-
lated network) test environment to implement and fully
test this feature.

In summary, WCIS is a variation of an artificial im-
mune system that is intended to work in conjunction with
a traditional intrusion detection system to detect attacks
that the IDS cannot yet detect. WCIS seeks to overcome
the usability limitations of traditional artificial immune
systems by adding a classifier to provide more informa-
tion about detected attacks. Additionally, WCIS seeks to
optimize the scalability of the AIS concept by separating
the evolutionary processes from the detection process.
This allows the resource intensive aspects of an AIS to
occur “offline” on a back-end system rather than on the
detection system.

Section 2 provides an overview of artificial immune
systems and the biological principles that inspired them.
Related work in the area of artificial immune systems and
classifiers is presented in Section 3. The methodology
used to add classifications to an artificial immune sys-
tem is described in Section 4. Section 5 describes how
WCIS models web server requests. The results of run-
ning WCIS on sample datasets is presented in Section
6 and conclusions drawn from these results are given in
Section 7. Finally, future avenues of research and im-
provement for WCIS are discussed in Section 8.

2 Artificial Immune Systems

An artificial immune system (AIS) is a type of anomaly-
based intrusion detection system (IDS) inspired by the
adaptive nature of the biological immune system. A
biological immune system has to be responsive to new
and unknown pathogens while also recalling previously
defeated pathogens to prevent a recurrence of illness.
While not 100% effective at this task (e.g. auto-immune
disorders and other immune system malfunctions), the
biological immune system is more adaptive to new
pathogens and variants of known pathogens than the
analogous anomaly-based IDSes.

Using biological methods to create a better IDS is the
core concept behind artificial immune systems. The goal
of an AIS is to distinguish normal traffic (called “self”
data) from abnormal traffic (called “non-self” data). It
does so by creating immune “sensors” as analogs to bio-
logical immune cells. These sensors use pattern match-
ing functions to determine if data is “non-self”. Several
key features of a biological immune system that serve as
inspiration for an AIS are affinity maturation, negative
selection and peripheral tolerance. Other features of bi-
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ological immune systems can also be incorporated, but
these are far more weighty concepts that are beyond the
scope of this paper.

Affinity relates to pattern matching. Each immune cell
(antibody) has a set of proteins on its surface that form
a three dimensional “lock” pattern which can match the
“key” pattern of proteins on the surface of a pathogen
(also called an antigen). Affinity measures how “tightly”
the lock and key patterns fit together, with a higher affin-
ity meaning a tighter bond between the antibody and
pathogen exists. Affinity maturation is the process of re-
fining an antibody’s lock pattern until it can tightly bind
to a specific pathogen. This allows the body to “mem-
orize” specific pathogen patterns, e.g. learn a “signa-
ture” for that pathogen. This is the basis of immuniza-
tions in biological immune systems. For AISes, affinity
maturation allows generic immune system sensors to de-
velop “signatures” for novel attacks or new variants of
old attacks. This is accomplished by training the sensors
against attack data in the pre-deployment phase and by
refining the sensors during deployment using an evolu-
tionary technique, such as a genetic algorithm.

Negative selection is a process for creating new im-
mune cells that do not react to the body’s own proteins
(“self”). Most of the artificial immune system works fo-
cus on this feature of biological immune systems. The
immune cells are initially created with a random pattern
of “lock” proteins. The cells are then tested against a
random sampling of “self” proteins and structures. If the
immune cell has too high of an affinity for “self”, it is de-
stroyed. For AISes, this means the immune sensors are
initialized with random patterns and each sensor is tested
against a sample of “normal” data. Those which react too
strongly to normal data are removed and replaced with a
new randomly generated and tested sensor. A negative
selection phase can be used along with affinity matura-
tion to be sure that the sensors do not start reacting to
normal data while they are developing an affinity for at-
tack data.

Since negative selection uses a random sampling of
“self” proteins to test new immune cells, there is a pos-
sibility that cells which are reactive to self will survive
negative selection. Auto-immune disorders are caused
by such cells. In an AIS, such sensors would lead to false
positives, where normal traffic is labeled as an attack.
The immune system has some protection against this by
using peripheral tolerance. Peripheral tolerance deacti-
vates or destroys immune cells that are too reactive to
self proteins. Not many AISes explore the use of periph-
eral tolerance in their systems since it is hard to detect
false positives automatically. One technique might be to
have a human verify each alert and deactivate any sensor
which is noted to have an excessive number of false pos-
itives. In WCIS, the person can also modify the sensor’s

internal statistics to mark the sensor as “bad”, which will
prevent the sensor from being used to refine the sensors
during the next sensor refinement phase. This essentially
removes the sensor from the “genetic pool” used for sen-
sor refinement.

3 Related Work

The research group of Stephanie Forrest at the University
of New Mexico has produced several pioneering works
in the field of artificial immune systems. Forrest,et
al. [9] focused on distinguishing self from non-self and
laid the foundations for the negative selection algorithm.
Somayaji, Hofmeyer and Forrest [16] explored the ap-
plication of these concepts to computer security. This
work ultimately resulted in the production of the LY-
SIS [12, 13] immune system for TCP connections. LY-
SIS monitored the TCP/IP headers of SYN packets to
detect abnormal traffic.

Williams, et al. [22] expanded LYSIS to monitor TCP,
UDP and ICMP traffic. This system, called CDIS, also
monitored all packets instead of just TCP SYN pack-
ets. Each AIS sensor in the system monitored a random
subset of features from the packet headers. The pattern
matching function used by CDIS used a mix of binary,
discrete and real value features.

Gonzales, Dasgupta and Gomez [10] showed that the
negative selection algorithm is very sensitive to the type
of matching function used. Ultimately, one hopes that
negative selection results in sensors with a wide cover-
age of the non-self space, as this represents potential at-
tacks. But [10] showed that the algorithms of Forrest,
et al. [1, 9, 12, 13, 16] and Farmer,et al. [8] resulted
in restricted coverage of the non-self space. These algo-
rithms work best with binary and discrete data. Of the
algorithms tested, the real value matching function used
by Gonzales, Dasgupta and Kozma [11] had the best cov-
erage of the non-self space.

In Dasgupta, Yu and Majumdar [5], a multilevel im-
mune learning algorithm was introduced, in part to over-
come deficiencies in simple negative selection algo-
rithms. This system used collaborations and interactions
between various types of sensors, analogous to the vari-
ous types of immune system cells in a biological immune
system. By requiring collaborations between sensors to
label data as non-self, the experiments showed the AIS
achieved better results than simple negative selection.

The first version of WCIS that was published [2, 4]
was built off the work of CDIS and LYSIS to monitor
web server requests. As with CDIS, the sensors moni-
tored a random subset of features and the pattern match-
ing function used a mix of binary, discrete and real value
features. The system also incorporated basic collabora-
tion between sensors to reduce the false positive rate.
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Table 1: The classification scheme used for the web
server attacks.

Class Instances Description
info 5 Gathers information about

server (read only)
traversal 37 Directory traversal attempt

(read only)
sql 4 SQL injection attack
buffer 7 Buffer overflow attack
script 86 Cause a script to do something

malicious (execute)
xss 40 Cross site scripting

This first version of WCIS was simply an AIS for web
server requests and included none of the enhancements
that this work covers. The concept of adding a classi-
fier to WCIS was explored in [3], but the classifier used
in that version was prone to overfitting and poor clas-
sifications and was deemed unsuitable. Neither previous
version separated the evolutionary processes from the de-
tection process.

Watkins, Timmis and Boggess [17, 18, 19, 20, 21] pro-
posed an artificial immune recognition system for for su-
pervised learning and reinforcement learning. The pro-
posed AIS functioned as a classifier. As with [5], it mod-
eled a variety of immune cells working in collaboration
to classify data. It required the features be represented as
a vector of real value ranges and used vector mathematics
to calculate affinity and distance between cells. A vari-
ation on k-nearest neighbors was used to calculate the
class of unknown data once the cells had been trained.
While this method worked well on datasets that can be
modeled as a feature vector, its mathematical approach
limits its application to other feature sets that cannot be
easily modeled as a vector.

4 Methodology for the Classifying AIS

Previously [2, 3, 4], WCIS was defined as an AIS for
web server attacks and a rudimentary, but poor, classifier
was implemented. The scheme for fingerprinting web
server requests, detailed in Section 5, was developed in
those works. The classifier developed in [3] was prone to
overfitting and misclassification. A better classifier was
developed, which is the focus of this section. The sim-
ple classification scheme given in Table 1 was preserved
from [3] however, as the classification scheme was not
the issue with the previous classifier.

The classification scheme in Table 1 was developed
based on several common groups of web server re-
quest attacks that can be found encoded in URIs. The
“info” classification covers various information gather-

ing attacks that do not alter the server. Likewise, the
“traversal” category solely covers the attacks which uti-
lize directory traversal, but do not attempt to execute
anything on the web server, such as attempting to read
/etc/passwd. If the traversal tries to execute a program,
it is instead labeled “script”. The “script” class also cov-
ers other attempts to maliciously execute a program or
script on the web server. The “sql” class covers SQL in-
jection attacks. The “buffer” class covers buffer overflow
attacks, which may also result in commands being exe-
cuted. Finally, the “xss” class covers cross site scripting
attacks. Table 2 lists some examples for each class ex-
cept buffer overflow attacks as those examples were too
long to easily fit into the table.

The classification training occurs during the pre-
deployment stage where the field of potential sensors is
trained against a system profile. The system profile con-
sists of a normal dataset (Apache log entries from non-
malicious web requests) and an attack dataset (Apache
log entries from actual attacks on a web server). Each
attack in the attack dataset was hand inspected and la-
beled with a classification. One main issue faced while
developing the attack dataset was obtaining sufficient ex-
amples of each classification of attack. Attack exam-
ples were gleaned from Bugtraq [15], live Apache web
servers and an un-networked machine where selected at-
tacks were run against a local web server. As seen from
Table 1, most of the examples fell into the category of
traversal, script or xss. To prevent the sensors from be-
coming biased towards those classes, each sensor tracks
the percentage of the class that it is able to detect rather
than a raw count.

To add classification to WCIS, each sensor not only
tracks the percentage of each category it reacted to dur-
ing pre-deployment training, it also has a desired cat-
egory for which it should develop affinity. Previously
in [3], WCIS did not have this second feature and it
was discovered that the population of sensors optimized
for the “script” and “traversal” classes. To prevent this
from happening, the sensors were divided into groups
and each group was tasked with optimizing affinity for
a particular classification. This is a niching algorithm,
which is intended to develop “specialists” for all classifi-
cation labels.

To optimize affinity, the sensors must be trained and
matured. This is accomplished with a typical artifi-
cial immune system lifecycle conducted during the pre-
deployment and sensor refinement phases. The lifecy-
cle is an iterative process which repeatedly applies the
affinity maturation steps. This results in a set of trained
sensors that have higher affinity towards attacks than the
initial sensors. The steps for the lifecycle are detailed in
the following subsections.

The primary difference between the pre-deployment
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Table 2: A sample of requests in the attack dataset.
Class URL
info GET x HTTP/1.0
traversal GET ../../../boot.ini HTTP/1.0
traversal GET %2E%2E/%2E%2E/%2E%2E/%2E%2E/%2E%2E/winnt/win.ini HTTP/1.0
sql GET /scripts/test.asp?var=foo‘;EXEC master.dbo.xpcmdshell’cmd.exe’ HTTP/1.0
script GET /scripts/..%%35%63../winnt/system32/cmd.exe?/c+cmd.exe HTTP/1.0
script GET /ans.pl?p=../../../../bin/command%20argument|&blah HTTP /1.1
xss GET /<script>alert(’Vulnerable’)</script> HTTP/1.1
xss GET /javascript:void%20window.open( HTTP/1.0

Table 3: A sample of requests in the normal dataset.
GET /00master/hqafgate.gif HTTP/1.0
GET /Copy%20of%2010.gif HTTP/1.0
GET /faq/web/viewfaq.php3 HTTP/1.0
GET /forums/newmsg.php?fid=2&pid=30 HTTP/1.1
GET /index.html?browsePage=commands.html HTTP/1.1
GET /index.html?browsePage=kb/itemdetail.php&id=19 HTTP/1.1
GET /index.html?secure=1&PHPSESSID=db80c486ee8cef8090a532b93619cd7a HTTP/1.1
GET /%7E930www/Images/fronty2k logo02.jpg HTTP/1.0
GET /ADTracker.asp?linkid=AHCX030&linktype=Room&RID=8 HTTP/1.0
GET /CGI-BIN/centralad/getimage.exe/19980714243?GROUP=defaultbuttons HTTP/1.0

and sensor refinement phases is the source of the statis-
tics used for training. In the pre-deployment phase, train-
ing statistics come purely from the sensor’s reaction to
the system profile datasets. In the sensor refinement
phase, statistics come from the sensor’s reaction to live
traffic, with negative selection against the normal dataset
also conducted to prevent sensors from reacting to nor-
mal traffic.

Before going into the details of the pre-deployment
phase, some key terminology should be reviewed. The
sensorpopulation size is the number of unique sensors
being processed. Each individual sensor within the pop-
ulation has its own data structure to store its pattern, clas-
sification label and statistics. Patterns may be repeated in
multiple individual sensors within the population. This is
called a loss of diversity oroverfitting which essentially
leads to redundancy (e.g. multiple sensors have the same
“signature”). The sensorlifecycle is the process of cre-
ating, refining and perhaps destroying individual sensors
within the population. Throughout the lifecycle, the pop-
ulation size remains constant. Every destroyed sensor is
replaced with exactly one sensor. The sensors that exist
in each iteration through the lifecycle process are called
a generationof the population. Each new generation is
generated by the affinity maturation process, which uses
a genetic algorithm to refine the sensor populationas a
whole. The sensor’schromosomeis a method to repre-
sent the sensor’s pattern by using data structures that can
be manipulated by a genetic algorithm. The chromosome

contains all possible features that a pattern in WCIS may
use (see Section 5 for a description of the features), the
current values for each feature and a flag to indicate if
the sensor is using that feature in its pattern (e.g. if the
feature isexpressedin that particular sensor). Thefit-
nessof a sensor is determined by its statistics and is used
to gauge its accuracy at detecting attacks in its classifica-
tion label. The most fit sensors contribute more “genetic
information” to the next generation than the less fit sen-
sors.

4.1 Lifecycle

In pre-deployment training, a normal dataset, samples
of which can be seen in Table 3, and the labeled attack
dataset are given as input to the lifecycle function. The
pre-deployment lifecycle begins by randomly generating
a population of sensors for each classification group. The
random generation process selects a subset of features for
each sensor’s matching pattern and randomly assigns val-
ues to those features. In the sensor refinement phase, the
lifecycle function would instead begin with copies of the
existing sensors and any sensors which have been deacti-
vated by the system administrator (peripheral tolerance)
will be discarded and replaced by a random sensor.

For both phases, the iterative affinity maturation pro-
cess is then entered, which refines the sensors over a se-
ries of generations. It is important to note that affinity
maturation occurs within each population for a classi-
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fication label, not across all classification label popula-
tions. The goal of affinity maturation is to produce sen-
sors which specialize in detecting attacks for that partic-
ular classification label, so each population is kept dis-
tinct.

4.2 Negative Selection Phase

The affinity maturation process begins with negative se-
lection. The population of sensors is compared to the
normal dataset. Any sensor that has too strong of an
affinity to requests in the normal dataset is discarded and
replaced with a random sensor. The replacement is like-
wise tested against the normal dataset and is not allowed
to replace the discarded sensor until its random feature
set (e.g. pattern) does not have strong affinity towards
the normal dataset. The exact level of affinity towards
the normal dataset that is tolerated in this phase is tun-
able in WCIS.

4.3 Training Phase

After negative selection, the sensors enter two phases of
training. During the first phase of training, the sensors
are compared to all of the attack requests and a random
subset of normal requests. If a sensor has affinity to an
attack, it records the classification of that attack. At the
end of the first phase, each sensor will know the percent-
age of attacks in each category it can detect. It then sees
which classification it is best at detecting and marks that
classification as its class. The sensor may mark itself as
a different classification than what its group is supposed
to be optimizing for. This simply means the sensor is not
as good at detecting the desired classification as it is at
detecting a different classification.

During the second phase of training, the sensors make
a second pass over the attack dataset. For each attack, the
sensors which can detect it vote on the classification of
the attack. The accuracy of each group of sensors at de-
tecting its desired classification is recorded. This second
phase is purely for computing the accuracy statistics and
does not affect the affinity maturation process. The accu-
racy of the sensors during experimental testing is given
in Section 6.

4.4 Genetic Algorithm Phase

After training, the sensors move on to the genetic al-
gorithm phase. This phase first “breeds” the sensors to
create the next generation of sensors and then mutates
the next generation. The breeding phase uses a single-
objective genetic algorithm which optimizes for a sin-
gle fitness metric (multi-objective algorithms allow opti-
mization for multiple fitness metrics). The fitness of each

sensor for this phase is its ability to classify the attacks
in the desired classification for its population. For ex-
ample, if a “script” sensor can detect 70 of the 86 script
attacks, it would have a fitness of 0.814 even if it could
also detect 100% of the “traversal” attacks. A secondary
fitness value is also computed for each sensor but is not
directly used by the genetic algorithm. This fitness value
measures how well the sensor can detect attacks without
excessive false positives. The secondary fitness ranges in
value from -2 (all of its alerts are on normal requests in-
stead of attack requests) to +2 (all of its alerts are attack
requests).

Rank selection with elitism using the primary fitness
value is used to select the “parent” sensors. Rank se-
lection chooses the most fit sensors to be parent sensors.
Elitism allows a percentage of highly fit parent sensors
to survive into the next generation. The exact percent-
age is tunable in WCIS. Once two parent sensors are
selected, single point crossover on the parents’ chromo-
somes is used to create the chromosomes for the “chil-
dren” sensors. The chromosome is the complete feature
set, a subset of which will be expressed in each parent.
The expressed feature set for each child sensor is the
intersection of the expressed feature sets of the parent
sensors. Additionally, a feature that only one parent ex-
presses will be randomly expressed in the child. Even if
the feature is not expressed, the child will still inherit the
values for that feature from the parent. It just will not be
used by the child to match against requests. But this pre-
serves the genetic information in a dormant state in case
future offspring randomly choose to express that feature.
Finally, if a child exits this expressed feature selection
phase with less than two features expressed, it randomly
chooses features to add to its expressed feature set until
the set size is two.

Besides the children sensors created by crossover, ran-
domly selected parent sensors are also be chosen as sur-
vivors during the elitism process. The population for
the next generation of the affinity maturation process is
the combination of the children and the survivors. Addi-
tionally, to prevent overfitting, breeding ceases when the
population for a specific class achieves 100% accuracy
at detecting that class. In that case, the next generation
consists entirely of survivors.

After breeding is completed, mutation is performed on
the next generation. A subset of sensors is selected ran-
domly from the population. A random expressed feature
in the sensor’s chromosome is selected for mutation. If
the feature is binary or discrete, a bit is flipped. If the
feature is a real value, the value is altered by a random
number.
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4.5 Sensor Deployment and Refinement

The lifecycle continues by iterating through the nega-
tive selection, training and genetic algorithm phases un-
til a maximum number of generations is reached. At this
point, the sensors are considered trained (or refined), al-
though they may not have perfect accuracy for their clas-
sification. In the pre-deployment phase, the sensors with
a secondary fitness greater than 0.5 will become the live
sensors. In the sensor refinement phase, those sensors
would replace the existing live sensors, as the “next gen-
eration” of sensors. The threshold of secondary fitness
may be refined to trade off between covering potential
attacks and generating too many false positives.

Live deployment of the sensors could not be tested due
to bureaucratic issues obtaining the appropriate autho-
rization for live monitoring of the department network.
Since live network traffic could contain personally iden-
tifying or confidential information, the campus requires
assurance that WCIS will protect such information from
unauthorized view before granting authorization. As of
this time, the authorization is still pending.

Since this bureaucratic restriction prevented the live
deployment of sensors to test the concept, the sensors
are instead presented with unlabeled data to see how they
perform in a real-world scenario. Any sensor with a sec-
ondary fitness less than the above threshold is not used
for this phase as it has difficulty distinguishing normal
requests from attack requests. The sensors determine if
each unlabeled request is an attack or a normal request.
If the request is labeled an attack by a sensor, the classi-
fication of the sensor is recorded. After passing the unla-
beled request past all sensors, the classification with the
highest “vote” count is chosen as the class label for the
request. Those results are then hand-verified to see their
accuracy. The results of testing the sensors against un-
known data are given in Section 6.

The bureaucratic restriction also made it difficult to
fully test the scalability of the pre-deployment, detec-
tion and sensor refinement phases. In particular, this
made it difficult to fully implement the back-end pro-
cessing aspects of the sensor refinement phase, as there
were no deployment and back-end systems to commu-
nicate between. While WCIS contains the algorithmic
components of sensor refinement, the practical aspects
of deploying sensors, recording statistics, communicat-
ing those statistics back to the back-end system, refin-
ing sensors on the back-end system and re-deploying the
next generation of sensors could not be fully investigated.

The department is currently in the process of building
an isolated network. The sensors can be deployed on the
isolated network since the data will be simulated, which
means campus authorization is not required. This will
allow testing of the sensor refinement phase. Scalability

Table 4: The special characters used in the fingerprinting
method.

Character Description
% Used by various encoding methods

such as hex encoding
’ Used by SQL injection attacks
+ Interpreted by Microsoft IIS as a

space
.. Used in directory traversal attacks
\ Used in directory traversal attacks

since URIs contain only /
( Used in cross site scripting attacks
) Used in cross site scripting attacks
< Used in cross site scripting attacks
> Used in cross site scripting attacks
// Used in proxy attempts or to exploit

an old Apache vulnerability

testing can also be conducted. Based on the promising
results presented in Section 6, it is expected that WCIS
will perform well in a simulated live environment. While
this is still not an ideal scenario, it will allow continued
development and testing of WCIS while the attempts to
get campus authorization for live deployment continue.

5 Fingerprinting URIs

In order to adapt the AIS method to detect malicious web
server requests in WCIS, the web request data must be
converted into a pattern consisting of binary, discrete and
real value features. The chromosome in each sensors
would then seek to match these features. The features
from the web request chosen for WCIS are the Uniform
Resource Identifier (URI), the HTTP command (GET,
POST, HEAD, etc) and the HTTP version. Additional
features from the request, such as headers, referrer, and
so on, could also be added as features, although they are
not supported at this time in WCIS due to the nature of
the Apache logs available for data processing. Due to
the restrictions imposed by the campus, WCIS has had
to run off of Apache logs rather than the live network
and the logs are not always configured to log these fea-
tures. Additionally, WCIS does not look at the IP address
of the client or the return code as it is not concerned with
detecting the activities of unique clients or whether an
attack failed or succeeded. It is concerned with discov-
ering patterns that indicate a zero-day attack has been
attempted.

The HTTP command is converted into a discrete
bitmap where each set bit refers to a specific command.
For example, bit 0 is set for GET, bit 1 is set for POST
and so on. The HTTP protocol is likewise converted into
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a discrete bitmap, although it could also be modeled as a
real value. The length of the URI is converted into a real
value feature. Likewise, the number of variables in the
URI is also converted into a real value feature. The URI
is then parsed to develop a fingerprint of special char-
acters used in the URI. Table 4 summarizes the special
characters modeled in the fingerprint. These characters
were chosen based on the whitepapers published online
at cgisecurity.com [23, 24] and based on the inspection of
later web server attacks. Each special character or char-
acter sequence listed in Table 4 is modeled as a real value
feature.

Real value features are all modeled as a pair of values:
[base, offset]. The sensor will match a URI if the URI
value is within the range of base to base+offset. When
mutating a real value feature, a random value may be
added or subtracted from the base, the offset or both. The
base can only be altered by a value from -2 to +2. The
offset can only be altered by a value of -4 to +4. This
prevents mutation from wildly changing the range that a
feature detects.

A sensor is considered to match a web request when all
of its expressed features matches the features in the web
request. For binary features, the feature matches when
the corresponding bit to the feature is set in the sensor.
For real value features, a feature matches when its value
falls within the range of values in the sensor. Note that
the web request may contain additional features that the
sensor does not check. The matching is driven by the
feature set that the sensor expresses, not the feature set
in the request.

6 Experimental Results

WCIS was tested using an attack dataset, a normal
dataset and an unknown dataset, as described in Section
4. The attack dataset consists of 179 labeled attacks gath-
ered from Bugtraq, live web server logs and tests run on
an un-networked machine. The normal dataset consists
of 52977 regular requests gathered from the Lincoln Lab-
oratory DARPA dataset [14] and live web server logs.

Obviously, the preferred method of testing WCIS
would have been actual live requests to a web server, as
this would best approximation of the real-world perfor-
mance of WCIS. Unfortunately, as described in previous
sections, the regulations at this university have made it
difficult to do such testing on live web servers due to
privacy concerns. Instead, the Apacheaccess.log
repository for the Computer Science department web
server was used for the unknown dataset. 11659 random
requests were pulled from the logs and placed into the
unknown dataset.

Besides the datasets, WCIS has many parameters that
tune its performance. These parameters are:

pop The population size for each classification cate-
gory. A larger population size creates a larger pool
of initial random sensors and thus a greater likeli-
hood of randomly creating a “good” sensor.

gen The maximum number of generations for the affin-
ity maturation process. The higher this value is, the
more likely it is that affinity maturation can derive
“good” sensors even if the random initial sensors
are only mediocre.

xover The percentage of the next generation that
comes from breeding. The remaining percentage of
the next generation will be survivors.

mut The mutation rate for the next generation. A higher
value introduces more random change in each gen-
eration, which can be beneficial, harmful or benign.

thresh The threshold for affinity when doing negative
selection. Sensors with affinity above this threshold
are destroyed.

agree The number of sensors that must agree a request
is an attack before it is labeled as an attack. For
classification,2 * agree must label an unknown
data as an attack before it will be classified.

WCIS was tested with population sizes of 25, 50 and
75 for each classification category. Each sensor in a pop-
ulation is analogous to a rule in an IDS in that it looks for
a specific pattern in the web request. Note that the actual
total number of sensors tested in each tested run of WCIS
was pop*number of classifications. Refer-
ences to “population size” in this section refers to
the number of sensors for each classification cate-
gory (pop), not the total number of sensors tested
(pop*number of classifications).

The maximum number of generations tested were 10,
20, 30, 40 and 50. The mutation rates tested were 1%,
2.5%, 5% and 10%. The value forxover was 0.6,
the value forthreshold was 0.0002 and the value for
agree was 3, as prior testing has shown these values
yield good results.

6.1 Runtime

One of the first concerns with any method that uses evo-
lutionary computation, such as genetic algorithms, is
how long it takes the algorithm to complete. This is
one of the motivations behind separating the operation of
WCIS into phases: pre-deployment, detection and sensor
refinement. Only the pre-deployment and sensor refine-
ment phases will need to run the genetic algorithm.

To test the runtime for the pre-deployment phase,
WCIS was tested on a Xeon E5410 2.33GHz machine

8



 0

 50

 100

 150

 200

 250

 300

 350

 10  15  20  25  30  35  40  45  50

R
un

tim
e 

in
 S

ec
on

ds

Max Generations

Pop=25 Pop=50 Pop=75

Figure 1: Average runtime for the pre-deployment phase
of WCIS for the three tested population sizes for each
classification label. Note that the actual total number of
sensors ispop ∗ 6 since there were 6 classification la-
bels tested. This is purely the pre-deployment phase run-
time, not the detection or sensor refinement phase run-
time. The detection phase runtime was 0.23 to 0.61 sec-
onds.

with 4GB of RAM. The pre-deployment phase was
coded as a single-threaded process. The population for
each classification label was processed in a series, using
round-robin scheduling (e.g. it processed the first gen-
eration of the info class, then the first generation of the
traversal class, and so on). With sufficient memory to
hold multiple copies of the normal and attack datasets,
WCIS could easily be changed to a multi-threaded pro-
gram with a thread for each population, which would
lead to a substantial decrease in the runtime and increase
in scalability. The current prototype was also coded in
C++, which could be changed to a more efficient pro-
gramming language in future versions to provide addi-
tional scalability.

These changes were not made because the point of this
test was to run the genetic algorithm under less than ideal
conditions to illuminate choke-points in the underlying
algorithms. These choke-points might not be apparent if
the code runs too quickly for any differences between in-
put parameters to become significant. This might leave
inefficient areas in the underlying algorithms that could
affect future scalability. Additionally, if the runtime for
WCIS is reasonable under these less than ideal, and eas-
ily remedied, coding conditions, then we can be reason-
ably assured that there are not choke-points in the under-
lying algorithms.

As shown in Figure 1, even with the largest popula-
tion sizes and number of generations, WCIS trained the
sensors in the pre-deployment phase in under six min-
utes. This is very reasonable for an evolutionary algo-

rithm, so it is unlikely that there are hidden scalability
issues in the underlying algorithms. Converting WCIS
to a multi-threaded program in a more efficient program-
ming language should yield even faster results. The sen-
sor refinement phase is expected to have a similar run-
time as it needs to run through a similar lifecycle. These
results also emphasize why it is important to separate off
the evolutionary phases as back-end processes on a sep-
arate system from the deployment system. It would be
unacceptable to wait 6 minutes for the sensors to refine
themselves on a live system, but the separation allows
the deployed sensors to continue monitoring live traffic
while the back-end system refines the sensors.

While it was not possible at this time to test the detec-
tion phase with live data due to the previously described
issues, presenting WCIS with the 11659 unknown re-
quests to emulate the detection phase took from 0.23 to
0.61 additional seconds on average, including the extra
I/O time to load the unknown dataset from disk, log clas-
sifications and log the classification statistics that are pre-
sented in the remaining results. There seemed to be lit-
tle correlation between population size and the additional
time required for WCIS to test the unknown requests. For
example, the population size of 50 had the lowest aver-
age time, while the population size of 25 had the highest
average time. This suggests most of variance in the time
to test the unknown dataset was due to I/O latency, par-
ticularly since the test system had only a consumer-grade
SATA drive.

More testing will need to be done to determine the re-
alistic traffic rates that WCIS can handle during the de-
tection phase. These can be conducted once the depart-
ment’s isolated network is completed.

6.2 Accuracy at Classification

Since the primary fitness function was the accuracy at
classifying the attack dataset, let us look at the best ac-
curacy for each population in the test runs. Five separate
populations for each classification label were tested for
each possible combination of variables. The best per-
forming population for each classification and combina-
tion was examined.

The best performing populations when the population
size was 25 had a maximum number of generations of 40
and a mutation rate of 1%, as shown in Figure 2. The
small population size means that WCIS starts with less
random diversity. This means the affinity of the initial
sensors might be quite low for their desired classifica-
tion, whereas with a larger population there is a higher
chance of randomly generating an antibody with moder-
ate to strong affinity for the class. Because of this low
affinity in early generations, the small population size
needs more generations for affinity maturation. In par-
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Figure 2: Detection accuracy for each class when the
population size for each classification is 25, the maxi-
mum generations is 40 and the mutation rate is 1%. This
was the best performing population when the population
size for each classification was 25.

ticular, Figure 2 shows that the “script” and “traversal”
classes took the longest number of generations to plateau
in accuracy. However, increasing the maximum genera-
tion to 50 actually led to overfitting, where the fitness
started to decrease in the final generations. This popu-
lation size also needed the lowest mutation rate of the
best tested population sizes. While mutation can help
increase the likelihood that the appropriate feature(s) for
that classification are affected in a beneficial way, there is
also the possibility that mutation might negatively affect
the accuracy. A small population is less able to recover
from a negative mutation than a large population.

The best performing populations when the population
size was 50 had a maximum number of generations of
10 and a mutation rate of 2.5%, as shown in Figure 3.
Since WCIS starts off with a larger random population,
it is better able to withstand negative mutations and a
higher mutation rate can also increase the likelihood of
beneficial mutations. This population size also does not
need as many generations to achieve good accuracy at
classification since it starts with a larger random pool of
sensors and there is a greater likelihood of a good sensor
being randomly generated in the initial generation. As
with a population size of 25, too many generations led to
overfitting and a decrease in accuracy, as shown in Figure
4 where the maximum number of generations is 30.

The best performing populations when the population
size was 75 had a maximum number of generations of 20
and a mutation rate of 5%, as shown in Figure 5. While
most of the classification accuracies plateaued in early
generations, the slightly higher rate of mutation allowed
for the “info” and “traversal” classifications to randomly
find the right combination of features to increase accu-
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Figure 3: Detection accuracy for each class when the
population size for each classification is 50, the maxi-
mum generations is 10 and the mutation rate is 2.5%.
This was the best performing population when the popu-
lation size for each classification was 50.

racy in later generations. As noted with the other pop-
ulation sizes, a higher number of maximum generations
led to overfitting.

Several trends were noticed across all combinations
of variables tested. First, regardless of population size,
maximum generations and mutation rates, the popula-
tions had great difficulty correctly identifying the “info”
class of attacks, as shown in Figures 2 through 4. This is
not surprising as the “info” class is the hardest to distin-
guish from normal data. Information gathering attacks
are also hard to distinguish from innocent mistakes, such
as a typo in the URI.

Second, as noted above, overfitting and loss of accu-
racy is seen in all tested combinations of variables when
the number of generations is high. This is a general
problem in single-objective, single-crossover genetic al-
gorithms. This is caused by a loss of diversity within the
population. In essence, the sensors become too special-
ized for specific attack instances and lose the ability to
detect more generalized attacks or attacks which lay on
the peripheral of the non-self space. It may be the case
that another genetic algorithm would be better suited to
this problem domain. For example, a multi-objective ge-
netic algorithm, such as NSGA-II [6, 7], is designed to
maintain diversity by balancing multiple fitness objec-
tives.

Overall however, the classification scheme employed
by WCIS achieves a high rate of accuracy, particularly
in the classifications with a large set of attack instances
such as “traversal”, “script” and “xss”. While no popu-
lation was able to obtain 100% accuracy in those cate-
gories, this may be due to the diversity issue. Even so,
the accuracy for “traversal” was 81% in many popula-
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Figure 4: Detection accuracy for each class when the
population size for each classification is 50, the maxi-
mum generations is 30 and the mutation rate is 2.5%.
Note that the extra generations do not yield better results
than Figure 3. In fact, overfitting occurs within several
classification populations.

tions, the accuracy for “script” was 92% in many popu-
lations and the accuracy for “xss” was 92 – 97% in many
populations.

6.3 Labeling Unknown Data

After inspecting the accuracy rates, next let us look at
how well WCIS could label unknown data gleaned from
Apache access logs. The access logs for the Computer
Science web server are rotated on a monthly basis, with
data going back for several years. Random entries were
selected out of two months of access logs. This created
an unknown dataset with 11659 entries in it.

After each population finished affinity maturation, it
was presented this dataset to label. This emulated a live
scan of web traffic. While this test was sufficient to eval-
uate the effectiveness of WCIS at detecting zero-day at-
tacks, it does not provide metrics for the scalability of
WCIS. That would require live testing on networks with
various traffic capacities. Unfortunately, due to the previ-
ously described challenges with conducting this research
in our campus environment, that was not possible at this
time. So this test purely focuses on gauging WCIS’s abil-
ity to detect zero-day attacks and attack variants and its
false positive rate when given a large dataset of unlabeled
web requests.

It quickly became apparent when looking at the alerts
that WCIS raised that someone had tried to attack the
web server repeatedly during the time frame covered by
the Apache logs. Table 5 shows a subset of the attacks
detected by the best population of size 25. Table 6 shows
a subset of the attacks detected by the best population of
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Figure 5: Detection accuracy for each class when the
population size for each classification is 75, the maxi-
mum generations is 20 and the mutation rate is 5%. This
combination of variables had the best classification accu-
racies of all tested parameters.

size 50. Finally, Table 7 shows a subset of the attacks
detected by the best performing population of size 75.

As seen in the sample of detected attacks, someone at-
tempted to access the /proc/self/environ file, which con-
tains a list of environmental variables, using various di-
rectory traversal attempts. This particular attack is actu-
ally associated with getting a shell on poorly configured
web servers using a combination of directory traversals
and shellcode or shell commands injected via the User-
Agent field. Even though WCIS does not include the
User-Agent field in its feature set, and thus didn’t see the
actual shellcode that was attempted, it still detected this
attack as it appeared in the unknown dataset.

WCIS did have difficulty deciding whether this attack
was a “traversal” or a “script” attack since this attack
uses directory traversals to access /proc/self/environ to
execute code. The attack dataset does classify such at-
tacks as “script” even though they contain features of a
“traversal”. As pointed out in Table 1, only the attacks
which were read-only (such as retrieving the password
file) were labeled as “traversal” in the attack dataset. If
the directory traversal resulted in an attempt to execute
code, it was labeled as a “script” in the attack dataset.
Thus, it is not unexpected to see that WCIS has difficulty
determining if these attacks were a “script” or a “traver-
sal” since its feature set does not, as of now, include the
portion of the attack (the User-Agent field) that would
have made it clear it was a “script” attack.

Additionally, looking at the voting data, the attacks
labeled as “traversal” also had votes for “script”, with
many cases having only a difference of one or two votes
between the two labels. So the “script” population was
detecting these attacks, just not quite as vigorously as the
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Table 5: A sample of unknown requests detected as attacks in the unknown dataset for the population in Figure 2.
Class URL
script GET /*.php?option=comdump&controller=..//..//..//..//..//..//..//..///proc/self/environ%0000

HTTP/1.1
traversal GET /.php?index=../../../../../../../../../../../../../../../proc/self/environ%00 HTTP/1.1
traversal GET /courses/ls290//index.php?p=../../../../../../../../../../../../../../..//proc/self/environ%0000 HTTP/1.1

Table 6: A sample of unknown requests detected as attacks in the unknown dataset for the population in Figure 3.
Class URL
script GET /////?option=comdump&controller=../../../../../../../../../../../../../../../../../../../../../../../..

//proc/self/environ%0000 HTTP/1.1
script GET /cs150/index.php?p=../../ HTTP/1.1
traversal GET /*.php?option=comdump&controller=..//..//..//..//..//..//..//..///proc/self/environ%0000

HTTP/1.1

“traversal” population.
Being able to detect attacks is desirable, but one also

wants an IDS to have a low rate of false alarms. WCIS
did not falsely alarm on any of the normal requests in the
unknown dataset. This may be due to the fact that some
of the requests in the normal dataset were also gleaned
from the department Apache access logs. However, this
is a good result since it shows that WCIS is easily tuned
to the normal traffic for a specific website by using a sam-
pling of that normal traffic to generate the normal dataset.

7 Conclusions

This paper presented a method of detecting zero-day at-
tacks on web servers via malicious requests that is based
on artificial immune systems. This prototype system,
called Web Classifying Immune System (WCIS), is in-
tended to augment the capabilities of an existing intru-
sion detection system (IDS) by detecting attacks that are
not detectable by the existing IDS. WCIS is a modified
artificial immune system (AIS) that adds classification.
WCIS also seeks to improve the efficiency of an AIS by
separating tasks into the pre-deployment phase, detection
phase and sensor refinement phase instead of requiring
all these tasks to take place within a single AIS lifecycle.
This allows the detection phase to focus on low-resource,
speedy sensors while the more costly evolutionary com-
putation associated with the other phases occurs on a sep-
arate back-end system.

Notably, WCIS is able to achieve a high rate of ac-
curacy at detecting most classes of attacks in the at-
tack dataset, with the exception of the “info” attacks,
which are difficult to distinguish from normal requests.
When tested against unlabeled data from Apache access
logs, WCIS is able to identify attacks within the requests
without falsely alerting on normal traffic. WCIS does
have some difficulty choosing between the “traversal”

and “script” classifications when the “script” attack uses
some elements of directory traversal in its URI. This is
likely due to the fact that WCIS only models the HTTP
method, URI and HTTP protocol. However, even with
this limitation, WCIS is able to detect that an attack con-
taining elements of a directory traversal has occurred.

In summary, WCIS is able to achieve a high rate of
accuracy at detecting and classifying attacks against web
servers without falsely alarming on normal traffic when
properly trained on the normal traffic patterns of the net-
work. WCIS can be easily trained on the normal traf-
fic patterns by giving it a sampling of web server logs,
such as Apache logs. The ability to classify the attacks
is particularly noteworthy as it allows an administrator to
rapidly focus on the initial mitigation and response tech-
niques. It might also lead to integration with an auto-
mated response engine, although that has not yet been
explored for WCIS.

8 Future Work

The next phase of development for WCIS will focus on
creating an appropriate test bed. The department has re-
cently secured a Department of Education grant that is
funding the expansion of research laboratory space. A
portion of this grant is being used to develop an isolated
network. This can be used to test WCIS (and other se-
curity tools) without concern about running afoul of the
campus privacy regulations. This is not a perfect solu-
tion, as it will still be a simulated environment instead of
a live environment, but it will permit the full testing of
the sensor refinement phase, which has been hampered
by the campus regulations. This will also allow scala-
bility testing, although the isolated network funding cur-
rently limits the test bed to Gigabit Ethernet instead of
10 Gigabit Ethernet, so there will be limitations to test-
ing the scalability to high capacity networks.
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Table 7: A sample of unknown requests detected as attacks in the unknown dataset for the population in Figure 5.
Class URL
script GET /.../portslabeled.jpg HTTP/1.1
traversal GET /index2.php?option=comdump&controller=..//..//..//..//..//..//..//..///proc/self/environ%0000

HTTP/1.1
traversal GET /index.php?t=1&amp;p=technicalinfo/howto//index.php?filename=../../../../../../../../../../

../../../../../proc/self/environ%00 HTTP/1.1
script GET /faculty/interests/..\\index.html HTTP/1.1

Another area of future development is expanding the
feature set used by WCIS sensors. Currently, the feature
set of WCIS only models the request line from the re-
quest, consisting of the HTTP method, URI and HTTP
version. It does not model the general headers, request
headers, entity headers or message body specified by Hy-
pertext Transfer Protocol version 1.1 for the HTTP re-
quest. This limitation arose because WCIS had to be run
on Apache access logs, instead of live data, due to pol-
icy restrictions at the institution. The available Apache
logs did not consistently record any header fields. How-
ever, attackers are using the header fields as a part of their
attacks so WCIS should expand its feature set to model
these aspects of malicious web server requests. The iso-
lated network test bed should enable the incorporation of
these fields into the sensor feature set, since WCIS will
no longer be constrained by the formatting of the Apache
logs.

Additionally, as noted in Section 6, the genetic algo-
rithm currently being used by WCIS may not be the best
algorithm for this problem domain. It suffers from a loss
of diversity, which leads to overfitting and a decreased
accuracy at detecting and classifying attacks as the gen-
erations progress. Another avenue of future research is
to explore how other genetic algorithms such as multi-
objective genetic algorithms can improve diversity in the
sensor population. This diversity will also be useful in
detecting novel attacks that do not clearly fall under one
of the existing classification categories.
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