Keeping Track of 70,000+ Servers
The Akamai Query System
Jeff Cohen, Thomas Repantis, Sean McDermott, Scott Smith, Joel Wein
The Akamai Platform

- Various web infrastructure services
- Over 70,000 machines
- Over 1 million distributed components
- Over 1000 autonomous systems
- 24/7/365 operation
- Failures, usage changes
- Massive, real-time monitoring
Query

- Distributed data collection
- Aggregation at several hundred points
- SQL-style interface
A Sample Query

```
SELECT
    c.continent_name, SUM(l.hits) hits
FROM
    load_info l, region_data r, continent_data c
WHERE
    l.georegion=r.id AND r.continent=c.continent
GROUP BY c.continent_name
ORDER BY hits DESC;
```

<table>
<thead>
<tr>
<th>c.continent_name</th>
<th>hits</th>
</tr>
</thead>
<tbody>
<tr>
<td>North America</td>
<td>4,620,551</td>
</tr>
<tr>
<td>Europe</td>
<td>3,392,102</td>
</tr>
<tr>
<td>South America</td>
<td>655,175</td>
</tr>
<tr>
<td>Asia</td>
<td>552,258</td>
</tr>
<tr>
<td>Africa</td>
<td>106,781</td>
</tr>
<tr>
<td>Oceania</td>
<td>39,905</td>
</tr>
<tr>
<td>Antarctica</td>
<td>135</td>
</tr>
</tbody>
</table>
Outline

- Design goals
- Architecture
- Uses
- Scale
Design Goals

- Reliability
- Completeness
- Scalability
- Latency
 - Data
 - Query
- Consistency
- Fault tolerance
- Synchronization
Architecture

- Collection at edge machines
- Aggregation at cluster level
- Aggregation at global level
- Answering queries
Query at the Edge

- Each machine collects its own data
- Many processes may publish
- Snapshots every two minutes

<table>
<thead>
<tr>
<th>filesystem</th>
</tr>
</thead>
<tbody>
<tr>
<td>machineip</td>
</tr>
<tr>
<td>10.123.123.1</td>
</tr>
</tbody>
</table>
Cluster Proxies

- Collect data for the whole cluster
- Include themselves

<table>
<thead>
<tr>
<th>MachineIP</th>
<th>Mountpoint</th>
<th>Blocks</th>
<th>Bavail</th>
<th>Bsize</th>
</tr>
</thead>
<tbody>
<tr>
<td>10.123.123.9</td>
<td>/var</td>
<td>1500000</td>
<td>51575</td>
<td>4096</td>
</tr>
<tr>
<td>10.123.123.7</td>
<td>/var</td>
<td>1500000</td>
<td>17631</td>
<td>4096</td>
</tr>
<tr>
<td>10.123.123.1</td>
<td>/var</td>
<td>1500000</td>
<td>36665</td>
<td>4096</td>
</tr>
<tr>
<td>10.123.123.7</td>
<td>/var</td>
<td>1500000</td>
<td>17631</td>
<td>4096</td>
</tr>
<tr>
<td>10.123.123.9</td>
<td>/var</td>
<td>1500000</td>
<td>51575</td>
<td>4096</td>
</tr>
</tbody>
</table>

Aggregated table
Top-Level Aggregators

- Collect data for the whole network
- Snapshots every two minutes
- Static tables for data that doesn’t change much
SQL parsers

- Get tables from 1 TLA
- Only get the ones we need
- Answer queries based on them
Aggregator Sets

- Span different parts of the network
- Designated for different purposes
- Several replicated TLAs & SQLs
- Combined TLA/SQLs
- Shared hostnames
- Help meet reliability guarantees
- Help tolerate faults & keep localized
Uses

- Alerts
- Graphical monitoring
- Incident response
- Capacity management
- Many others
Alerts

- Several thousand alerts
- Important way of detecting problems
- Goal is to find & fix before customer impact
- SQL and procedure for each alert
- Highly customizable
 - Priorities
 - Times to start, clear
 - Notification methods
- Akamai alerts, customer alerts
Graphical monitoring

- Several automated users graph Query data
 - Akamai web site
 - Portal graphs
 - Historical graphs
Scale

- Several hundred TLAs, SQLs, TLA/SQLs
- Thousands of queries per minute
- Tens of GB in the system
- Up to 6 GB per TLA (and growing fast)
 - Internet usage
 - Network growth
 - Customer growth
 - Data/customer
 - More queries
- Age of data typically a few minutes
Thank you!

Jeff Cohen
Akamai Technologies
jecohen@akamai.com