Looking For Truth
Or At Least Data

Elizabeth D. Zwicky
zwicky@otoh.org
LISA 2009
Important Disclaimers

• All the numbers in this presentation are made up.
• The stories are true.
• I am not a statistician.
• I’m done with the funky transitions now.
Audience

• System Administrators
• Not statisticians
• Mostly collecting data about machines
• Numbers: good
• Believing appearances: bad
• Making stuff up: ??
What Am I Talking About?

- An attitude
- A hobby
- Where science, system administration, and security overlap
Fundamentals

• “That’s interesting. I wonder what I could find out about it?”

• Distinguish between “what appears to be” and “what is”.

• Understand numbers.
Why Might You Care?

• Planning systems and upgrades
• Troubleshooting
• Being good at security
• Just plain fun
• Not falling for pseudo-science
Recognizing Data

- Is this data?
- What is it data about?
- What conclusions can we draw from it?
Is This Data?

- “The CEO says the network is slow.”
- “47 users complained about network slowness yesterday.”
- “Average network latency yesterday was 15 milliseconds.”
Is This Data?

- “I feel like something might be wrong with a core router.”
- “Brand A’s router has an error rate 200% worse than Brand B.”
- “Sites that use Brand A’s router report slowness more often.”
Is This Data?

- “We didn’t change anything around the time people started complaining about the network.”
- “We changed the routing just before people started complaining about the network.”
- “People are complaining because you changed the routing.”
Not Data

- Hearsay
- Numbers without context
- Conclusions
Data

- Observations
- Self-report
- Numbers in context
Why Those Numbers Aren’t Data
Basic Statistical Skepticism

• What do you mean “average”?
• Compared to what?
• What do you mean by “correlated”?
Size of lie

Median
Average

- Means are only interesting for symmetrical single-peaked curves.
- Your data probably does not make one of them.
- You probably want median, quartiles, or percentiles.
- If you do want a mean, you want a standard deviation.
What Can You Do?

• Forget the average, look at a picture of the numbers.
• Ask what kind of average it is.
• Ask what the standard deviation is.
Compared to...

• Is 99.9% accuracy good?

• If your false positive rate on network packets is .1%, you get a false alarm every...

• And your false negative rate?
Better and Worse

• Is a 200% increase in error rate bad?
• If your initial error rate was 1 in 4, your new error is 3 in 4.
• If your initial error rate was 1 in a million, your new error rate is 3 in a million.
Error Rates Again

• Suppose both routers have the same error rate
• but one of them eats every millionth packet (random error)
• and the other eats every packet of a rare type (systematic error)
Correlations

- “Sites that use Brand A routers are more likely to report slowness.”
- Correlation does not imply causation.
- Some correlations are weak.
- If you look at enough correlations, some of them will be “strong”.
What Is It About?

- “47 users complained about network slowness yesterday”
- is real data
- about users
- “Network usage is increasing rapidly”
What Is It About?

- Most data is about lots of things
- The users are complaining it’s slow because
 - it’s slower
 - they changed applications
 - they’re unhappy
What conclusions?

- From the data I’ve shown:
 - Either your network will be overprovisioned most of the year, or December is going to be nasty.
What Conclusions?

- Data is a lot easier to find than truth.
- Be very cautious in the conclusions you draw from data.
- Correlation does not imply causation.
Gathering Data
Basic Tools

- A programming language, preferably one that’s good with text.
- Some programs for looking at the guts of things.
- Some programs for making data into pictures.
Looking at Guts

- trace, dtrace, truss
- wireshark, tcpdump
- Windows sysInternals
Making Data into Pictures

- Your favorite spreadsheet
- GraphViz
- gnuplot
Basic Knowledge

- Regular expressions
- SQL
- XML
- Basic statistics
Finding Data

- Mine existing sources
- Collect data
- Simulate and/or extrapolate
- Find somebody else with data
- Make stuff up
Mine Existing Data

• How many files have we got? Count them.
• What are people’s names like? Look them up.
• Those log files must be good for something
Collect Data

• Add logging
• Save snapshots of changing data
• Use tracing or network sniffing
• Run tests
Simulate and/or Extrapolate

• Set up a test situation
• Find a similar situation
• And then go back to mining or collecting data
Find Somebody Else With Data

- Published sources
- Friends and colleagues
- Get the rawest available data
- Know as much about it as possible
Make Stuff Up

- If all else fails, try guessing
- Get a lot of guesses
- Base guesses on knowns as much as possible
- Play around to see how changing guesses changes outcomes
Backups

• How much data will a given backup scheme backup?

• Mining: pull data from existing backup system.

• Collection: record statistics by day

• Simulation: make up a model of how people behave, see how much data
Educating Users on Security

• Mining: What do people currently look for or read?

• Collection: What do they do with changed content?

• Research: What do we know about naive users and security?
Collecting Data About People

- Human Subjects Boards and ethics
- Random sampling is good
- If you can’t be right,
 - be qualitative instead of quantitative
 - be wrong lots of different ways
 - at least understand why you’re wrong
What Next?

- Maybe fascinating things will just jump out at you.
- Maybe you just need to ask “why”?
- Maybe you’re going to use that data.
Cuckoo’s Egg

• Cliff Stoll tracks a quarter
Sanity Checking

• Another reason you might be asking “why”?
• Some data collection is wrong
• Some data collection reveals other problems
Analyzing Data

• Let the data lead you
• Know what questions you want to ask
• Humans are good at very specific sorts of pattern recognition
Mystery Measurement
Humans are Good At

- Noticing abrupt change
- Finding correlation
- Seeing faces
Humans are Bad At

• Evaluating probability
• Finding non-correlation
• Perceiving slow change
• Perceiving correlation with time delay
Displaying Data

- Decide what you want to say
- Display that with only minimal other facts
Not Lying With Graphs

- Up is good, down is bad.
- Humans perceive area, but not well.
- Whenever possible, start at 0.
76.13% Bounce Rate

00:01:22 Avg. Time on Site

62.13% % New Visits
Obama's Nobel Prize

Does U.S. President Barack Obama deserve to have won the 2009 Nobel Peace Prize?

8154 votes

This is a non-scientific user poll. Results are not statistically valid and cannot be assumed to reflect the views of Washington Post users as a whole.
A Complex Example

• Help desk performance
• Time to resolve == unhappy customers, unhappy partners
• Customer satisfaction?
Customer Satisfaction

- Self-selected sample
- People who are especially unhappy or happy
- People who follow instructions
The Problem

- Help desk operators say users are unhappy
- Help desk management looks at numbers, says there's no problem
Most Relevant Books

• *Automating System Administration with Perl* by David Blank-Edelman
• *Visualizing Data* by Ben Fry
• *Data Crunching* by Greg Wilson
Classics

- *How to Lie With Statistics* by Darrell Huff
- *The Visual Display of Quantitative Information* by Edward Tufte
Background

- *Head First Statistics* by Dawn Griffiths
- *Predictably Irrational* by Dan Ariely
- *The Logic of Failure* by Dietrich Dörner
Blogs about data

- Junk charts: http://junkcharts.typepad.com/junk_charts/
- Chris Jordan: http://www.chrisjordan.com
- Chart Porn: http://chartporn.org/
Blogs that think this way

• Cognitive Daily: http://scienceblogs.com/cognitivedaily/

• Language Log: http://languageblog.ldc.upenn.edu

• Bad Science: http://www.badscience.net/
Elizabeth D. Zwicky
zwicky@otoh.org