Crossbow Virtual Wire: Network In a Box

Sunay Tripathi, Nicolas Droux, Kais Belgaied, Shrikrishna Khare

November 5th, 2009
USENIX LISA 09, Baltimore, MD

Nicolas Droux, Senior Staff Engineer
Solaris Kernel Networking, Sun Microsystems Inc.
nicolas.droux@sun.com
Key Issues in Network Virtualization

- Fair or Policy based resource sharing in virtualized environments
 - Bandwidth
 - NIC Hardware resources including Rx/Tx descriptors
 - Processing CPUs

- Overheads due to Virtualization
 - Latency, Throughput

- Management
 - Isolation between distributed applications
 - Network fabric configuration

- Security
 - New threats to L2 network

- Where to solve the problem?
 - Switches
 - L3/L4 devices
 - Hosts
Crossbow: Solaris Networking Stack

• 8 years of development work to achieve
 > Scalability across multi-core CPUs and multi-10gigE bandwidth
 > Virtualization, QoS, High-availability designed in
 > Exploit advanced NIC features

• Key Enabler for
 > Server and Network Consolidation
 > Open Networking
 > Cloud computing
Crossbow “Hardware Lanes”

Ground-Up Design for multi-core and multi-10GigE

• Linear Scalability using 'Hardware Lanes' with dedicated resources
• Network Virtualization and QoS designed in the stack
• More Efficiency due to 'Dynamic Polling and Packet Chaining'
Hardware Lanes and Dynamic Polling

• Partition the NIC Hardware (Rx/Tx rings, DMA), kernel queues/threads, and CPU to allow creation of “Hardware Lane” which can be assigned to VNICs & Flows

• Use Dynamic Polling on Rx/Tx rings to schedule rate of packet arrival and transmission on a per lane basis

• Effect of dynamic polling

```plaintext
Mpstat (older driver)
intr  ithr  csw  icsw  migr  smtx  srw  syscl  usr  sys  wt  idl
10818  8607  4558  1547  161  1797  289  19112  17  69  0  12

Mpstat (GLDv3 based driver)
intr  ithr  csw  icsw  migr  smtx  srw  syscl  usr  sys  wt  idl
2823  1489  875  151  93  261  1  19825  15  57  0  27
```

~75% Fewer Interrupts ~85% Fewer Ctx Switches ~85% Fewer Mutexes ~15% More CPU Free
Crossbow Virtual NICs (VNICS)

- Pseudo MAC instances
 - Can be managed as if they were physical NICs
 - Per VNICS stats, reuse existing management tools
 - Link speed derived from configured bandwidth limit
 - High-Availability by creating VNICS on link aggregations or combining VNICS in IPMP groups

- Dedicated per-VNIC hardware and kernel resources

- Data path pass-through, no bump in the stack

- Standards based End-to-End Network Virtualization
 - VLAN tags and Priority Flow Control (PFC) assigned to VNIC extend Hardware Lanes to Switch
Crossbow Virtual Switching

- A virtual switch is created implicitly each time >2 VNICs are created on a data link
- The MAC layer provides packet switching semantics equivalent to an ethernet switch
 - Data path between VNICs created on top of the same data link
 - Connectivity between VNICs and physical network
 - Per VLAN broadcast domain, isolation between VLANs
- VNICs can be created on etherstub to create virtual switches independent from hardware
Crossbow Virtual Switching Example

- **non-global zone ng0**
- **non-global zone ng1**
- **Virtual Machine**
- **Virtual Switch**
- **global zone**
- **IP Filter NAT**
- **Solaris host**
- **bge0**

- **vnic0**
- **vnic1**
- **vnic2**
- **vnic3**
Virtual NIC & Virtual Switch Usage

```
# dladm create-vnic -l bge1 vnic1
# dladm create-vnic -l bge1 -m random -p maxbw=100M -p cpus=4,5,6 vnic2
# dladm create-etherstub vswitch1
# dladm show-etherstub
LINK
vswitch1
# dladm create-vnic -l vswitch1 -p maxbw=1000M vnic3
# dladm show-vnic
LINK OVER MACTYPE MACVALUE BANDWIDTH CPUS
vnic1 bge1 factory 0:1:2:3:4:5 - -
vnic2 bge1 random 2:5:6:7:8:9 max=100M 4,5,6
vnic3 vswitch1 random 4:3:4:7:0:1 max=1000M -

# dladm create-vnic -l ixgbe0 -v 1055 -p maxbw=500M -p cpus=1,2 vnic9
```
Physical Wire w/Physical Machines

Client
- Port 6: 20.0.03
- Port 9: 20.0.01
- Port 3: 10.0.03

Switch 3
- 1 Gbps

Router
- Port 9: 20.0.01

Host 1
- Port 1: 10.0.01

Host 2
- Port 2: 10.0.02

Virtual Wire w/Virtual Network Machines

Client
- VNIC6: 20.0.03
- VNIC9: 20.0.01

EtherStub 3
- 1 Gbps

Switch 1
- 100 Mbps

Router (Virtual Router)
- VNIC9: 20.0.01
- VNIC3: 10.0.03

Host 1
- VNIC1: 10.0.01

Host 2
- VNIC2: 10.0.02

EtherStub 1
- 1 Gbps
Virtual Network Machines

- A Virtual Network Machine (VNM) is a Zone or Virtual Machine associated with a set of network functions (routing, firewall, load balancing, etc)
- A VNM has dedicated VNIC(s) with configured link speed, CPUs
- Multiple VNMs can run on a single host, connected through virtual private networks (etherstubs) or to the physical network
- Use for simulation, consolidation, testing, etc
Crossbow Flows

• Crossbow flows based on the following attributes
 > Services (protocol + remote/local ports)
 > Transport (TCP, UDP, SCTP, iSCSI, etc)
 > IP addresses and IP subnets
 > DSCP labels

• The following properties can be set on each flow
 > Bandwidth limits
 > Priorities
 > CPUs

```
# flowadm create-flow -l bge0 protocol=tcp,local_port=443 -p maxbw=50M http-1
# flowadm set-flowprop -l bge0 -p maxbw=100M http-1
```
Join Us...

• Beer @ Crossbow and Solaris Networking BoF
 > Tonight 10:30-11:30pm (Dover A&B)
 > Presentation by Ben Rockwood (Joyent)
 > vWire demo and deep-dive discussions

• OpenSolaris project and community
 > http://www.opensolaris.org/os/project/crossbow
 > crossbow-discuss@opensolaris.org
 > networking-discuss@opensolaris.org
Crossbow Virtual Wire: Network In a Box

Nicolas Droux
nicolas.droux@sun.com
Solaris Kernel Networking