

Crossbow Virtual Wire: Network In a Box

Sunay Tripathi, Nicolas Droux, Kais Belgaied, Shrikrishna Khare

November 5th, 2009 USENIX LISA 09, Baltimore, MD

Nicolas Droux, Senior Staff Engineer Solaris Kernel Networking, Sun Microsystems Inc. nicolas.droux@sun.com

Key Issues in Network Virtualization

- Fair or Policy based resource sharing in virtualized environments
 - > Bandwidth
 - > NIC Hardware resources including Rx/Tx descriptors
 - > Processing CPUs
- Overheads due to Virtualization
 - > Latency, Throughput
- Management
 - > Isolation between distributed applications
 - > Network fabric configuration
- Security
 - > New threats to L2 network
- Where to solve the problem?
 - > Switches
 - > L3/L4 devices
 - > Hosts

www.opensolaris.org/os/project/crossbow

Crossbow: Solaris Networking Stack

- 8 years of development work to achieve
 - Scalability across multi-core CPUs and multi-10gigE bandwidth
 - > Virtualization, QoS, High-availability designed in
 - > Exploit advanced NIC features
- Key Enabler for
 - Server and Network Consolidation
 - > Open Networking
 - > Cloud computing

Crossbow "Hardware Lanes"

Ground-Up Design for multi-core and multi-10GigE

- Linear Scalability using 'Hardware Lanes' with dedicated resources
- Network Virtualization and QoS designed in the stack
- More Efficiency due to 'Dynamic Polling and Packet Chaining'

Hardware Lanes and Dynamic Polling

- Partition the NIC Hardware (Rx/Tx rings, DMA), kernel queues/threads, and CPU to allow creation of "Hardware Lane" which can be assigned to VNICs & Flows
- Use Dynamic Polling on Rx/Tx rings to schedule rate of packet arrival and transmission on a per lane basis
- Effect of dynamic polling

www.opensolaris.org/os/project/crossbow

Crossbow Virtual NICs (VNICs)

- Pseudo MAC instances
 - > Can be managed as if they were physical NICs
 - > Per VNICs stats, reuse existing management tools
 - > Link speed derived from configured bandwidth limit
 - > High-Availability by creating VNICs on link aggregations or combining VNICs in IPMP groups
- Dedicated per-VNIC hardware and kernel resources
- Data path pass-through, no bump in the stack
- Standards based End-to-End Network Virtualization
 - > VLAN tags and Priority Flow Control (PFC) assigned to VNIC extend Hardware Lanes to Switch

Crossbow Virtual Switching

- A virtual switch is created implicitly each time >2 VNICs are created on a data link
- The MAC layer provides packet switching semantics equivalent to an ethernet switch
 - > Data path between VNICs created on top of the same data link
 - > Connectivity between VNICs and physical network
 - > Per VLAN broadcast domain, isolation between VLANs
- VNICs can be created on etherstub to create virtual switches independent from hardware

Crossbow Virtual Switching Example

Virtual NIC & Virtual Switch Usage

•	Terminal				
<pre># dladm create-vnic -l bge1 vnic1 # dladm create-vnic -l bge1 -m random -p maxbw=100M -p cpus=4,5,6 vnic2 # dladm create-etherstub vswitch1 # dladm show-etherstub</pre>					
vswitch1					
# dladm	- create-vnic	-l vswitch	n1 -p maxbw=1000	M vnic3	
# dladm	show-vnic		_		
LINK	OVER	MACTYPE	MACVALUE	BANDWIDTH	CPUS
vnic1	bge1	factory	0:1:2:3:4:5	-	-
vnic2	bge1	random	2:5:6:7:8:9	max=100M	4,5,6
vnic3	vswitch1	random	4:3:4:7:0:1	max=1000M	-
# dladm	create-vnic	-l ixgbe0	-v 1055 -p maxb	w=500M -р сриз	s=1,2 vnic9

Physical Wire w/Physical Machines

Virtual Wire w/Virtual Network Machines

Virtual Network Machines

- A Virtual Network Machine (VNM) is a Zone or Virtual Machine associated with a set of network functions (routing, firewall, load balancing, etc)
- A VNM has dedicated VNIC(s) with configured link speed, CPUs
- Multiple VNMs can run on a single host, connected through virtual private networks (etherstubs) or to the physical network
- Use for simulation, consolidation, testing, etc

Crossbow Flows

• Crossbow flows based on the following attributes

- > Services (protocol + remote/local ports)
- > Transport (TCP, UDP, SCTP, iSCSI, etc)
- > IP addresses and IP subnets
- > DSCP labels

• The following properties can be set on each flow

- > Bandwidth limits
- > Priorities
- > CPUs

Join Us...

- Beer @ Crossbow and Solaris Networking BoF
 - > Tonight 10:30-11:30pm (Dover A&B)
 - > Presentation by Ben Rockwood (Joyent)
 - > vWire demo and deep-dive discussions
- OpenSolaris project and community
 - http://www.opensolaris.org/os/project/crossbow
 - > crossbow-discuss@opensolaris.org
 - > networking-discuss@opensolaris.org

Crossbow Virtual Wire: Network In a Box

Nicolas Droux nicolas.droux@sun.com Solaris Kernel Networking

