DELAY / DISRUPTION TOLERANT NETWORKING

Axes of scale

Dr. Keith Scott
keithlscott@gmail.com

The views, opinions, and/or findings contained in this article/presentation are those of the author/presenter and should not be interpreted as representing the official views or policies, either expressed or implied, of the Defense Advanced Research Projects Agency or the Department of Defense.
Outline

- History and motivation
 - Interplanetary Internet
 - Large distances
 - Intermittent (but generally scheduled) and expensive connectivity
 - No end-to-end data path

- DTN Approach
 - Store-and-forward on (large) time scales
 - Naming and routing when DNS resolves take 10 minutes
 - Protocol mechanisms (including security)
 - DTN and content-based networking

- Future Directions
 - Large scale in terms of numbers
 - What if every access point were a MANET point-of-presence?
Interplanetary Internet

- End-to-end information flow across the solar system
- “IP-like” protocol suite tailored to operate over long round trip light times
- Layered open architecture supports evolution and international interoperability
Scaling in Distance: One-Way Light Times*

- Sun: ~8 minutes
- Earth-Mars (conjunction): 4 minutes
- Earth-Mars (opposition): 20 minutes
- Moon: ~1.28 light seconds
- Geostationary Satellite: ~1/8 light-second
- Trans-continental fiber: ~70 ms

*Absolutely NOTHING to scale
Delay Causes Disruption

- Stock TCP implementations fall off quickly with distance

\[
BW < \left(\frac{MSS}{RTT} \right)^{\frac{1}{\sqrt{p}}}
\]
Scaling in Time: Intermittent Connectivity

- Mars Exploration Rovers return ~98% of their data via orbiting relays
 - Orbiter – Lander connectivity
 - ~4 passes per day; 6 – 15 minutes per pass
 - Orbiter – Earth connectivity
 - 1 or 2 2-4 hour tracking passes per day
- No end-to-end connectivity
- Round-Trip time may be measured in HOURS
Disruption Causes Delay

- Intermittent Connectivity + Store-and-Forward = Delay
Why Delay / Disruption Tolerance?

- There are a number of *inherent assumptions* in the Internet architecture and protocol implementations that break under long delays / intermittent connectivity:
 - There’s always an end-to-end path
 - Round trips are cheap
 - Retransmissions from the source are a good way to provide reliability
 - End-to-end loss is relatively small
 - Endpoint-based security meets most security concerns

- Environments exhibiting some / all of these characteristics:
 - Space communications (high latencies, intermittent connectivity due to view periods / antenna schedules)
 - Sensor networks (nodes powered down much of the time to conserve energy)
 - Tactical communications (line-of-sight radios, intermittent SATCOM, urban/wooded environments, jamming, ...)
 - Mobile networks
First Round Conclusions

- Deploy “standard” internets in low latency environments
- Bridge high latency environments with an IPN Backbone
- Create gateways and relays to interface between low- and high-latency environments
- Construct a network of internets
 - Bundle Layer: A layer that bridges internets, providing end-to-endedness
Store-And-Forward Delivery

End-to-end (IP): Must wait for complete path

Store-and-Forward (DTN): Incremental progress w/o end-to-end path

DTN Can Reduce Delay and Increase Throughput

Distribution Statement A: Approved for Public Release, Distribution Unlimited
Bundle Space

Bundle space supports end-to-end transfer across IPN domains and/or heterogeneous network protocol stacks.
DTN’s Derived Design Rules

 Don’t plow the same ground twice – hold the gains you’ve achieved
 Don’t engage in unnecessary chit-chat – build complete transactions and make network accesses count
 Don’t depend on information from inaccessible / remote places if you can avoid it – build a sequence of local control operations and use late binding
 Don’t force homogeneity – allow different network components to use environmentally-relevant optimizations
Naming in the Bundle Protocol

- Bundle Protocol endpoints (applications) are identified by *name*
 - Intent was to allow *progressive binding* of names to actual nodes while a bundle is in transit
 - Derived from interplanetary internet notion of ‘Regions’
 - “I don’t know where *www.example.com* is, but it’s on Earth, go that way.” (but without resolving to a destination IP address)

- Bundle Protocol names are URIs...
BP Name Examples

- dtn://mymachine/ping
- dtn://marsOrbiter8/instrument2/thermister4

- dtn://sensornet_mojave?tempValue>20c
 - All sensors in the sensor network with current readings > 20 degrees c?

- dtn://I495cars?speed<20mph
 - All cars on I495?
More BP Name Examples

- dtn:flood:sql:batterylevel<0.25
- dtn:flood:sql:police_1000m_<LATLON>_haveK9

- dtn:pop:mailto:keithlscott@gmail.com
 - Route the bundle until it makes sense to email it (as the content of a MIME attachment?)

Routing

- IP routing builds a picture of what the network looks like *right now* and uses that picture to forward packets
 - Part of why mobility is an issue
- Because DTN can store bundles at intermediate nodes, it can route taking *time* into account
 - Route *this* way because there *will be* connectivity there later
Routing in DTNs

- Ports of Internet routing protocols (Distance-Vector and Link-State)
 - Expedient, and can be extended to include some resilience to network partitioning
- Probabilistic routing
 - Usually applied to probabilistic nodes (e.g. zebras)
- Scheduled routing
 - Take advantage of a known schedule to route according to what the network will look like later
 - Spacecraft
 - Some aircraft
- Database-name, query-like support...?
FAPH: DTN Enables OTM-to-OTM Comms and Reliably Delivers Data

Dynamic Routing Alone Can’t Exploit Future Connections – DTN Enhances Dynamic Routing with Storage for Delivery over Disconnected Paths

DTN Delivers:
1. Along direct paths when they exist
2a. To advantaged nodes (custodians) when no direct path exists
2b. Custodians deliver data when destination becomes reachable

Original sender need not be connected to complete delivery!

DTN routing uses ‘advantaged’ locations (e.g. BN) for temporary data storage
Off-shortest-path storage makes reliable delivery possible

DTN Routing & Storage Deliver All Messages that Live Across Link Outages

1. When OTM1 & OTM2 are both connected, data is transferred directly

2a. When OTM2 is disconnected, DTN routes data to BN for storage and later delivery to OTM2

2b. When OTM2 is reconnected, data stored at BN is delivered, even if OTM1 is disconnected
Protocol Mechanisms

- Bundles composed of collections of ‘blocks’
- Per-bundle and per-block processing directives
 - Replicate block in each fragment
 - Discard bundle if can’t process block
- Status reporting flags
 - Report on [receipt, custody, transmit]
 - Separate ‘report-to’ address
Support for Content-Based Naming and Addressing

- URI-based naming
- Metadata blocks can identify content
 - Could be used to implement ‘network as a database’
 - Can be encrypted separately from the payload
- Can serve as input to routing
 - Routing ‘hints’ so that every node doesn’t have to do a full routing lookup
Security: Prevent Unauthorized Resource Utilization

- **Bundle Authentication Block (BAB)** provides hop-by-hop authentication and integrity protection for the bundle between adjacent bundle nodes.
- Protects against unauthorized use by enabling bogus or modified bundles to be detected and discarded at the first node at which they are received.
- Each node needs only keys to interact with adjacent nodes.
- Minimizes dependencies on a key server, which may be many hops away.
"E2E" Integrity and Confidentiality

- **Payload Integrity Block (PIB)** provides “end-to-end” authentication and integrity on the non-mutable parts of the bundle between any source and destination nodes
- **Payload Confidentiality Block (PCB)** provides “end-to-end” encryption on the payload (and perhaps other parts of the bundle) between any source and destination nodes
- **Extension Security Block (ESB)** provides “end-to-end” encryption and integrity (depending on ciphersuite) of an extension block between any source and destination nodes
Supporting Applications

1. Native DTN Applications

2. Application Layer Gateways

3. Tunnel Network Through DTN

Distribution Statement A: Approved for Public Release, Distribution Unlimited
Example: DTN-Web Proxy

- **Web Client**
 - Request Page
 - Confirm Request
 - Deliver Pages

- **DTN-Web Proxy**
 - Send request bundle
 - Populate cache with bundle

- **Disrupted Network**
 - Aggregated and compressed pages in bundle

- **Connected Network**
 - Get Pages
 - Standard HTTP
DTN Deployments

- NASA
 - Experiments on the International Space Station
 - Deep Impact Networking Flight Experiment
- University / Experimental
 - DieselNet
- Connectivity to ‘disadvantaged’ users
 - Sami community
Scaling in Number: A Sea of Connectivity

Every access point a POP for a (possibly intermittently-connected) MANET
- Vehicular networks
- Handhelds
Challenges to Scaling in Number

- **Naming**
 - How far can we push the URI-based name scheme? Can metadata ‘hints’ (or something else) extend that?

- **Routing**
 - Knowing how to appropriately address
 - Reachable now
 - Used to be reachable via this path but not there now
 - Scheduled to be reachable via some path in the future

- **Connectivity**
 - Difference between ‘not connected now’ and ‘not coming back’
 - What can be served by the infrastructure and what can’t?

- **Culture**
 - “Wait, MY phone is routing YOUR data?”
Thanks

- DARPA
- DTNRG
- MITRE
- NASA