EVA
Evolutionary Vulnerability Analyzer
A Framework for Network Analysis and Risk Assessment
• Introduction
• Attack Graphs
 – Model
 – Creation
• Analysis of Attack Graphs
 – Evolutionary Method
 – Modes of Analysis
• Experimental Results
• Problem: Vulnerability scanners limited
 – Only evaluates individual machines
 – Cannot show how vulnerabilities relate
• Example: “Foothold” situation
 – Attacker compromises machine A
 – Machine A has private communication channel with machine B
 – Attacker uses machine A to attack machine B
Solution: Attack graphs

- Visual representation of exploits paths
• Benefits of analyzing attack graphs
 – Find a set of hardening measures
 – Perform “what if” evaluations
 – Assist with network design
 – Guide forensics evaluation
 – Detect multi-stage attacks from IDS alerts
Attack Graphs

Model
• Nodes of the graph
 – Initial nodes represent the present state of the network
 – Interior and terminal nodes represent states the attacker has achieved

• Edges of the graph
 – Attacks executed by attacker
 – Represented visually as a diamond “node”
• Exploit path is sequence from initial nodes to a terminal node
• Discovers exploit paths through attack template “requires/provides” syntax
 – Templates have preconditions (requirements) and postconditions (consequences)
 – Postcondition of one attack may be a precondition for another attack
 – Path is sequence of such relationships
SSH Attack Template

- **Preconditions**
 - Target has **SSH** vuln
 - Priv source >= user
 - Priv target < root
 - Source can connect to target on port **22**

- **Postcondition**
 - Attacker has priv root on target

IIS Attack Template

- **Preconditions**
 - Target has **IIS** vuln
 - Priv source >= user
 - Priv target < root
 - Source can connect to target on port **80**

- **Postcondition**
 - Attacker has priv root on target
Abstract exploit templates eliminate most redundancy

Currently models
- Privilege escalation
- Password guessing
- Information leaks
- Altering firewall and router rules

R2R Attack Template

Preconditions
- Target has R2R vuln
- Priv source >= user
- Priv target < root
- Source can connect to target on port r2r

Postcondition
- Attacker has priv root on target
Attack Graphs

Generation
• **Input data**
 - List of vulnerabilities present on all machines
 - Model of firewall and router rules

• **Attacker model**
 - Assumes a single attacker for each graph
 - Initial privileges attacker has on all machines
 - Additional “attacker” machines
 - Can model insider and outsider scenarios
● Preprocessing
 - Convert all vulnerabilities and port numbers to abstract model
 - Cluster identical machines
 • Must have same vulnerabilities AND connectivity
 • Less work for the generator

● Generation
 - Use expert system to discover all possible exploit paths
• Outputs graph as data file and visualized graph
• Visual complexity can rise quickly

Attack graph for network with 15 hosts:
Analysis of Attack Graphs

Evolutionary Method

Dr. Melissa Danforth
Department of Computer Science
California State University, Bakersfield
• Goal: Prevent attacker from achieving certain resources (“goal nodes”) in graph

• Evolutionary Method
 – Computationally infeasible to brute force
 – Start with random solutions
 • Solution varies with analysis mode
 – Use genetic algorithm to refine solutions
 • Guided search of solution space
 – Flexible and allows multiple solutions
Example: Find a set of patches

- Initial solutions are random subset of patches
- Applies patches to graph and sees how well the patches disconnect the goal nodes
- Assign a fitness metric
- Select solutions with best fitness
- “Breed” them to create next generation
- Repeat
• Assessing fitness is most CPU intensive task
• Must apply each hardening measure and cascade its effects throughout the graph
• Over 60% of the single-threaded application CPU time was spent in this function
• Switched this task to multi-threaded function
 – Each has its own copy of the attack graph
 – Memory is cheap, time is not (usually)
• Fitness metric measures benefit of solution and cost of solution
 – Affected by mode of analysis and policy
• Policy model allows defaults specified by mode to be overridden
 – Can override both costs and benefits for specific cases or general cases
 – Can have a different policy for different modes of analysis
Analysis of Attack Graphs

Modes of Analysis
• Find set of hardening measures
 – Prevent attacker from reaching resources by patching machines, applying new firewall or router rules and/or placing IDS sensors
 – Can also be run in “patch only” mode
 – Solution is a proposed set of measures
 – Fitness metric based on cost for measures in set and how well they disconnect the attacker from the goal nodes
• Strategic Planning
 – Assess unknown risks by asking “what if”
 – Affects the generation of the attack graph
 – Alter the vulnerability list or firewall/router rules to reflect the scenario
 – Generate an attack graph for the scenario
 – Analyze resulting graph using any other mode
• Network Design – Simple mode
 – Administrator designs several different sets of firewall and/or router rules for the network
 – Attack graph is generated for each design
 – Risk metric is calculated based on how well connected the goal nodes are to the graph
 – Design with lowest risk metric is selected

• Simple mode is not very interesting
 – Just a variation on strategic planning
• Network Design – Evolutionary Mode
 - Administrator gives a single prototype design
 - Evolutionary analysis seeks improvements
 - Solutions alter firewall/router rules or place IDS sensors
 - Fitness metric based on how well goal nodes are disconnected or watched
 - Outputs several designs that minimize both risk and cost
• Forensic Evaluation and IDS Alerts
 – Match forensic evidence and/or IDS alerts to nodes in graph
 – Detect exploit paths in use by attacker
 – Forensic evaluation – Guides analyst by highlighting other resources the attacker may have compromised
 – IDS alerts – Integrate with intrusion response or activate additional monitoring
Experimental Results

CSU Bakersfield
Computer Science Department
Instructional Laboratory Network

Dr. Melissa Danforth
Department of Computer Science
California State University, Bakersfield
• **Base Configuration Scenario**
 - Attacker is an outsider

• **Strategic Planning Scenarios**
 - Student visits a malicious website with a vulnerable version of Firefox
 - A malicious student attacks the network from one of the instructional lab machines
 - An instructor brings in a compromised laptop and plugs it into the LAN
• Base Configuration Original Graph
• Base Configuration Patched Graph
• Vulnerable Browser Original Graph
• Vulnerable Browser Patched Graph
• Malicious Student Original Graph
• Malicious Student Patched Graph
- Rogue Laptop Original Graph
● Rogue Laptop Patched Graph
• Rogue Laptop Redesigned Network Graph
• Scalability Testing
 - Generated networks with 5 to 2500 machines
 - Largest network took 1.5 hours to analyze on a quad-core Xeon 2.33GHz system
 - Smallest network took approximately 1 second
 - Larger networks have more complex attack graphs, so they take longer to analyze even with clustering and abstract exploit templates
Future Work
• Automate remaining “by hand” processes
 – Importing firewall and router rules
 – Translating Nessus plugin IDs to abstract exploit class names
• Allow multiple attacks in attacker model
• Implement IDS correlation mode
• Improve visualization of the graphs
• Create a cohesive GUI to tie all parts together
Questions?

Students on this project:
Jonathan Berling
Fred McHale
John Millikin
Nick Toothman