
SEEdit: SELinux Security Policy Configuration System with Higher Level

Language

Yuichi Nakamura

Hitachi Software Engineering Co., Ltd.

ynakam@hitachisoft.jp

Yoshiki Sameshima

Hitachi Software Engineering Co., Ltd.

same@hitachisoft.jp

Toshihiro Tabata

Okayama University

tabata@cs.okayama-u.ac.jp

Abstract

Security policy for SELinux is usually created by cus-

tomizing a sample policy called refpolicy. However,

describing and verifying security policy configurations

is difficult because in refpolicy, there are more than

100,000 lines of configurations, thousands of elements

such as permissions, macros and labels. The memory

footprint of refpolicy which is around 5MB, is also a

problem for resource constrained devices.

We propose a security policy configuration system

SEEdit which facilitates creating security policy by a

higher level language called SPDL and SPDL tools.

SPDL reduces the number of permissions by integrated

permissions and removes label configurations. SPDL

tools generate security policy configurations from access

logs and tool user’s knowledge about applications. Ex-

perimental results on an embedded system and a PC sys-

tem show that practical security policies are created by

SEEdit, i.e., describing configurations is semiautomated,

created security policies are composed of less than 500

lines of configurations, 100 configuration elements, and

the memory footprint in the embedded system is less than

500KB.

Tags: security, security policy, configuration, SELinux

1 Introduction

Attackers can do everything in traditional Linux when

they obtain the almighty root privilege by exploiting se-

curity holes in services running as root, or by exploiting

vulnerabilities leading to privilege escalation[3][4]. To

restrict such behavior of root, Security-Enhanced Linux

(SELinux)[1][2] has mandatory access control feature;

all processes including root processes can access re-

sources only when a security policy permits the access.

The mandatory access control model is called TE (Type-

Enforcement)[5]. In TE, processes are assigned domain

labels, and resources such as files and ports are assigned

type labels, and what kind of domain can access what

kind of type is described in a security policy. If the

security policy is properly configured, all processes in-

cluding root, attackers processes and viruses have only

limited access rights. As a result, the damage by at-

tackers and viruses is confined. Because of this con-

finement feature, SELinux is included in major Linux

distributions[6], and is used for servers that require high

level security. SELinux is also useful for network con-

nected embedded devices such as cell phones and TVs.

Actually, some Linux distributions for embedded system

include SELinux[7].

To deploy SELinux to a system, a security policy must

be created. The security policy is usually created by

customizing a sample policy called refpolicy (Reference

Policy)[8][9]. Refpolicy can be applied with almost no

customization when configurations for applications in a

target system are included in refpolicy. For example, ref-

policy is almost perfectly configured for default appli-

cations included in Fedora and CentOS. However, cus-

tomizing refpolicy is required for systems where refpol-

icy is not configured enough, such as embedded sys-

tems and systems where commercial applications are de-

ployed.

There are three problems in the customization. First,

it is difficult to describe configurations because there are

more than 700 permissions and 1,000 macros. In addi-

tion, type labels must be associated with file names and

network resources. Second, it is difficult to verify refpol-

icy. Since refpolicy is intended for multiple use cases,

many configurations, more than 100,000 lines, are in-

cluded. When engineers verify refpolicy before reuse,

they have to review such a lot of configurations. Third is

a problem of resource consumption. When SELinux is

applied to resource constrained systems such as embed-

ded systems, the files used and memory consumed by the

security policy are a problem because refpolicy is large.

This paper proposes a security policy configuration

system SELinux Policy Editor (SEEdit) that facilitates

creating security policy by a higher level language called

Simplified Policy Description Language (SPDL) and

SPDL tools.

• SPDL
Instead of complicated macros, we propose a higher

level language called SPDL. SPDL simplifies de-

scribing and verifying SELinux security policy con-

figurations with two features. Firstly, integrated

permissions in SPDL reduce the number of per-

missions by grouping related SELinux permissions.

Secondly, it removes type configurations by identi-

fying resources with names such as path name and

port number.

• SPDL tools
To solve the verification and size problems of ref-

policy, the security policy is created by writing only

the necessary configurations in SPDL without ref-

policy. SPDL tools help the writing process by gen-

erating configurations using access logs and knowl-

edge of users about applications.

The remaining of this paper is organized as follows.

Problems in creating security policy (section 2), ap-

proaches of SEEdit to facilitate creating security policy

(section 3) are explained. The detail of SEEdit (section

4), experimental results (section 5) are shown. Finally,

related works (section 6), summary (section 7) and fu-

ture works (section 8) are described.

2 Problems in creating security policy

In this section, problems in creating a security policy for

a target system based on refpolicy are described after an

overview of SELinux policy language and refpolicy.

2.1 SELinux policy language

The security policy is loaded to SELinux kernel in binary

representation. However, it is hard to handle the binary

security policy because it is unreadable for humans. To

represent the security policy in text, SELinux has a basic

policy language[10], which is mainly composed of the

following four syntax elements.

(1) Assigning types

In SELinux, type labels must be assigned to re-

sources to identify them. For example, the follow-

ing statement is written to assign types to files.

<file name> system u:object r:<type>

Similar statements are used to assign types to net-

work resources such as port numbers and NICs.

(2) Label declaration

Domains and types must be declared by type state-

ments as shown below.

type <type or domain>,<attribute>;

<attribute> is used to inherit configurations which
are described for <attribute>. For example, in the
following statements, admin t can read both http-
content t and ftpcontent t.

type httpcontent_t, content;

type ftpcontent_t, content;

allow admin_t content:file read;

(3) Allowing access

The allow statement permits a domain to access a

type as in the following syntax.

allow <domain> <type> <permission>;

<permission> is composed of object classes and

access vector permissions. Object class means clas-

sification of resources such as file (normal file), dir

(directory) and tcp socket (TCP socket). For each

object class, access vector permissions such as read

and write are defined. For example, permission file

read means reading normal files, dir read means

reading directories.

(4) Conditional policy expression

To support multiple use cases in one security policy,

SELinux policy language has conditional policy ex-

pressions as follows.

if(<parameter>){<statement>}

When <parameter> is true, then <statement> is

enabled. For example, when CGI is necessary, the

parameter httpd enable cgi is set true, and then ac-

cesses related to using CGI are permitted. Change

of such parameters are appliedwithout reloading se-

curity policy, because<statement> is embedded in

the security policy.

2.2 Overview of refpolicy

To grant enough permissions for applications to work

correctly, a lot of access rules should be described. In

fact, the total number of access rules in a system of-

ten becomes more than 10,000, and sometimes exceeds

100,000. Therefore, it is not realistic to create security

policy by writing configurations in SELinux policy lan-

guage from nothing. To facilitate creating security pol-

icy, a sample policy called refpolicy is developed and

2

maintained by the SELinux community. Refpolicy is

composed of macros and configurations for typical ap-

plications.

(1) Macros
M4[11] macros are defined to describe frequently
used phrases in short words. Below is an example.

allow httpd_t contents_t r_file_perms;

define(‘r_file_perms’,‘file { read

getattr lock ioctl }’)

r file perms is a macro, which is expanded to per-

missions related to reading regular files.

(2) Configurations for typical applications

Configurations for applications shipped with Linux

distributions are prepared by the SELinux commu-

nity and Linux distributors, and they are included in

refpolicy. Figure 1 is part of the configuration for

the http daemon. There are many macros, such as

init daemon domain, apache content template and

so on. In the figure, conditional expressions are

omitted, but in fact, many conditional expressions

are also included because refpolicy is intended to

support as many use cases as possible, such as CGI,

PHP and DB connection.

2.3 Problems in creating security policy us-

ing refpolicy

Customizing refpolicy is necessary when the use case of

the system or its installed applications are beyond the ex-

pectations of refpolicy. For example, embedded systems

and commercial applications are not within the scope

of refpolicy. However, there are three problems in cus-

tomizing refpolicy. One is the difficulty in describing

configurations, second is the difficulty of verifying ref-

policy and third is resource consumption.

2.3.1 Difficulty in describing configurations

The major difficulty in describing configurations is com-

plicated configuration elements such as permissions,

macros and types. The main reason of difficulty is the

number of configuration elements. For example, there

are more than 700 permissions and more than 1,000

macros and 1,000 types. In addition, nested macro defi-

nitions make understanding macros harder.

There are two more difficulties in types. First, en-

gineers have to get used to types because in traditional

Linux, they have been identifying files by file names not

types. Secondly, there is also a problem of dependency in

assigning new types. This problem is explained with an

example. When the foo t type is assigned under /foo di-

rectory and the bar t domain is allowed to read the foo t

Assign httpd_t domain to http daemon

1 type httpd_t;

2 type httpd_exec_t;

3 role system_r types httpd_t;

4 init_daemon_domain(httpd_t,httpd_exec_t)

5 /usr/sbin/httpd -- gen_context(system_u

:object_r:httpd_exec_t,s0)

Permit httpd_t to read /var/www

6 apache_content_template(sys)

7 /var/www(/.*)? gen_context(system_u

:object_r:httpd_sys_content_t,s0)

8 allow httpd_t httpd_sys_content_t:dir

list_dir_perms;

9 read_files_pattern(httpd_t,httpd_sys_

content_t,httpd_sys_content_t)

10 read_lnk_files_pattern(httpd_t,httpd_

sys_content_t,httpd_sys_content_t)

Permit httpd_t to wait connection on

tcp port 80

11 corenet_all_recvfrom_unlabeled(httpd_t)

12 corenet_all_recvfrom_netlabel(httpd_t)

13 corenet_tcp_sendrecv_all_if(httpd_t)

14 corenet_udp_sendrecv_all_if(httpd_t)

15 corenet_tcp_sendrecv_all_nodes(httpd_t)

16 corenet_udp_sendrecv_all_nodes(httpd_t)

17 corenet_tcp_sendrecv_all_ports(httpd_t)

18 corenet_udp_sendrecv_all_ports(httpd_t)

19 corenet_tcp_bind_all_nodes(httpd_t)

20 corenet_tcp_bind_http_port(httpd_t)

21 gen_context(system_u:object_r:http_port

_t,s0)

Figure 1: Part of the configuration for the http daemon in

refpolicy

type, the bar t domain can read all files under the /foo

directory. Next, if the foo2 t type is newly created, and

assigned to the file /foo/foo2. the bar t domain can not

access /foo/foo2 because the bar t domain is not allowed

to access foo2 t. In this way, the bar t domain was able

to read /foo/foo2 before assigning the new type foo2 t,

but bar t can not access /foo/foo2 after the new type is

assigned to /foo/foo2.

2.3.2 Difficulty in verifying refpolicy

For the purpose of Quality Assurance for a security pol-

icy which is created based on refpolicy, refpolicy should

be verified. In this context, verifymeans understand what

is configured, then find misconfigurations and modify

them. However, it is difficult to verify because of the

complexity of the configuration elements as stated be-

fore. In addition, the following points make verification

more difficult.

• Amount of configurations

3

The size of refpolicy makes verification more dif-

ficult. For example, refpolicy included in Fe-

dora 9 has configurations for almost all applica-

tions shipped with Fedora 9 and is composed of

more than 2,000 types and more than 150,000 ac-

cess rules.

• Conditional expressions
Many conditional expressions are embedded in ref-

policy, and they are sometimes included in macro

definitions . Thus, it is difficult to figure out which

configurations are enabled.

• Attributes
Attributes are often used for types and they increase

the time necessary to understand what configura-

tions mean, as shown in the next example. The line

allow httpd t httpdcontent:file read; is included in

refpolicy. httpd t is a domain for the apache dae-

mon, and httpdcontent is an attribute. To understand

what kind of files httpd t can access from the line,

types that have the httpdcontent attribute have to be

found by searching for type declaration statements,

which are sometimes embedded in macro defini-

tions.

2.3.3 Resource consumption

A security policy is saved as files in storage, then it is

loaded to RAM at system boot. Therefore, the secu-

rity policy consumes storage and RAM. Since refpolicy

is intended for multiple use cases, many conditional ex-

pressions and configurations for many applications are

included. As a result, the size of refpolicy becomes large.

For example the refpolicy included in Fedora Core 6

consumes 1.4MB storage and 5.4MB RAM. In resource

constrained systems such as embedded systems, this is a

problem because they often have less than 64MB RAM

and storage.

3 Approach to creating security policy

We propose a security policy configuration system

SEEdit, which facilitates describing configurations, veri-

fying a created security policy and creating a small secu-

rity policy. The idea of the proposed system is explained

in this section.

3.1 Higher level language: SPDL

The difficulty in describing configurations is caused by

the large number of permissions, complicated macros

and type configurations. Sophisticated macros can partly

solve such problems, i.e., creating a small number of

1 {

Assign httpd_t domain to http daemon

2 domain httpd_t;

3 program /usr/sbin/httpd;

Permit httpd_t to read /var/www

4 allow /var/www/** s,r;

Permit httpd_t to wait connection on

tcp port 80

5 allowcom -protocol tcp -port 80 server;

6 }

Figure 2: A configuration example of SPDL for http dae-

mon.

macros and removing nested macro definitions. How-

ever, type configurations are still necessary in such

macros. Instead of macros, we propose a higher level

language SPDL on top of SELinux policy language.

SPDL aims to reduce the number of configuration ele-

ments by integrated permissions where related SELinux

permissions are grouped. In addition, SPDL removes

type configurations by identifying resources with their

names. An example of configuration by SPDL is shown

in Figure 2. The configured access rules are almost the

same as Figure 1, but SPDL is simpler. Permissions re-

lated to reading files and directories are merged to inte-

grated permission r and permissions to wait for connec-

tion on ports are merged to server. Additionally, names

such as /var/www and port 80 are used to identify re-

sources and assigning types to resources is not neces-

sary. To apply SPDL configurations, the SPDL converter

translates these configurations to SELinux policy lan-

guage, i.e. SPDL converter generates the necessary type

configurations, and expands integrated permissions to re-

lated SELinux permissions.

The difficulty in verifying refpolicy is caused by two

factors. First is the complicated configuration elements

such as macros, permissions, attributes and conditional

expressions. This complexity is solved by SPDL. Second

is that many lines of configurations for access rules for

applications not installed in the system and for rules dis-

abled by conditional expressions are included. Our ap-

proach to solve the problem of many configuration lines

is to describe only necessary configurations by SPDL

without refpolicy, i.e. write configurations only for ap-

plications installed in the target system. Since neither

conditional configurations nor configurations for unused

applications are included, the number of configuration

lines are expected to be reduced. This also contributes to

reducing resource usage by the security policy.

4

Figure 3: Typical process of creating a security policy

3.2 SPDL tools

In order to support writing configurations by SPDL with-

out refpolicy, we propose SPDL tools composed of tem-

plate generator and allow generator. SPDL tools aim

to reduce the number of configurations written by hand

during the process of creating a security policy.

Figure 3 shows a typical process of creating a security

policy and this process is iterated for each target applica-

tions. (1) Configurations to assign a domain to a target

application are described as in Figure 2 lines 2 and 3. (2)

In order to figure out what kind of access rules should be

described, access logs are obtained by running the target

application. (3) Access rules are described using the ac-

cess logs. For example, when an access log entry shows

foo t domain read accessed filename bar then an access

rule that allows foo t to read bar is described. (4) Run

the application again and see whether it works correctly.

If the application does not work correctly, run the ap-

plication again and add configuration elements until the

application works correctly.

Allow generator supports writing configurations al-

lowing access in Figure 3 step (3). We adopt an ap-

proach of audit2allow[12] to automate describing config-

urations, i.e. generate configurations that allow accesses

appearing in access logs.

Template generator outputs configurations in figure 3

step (1) by using configurations typical to application

categories. For example, most daemon programs require

access rights to create temporary files under /var/run and

communicate with syslog. To produce more configura-

Figure 4: The architecture of SEEdit

tions, template generator uses the knowledge of the tool

user about the target application, such as what kind of

files and network resources the application accesses.

4 Design and implementation of SEEdit

We designed and implemented SEEdit following the ap-

proaches discussed in the previous section. SEEdit is

composed of SPDL tools and SPDL converter as shown

in Figure 4. The security policy written in SPDL, called

simplified policy, is created by a text editor or SPDL

tools composed of allow generator and template gener-

ator. SPDL converter generates the security policy writ-

ten in SELinux policy language from simplified policy.

The design of SPDL and the implementation of SPDL

converter and SPDL tools are described in the following

subsections.

4.1 Design of SPDL

The main features of SPDL are integrated permissions to

reduce the number of permissions, and configurations us-

ing resource names to remove type configurations. SPDL

also has an include statement to reduce the number of

lines. The detail is explained in this section.

4.1.1 Integrated permissions

While integrated permissions reduce the number of per-

missions by grouping permissions, permissions impor-

tant for security should be kept. In order to include

such important permissions, integrated permissions are

designed from the viewpoint of protectiong the confiden-

tiality, integrity and availability of a target system. Com-

promising confidentiality happens when an unexpected

information goes out, and compromising integrity hap-

pens when an unexpected information comes into the

5

system. Thus, permissions related to input and out-

put to files, network resources and IPCs have to be in-

cluded in integrated permissions. The other permissions

are privileges which can be abused to compromise avail-

ability and to facilitate attacks. For example, setrlimit

permission that controls the resource usage limit of pro-

cesses can lead to compromised availability. cap insmod

permission can result in installation of malicious kernel

modules. Therefore, privileges have to be included in

integrated permissions. The detail of integrated permis-

sions are shown as follows.

(1) Integrated permissions for files

Integrated permissions for files are taken from pre-

vious research by Yamaguchi et.al[13] because they

are designed to control input and output to files

and directories. The integrated permissions are, r

(read), x (execute), s (list directory), o (overwrite),

t (change attribute), a (append), c (create), e (erase)

and w (= o+t+a+c+e).

(2) Integrated permissions for network

Two integrated permissions related to input and out-

put are designed for port numbers, NIC, IP address

and RAW socket. For example, integrated permis-

sions for port numbers are server (wait for a connec-

tion from outside) and client (begin a connection to

outside).

(3) Integrated permissions for IPC

Integrated permissions for Sysv IPCs are send and

recv to control input and output to processes. Inte-

grated permissions for signals are designed to con-

trol sending each signal because SELinux can only

control sending signals. For example, integrated

permission k allows sending sigkill.

(4) Integrated permissions for other privileges

46 integrated permissions for other privileges are

designed. Almost all permissions about privileges

are included to prevent attackers from compromis-

ing availability and facilitating attacks. However,

overlapped permissions are merged as an excep-

tion. For example, SELinux permission capabil-

ity net admin and netlink route socket nlmsg write

overlap each other because they are related to

change kernel configuration of network. Thus, they

are merged to the integrated permission net admin.

4.1.2 Configurations using resource names

To remove type configurations, SPDL enables configura-

tions using resource names. SPDL statements allow and

allownet are designed as shown in Table 1 to enable name

based configurations for files and network resources such

as port number, NIC and IP address. To configure IPCs

domain httpd_t;

allow /var/www/** r;

Figure 5: Simplified Policy to be converted by SPDL

converter

Declare and assign type

1 type var_www_t;

2 /var/www(|/.*)

system_u:object_r:var_www_t

#Allows permissions related to integrated

permission r

3 allow httpd_t var_www_t:lnk_file { iotcl

lock read };

4 allow httpd_t var_www_t:file { iotcl

lock read };

5 allow httpd_t var_www_t:fifo_file {

iotcl lock read };

6 allow httpd_t var_www_t:sock_file {

iotcl lock read };

Figure 6: Output of SPDL converter

and other privileges, allowcom and allowpriv are also

designed. Assigning types for IPCs and privileges is not

required in SELinux, but they are shown for reference in

Table 1.

4.1.3 Include statement

In order to reduce the number of configuration lines, the

include statement imports configuration from a file.

#include filename;

For example, when the file daemon.te includes access

rules commonly used for daemon applications, describ-

ing #include daemon.te; imports those access rules.

4.2 Implementation of SPDL converter

SPDL converter translates SPDL to SELinux policy lan-

guage. The translation process is shown with an example

of converting Simplified Policy in Figure 5 to configura-

tions in Figure 6.

The httpd t domain is allowed to read files and direc-

tories under /var/www in Figure 5. SPDL converter gen-

erates types from resource names. For example, it gener-

ates var www t type from filename /var/www, then out-

puts configuration to assign var www t under /var/www

in the first two lines in Figure 6. Next, it generates con-

figuration to allow access to the generated type as line

3-6 in Figure 6.

When different types are generated for files or direc-

tories under /var/www, accesses to such types are al-

lowed. For example, when some domains are configured

6

Statement Meaning Example

allow filename integrated permission; Allows access to filename using inte-

grated permission.

allow /foo/bar/** r; permits to read

files under /foo/bar directory.

allownet resourcename integrated per-

mission;

Allows access to resourcename using

integrated permission.

allownet -protocol tcp -port 80 server;

permits to wait connection on tcp port

80.

allowcom IPCname domain integrat-

edpermission;

Allows access to domain using IPC

IPCname and communicate using inte-

grated permission.

allowcom -unix foo t r; permits to read

data from process running as foo t do-

main via unix domain socket.

allowpriv integrated permission; Allows usage of privilege integrated

permission

allowpriv cap sys chroot; permits to

use chroot system call.

Table 1: Statements in SPDL to allow access to resources

allow /var/www/cgi/** r;, then configuration that assigns

var www cgi t to /var/www/cgi is generated. SPDL con-

verter also generates configuration for httpd t that allows

reading var www cgi t.

However, configurations using resource names do not

work well for files dynamically created by processes.

Dynamically created files mean files that are removed

and created again. In SELinux, when a file is removed

and created again, the type of the file is the same

as the directory where it belongs. This behavior is

sometimes a problem. For example, allow /tmp/foo

r; is configured in foo t domain. At first, /tmp/foo is

assigned tmp foo t type, but when /tmp/foo is removed

and created again, then the type is tmp t. Therefore, the

foo t domain can no longer access /tmp/foo. To handle

such cases, SPDL has allowtmp to configure assign-

ing types correctly. The syntax of allowtmp is as follows.

allowtmp -dir directory -name type integrated per-

mission;

This means files created under directory are assigned

type. When type is auto, type is named automatically.

For example, when foo t domain creates temporary files

under /tmp, we have to describe allowtmp -dir /tmp

-name auto r; in foo t domain, then type foo tmp t is

generated and assigned to temporary files.

4.3 Implementation of SPDL tools

4.3.1 Allow generator

Allow generator outputs configurations that permit ac-

cesses recorded in the access log. The process is ex-

plained by an example below. First, allow generator

reads SELinux access log, then extracts domain, resource

name and permission from an access log entry. When a

log entry is recorded that says httpd t domain process

accessed filename /foo/bar whose type is foo bar t with

permission file read, httpd t, /foo/bar/ and file read is

#Integrated permission

<macro value="allow_file_r"/>

#Corresponding SELinux permissions

<secclass value="file" />

<secclass value="lnk_file" />

<secclass value="dir" />

<permission value="read" />

...<snip>..

Figure 7: An example of permission mapping file

extracted. The extracted information is not enough to

create SPDL based configuration, because the permis-

sion is not an integrated permission. In order to ob-

tain an integrated permission, allow generator converts

SELinux permissions to integrated permissions by per-

mission mapping, which contains mapping of integrated

permission to SELinux permissions as illustrated in Fig-

ure 7. In the example, recorded SELinux permission is

file read, then permission mappping is loooked up and

corresponding integrated permission allow file r mean-

ing integrated permission r for file is found. As a result,

allow generator is able to output SPDL based configura-

tions allow /foo/bar/ r;, from obtained domain, resource

name and integrated permission.

4.3.2 Template generator

Template generator is implemented as a GUI. Figure 8 is

a GUI to generate typical configurations. Users choose

the profile of applications, and configurations are gener-

ated based on the profile. Figure 9 is a GUI to gener-

ate configurations from the user’s knowledge. They can

input their knowledge to the template generator without

typing SPDL manually.

7

Figure 8: Template generator GUI to generate typical

configurations

Figure 9: Template generator GUI to generate using

knowledge of users

5 Evaluation

5.1 Experimental setup

In order to make sure whether SEEdit works, we used

two typical systems for experiment. One is an embedded

system configured for a small server, the other is a PC

system configured for PC server as shown below.

(1) Embedded system

• CPU: SH7751R(SH4) 240MHz

• RAM: 64MB

• Storage: Flash ROM 64MB

• Linux distribution: not used

• SELinux: Linux 2.6.22

• Running services: httpd, vsftpd, syslogd,
klogd, portmap

(2) PC system

Virtual machine (VMware 5.5) is used.

• Linux distribution: Cent OS 5 used for PC
servers

• Running services: auditd, avahi daemon,

crond, cupsd, dhclient, gdm, httpd, klogd, mc-

stransd, named, ntpd, portmap, samba, send-

mail, sshd, syslogd

Five domains are configured for services running on the

embedded system, 16 domains are configured for ser-

vices on the PC system. Access rules are written for

these services to work properly. Memory usage of the se-

curity policy on the embedded system was also measured

to evaluate whether SELinux is applicable to embedded

systems. The memory consumption by SELinux was

defined as the difference between memory usage when

SELinux enabled and that when SELinux is disabled.

5.2 Result and consideration

In the experiment, we have successfully created security

policies for both the embedded and the PC system. The

process of describing configurations, verifying configu-

rations and resource consumption are reviewed and con-

sidered. At last, trade-offs in SEEdit are also discussed.

5.2.1 Describing configurations

The first step to describe configuration is using template

generator. To evaluate template generator, the assump-

tion of knowledge on the part of the tool user is nec-

essary because generated configurations depend on the

user’s knowledge. For evaluation, it is assumed that users

know how to manage applications, i.e: they know file

path of configuration files for applications, names of log

files, names of content files which applications deliver

and port numbers for applications. Assuming this, tem-

plate generator produced 52% of the lines of configura-

tion for the evaluation systems. For example, total 24

lines of configurations were described for http service in

the PC system, and 12 lines were generated by template

generator.

Next step is to produce configurations from access

logs by allow generator. Most of the configurations gen-

erated by allow generator were able to be used without

modification except for the following two cases. First

is allow statements generated for dynamically created

files. These allow statements have to be replaced with

allowtmp statements. For example, foo t domain dy-

namically creates and removes /tmp/foo, then log entry

foo t domain write /tmp/foo is recorded. Allow genera-

tor outputs allow /tmp/foo w; from the log entry. How-

ever, it should be replaced with allowtmp -dir /tmp -

name auto w; as shown in section 4.2. Second is con-

figurations generated from log entries which record ac-

cess to normal files. Allow generator outputs allow

/var/www/index.html r; for httpd t from log entry httpd t

read /var/www/index.html. When the user knows http t

domain accesses /var/www directory, it is better to per-

mit access to directory like allow /var/www/** r;. For the

above two cases, the generated integrated permissions

still can be used without modification.

8

refpolicy SPDL

File 130 9

Network 453 14

IPC 45 7

Privilege 80 46

Total 708 76

Table 2: Number of permissions in refpolicy and SPDL

As shown above, SPDL tools generate most parts of

the configurations. In addition, to modify a generated

SPDL configuration is easier than modifying refpolicy

because the number of permissions are reduced as shown

in Figure 2, complicated macros are not necessary, and

type configurations are removed.

5.2.2 Verifying configurations

To verify created security policy, the difficulty depends

on the number of configuration lines. The number of

configuration lines in refpolicy is more than 100,000

with complicated permissions, macros and types, thus

verification of refpolicy based security policy is difficult.

On the other hand, in the experiment, the total lines of

configuration are 174 for the embedded system, 401 for

the PC system, and they are describedwith SPDL. There-

fore, it is easier to verify configurations in SPDL than

configurations in refpolicy.

Note that verifying configurations written in SPDL is

meaningful as long as the output of SPDL converter is

correct. Another work is necessary to ensure the result

of SPDL converter. One possible way is a test tool. The

tool inputs configurations in SPDL and is run for each

domain defined in the configurations. Next the tool tries

all access patterns to see if only accesses configured in

the policy are permitted.

5.2.3 Resource consumption

The file size of the security policy in the embedded sys-

tem is 71KB and RAM usage is 465 KB. In the system

used in the experiment, storage is 64MB, RAM is 64MB.

The consumption of storage and RAM is less than 1%.

Thus, the created security policy is usable for the re-

source constrained embedded devices.

5.2.4 Trade-offs

There are two usability-security trade-offs in SEEdit.

The first trade-off is integrated permissions used in

SPDL because integrated permissions reduce granular-

ity. For example, integrated permission for file r means

read permissions for file, symlink and socket file. There-

fore, allowing read access to symlink but not to file and

directory can not be configured by r permission. This

can be a problem in the embedded systems used in eval-

uation. In the embedded system, busybox[14] was used

for system commands. In a system where busybox is

installed, commands are executed via symbolic links to

/bin/busybox(busybox executable). When /bin/ls is sym-

bolic link to /bin/busybox and /bin/ls is executed, ls func-

tions in /bin/busybox are called. If a domain foo t needs

access to busybox commands and is configured allow

/bin/** r;, foo t domain can access symbolic links under

/bin, and foo t can use busybox commands. However, if

a confidential command file /bin/secret exists, foo t can

also access /bin/secret. If access to symbolic links were

configured separately, foo t would not be able to access

/bin/secret. To solve this problem, the security policy

generated by SPDL converter has to be edited. Another

solution is to create a new statement in SPDL that en-

ables configuring SELinux permissions directly.

The second trade-off is the audit2allow approach in

allow generator. If there is a bug or malicious code in a

program, and the program accesses files unnecessary for

the program to work correctly, allow generator outputs

configurations to permit access to such files. For exam-

ple, if code that accesses confidential data is embedded

in a CGI program by an evil programmer, then a con-

figuration that permits access to the confidential data is

outputted by allow generator after running the CGI. To

prevent such a dangerous configuration to be included in

the security policy, generated configurations should be

checked by the SEEdit user. To help the check process,

a tool that evaluates generated configurations would be

useful.

6 Related work

Linux distribution Fedora includes security policy con-

figuration tools called setroubleshoot [15], SLIDE [16]

and system-config-selinux [17]. Setroubleshoot analyzes

access logs and presents configurations when an applica-

tion does not work due to SELinux access denial. SLIDE

is an Integrated Development Environment (IDE) to con-

figure refpolicy. It has features to aid describing configu-

rations such as input completion. system-config-selinux

is a tool to generate templates of configurations for new

applications. It can generate templates using a wizard.

The above tools are intended to aid configurations using

refpolicy. The purpose is different from SEEdit because

SEEdit does not use refpolicy.

polgen[18] is a security policy generator with a higher

level language. Users of polgen first describe template

configurations for the target applications using the lan-

guage, then run the application. Next, polgen gener-

ates recommended security policy from access logs. The

purpose of the higher level language of polgen is to de-

9

scribe template configurations, and users have to handle

types and SELinux permissions after writing a template.

The purpose is different from SEEdit because SPDL in

SEEdit is intended to describe whole configurations.

SENG [19] is a higher level language for SELinux se-

curity policy. It is intended to replace m4 macros, not

to reduce the number of configurations and remove type

configurations.

Sellers et al.[20] also implemented a higher level lan-

guage and IDE called CDS Framework[21]. It is also

used in the FMAC[22] project in OpenSolaris. It en-

ables configuration from the viewpoint of information

flow control, but is not intended to simplify configura-

tions.

There is also work related to the verification of secu-

rity policy. Apol included in setools[23] has features

to query security policy, such as querying what kind

of types a domain can access. SLAT[24][25] is a sys-

tem to analyze the security policy based on informa-

tion flow goals. Analyzers describe an information goal,

then SLAT finds violations of the information flow goal.

Gokyo[26] analyzes the security policy based on Access

Control Spaces, then suggests configurations which vio-

late constraints. These tools are for SELinux policy lan-

guage, but they can be applied to configurations which

are converted from SPDL.

7 Summary

Security policy for SELinux is usually created by cus-

tomizing a sample policy called refpolicy. However, cre-

ating security policy based on refpolicy has problems in

describing and verifying configurations, and in resource

consumption.

We have proposed a security policy configuration sys-

tem SEEdit which makes creating security policy eas-

ier with a higher level language called SPDL and SPDL

tools. SPDL reduces the number of permissions by inte-

grated permissions, and removes type configurations by

name based configurations. SPDL tools help in writing

configuration by generating configurations based on ac-

cess logs and the knowledge of tool users about applica-

tions. Experimental results on an embedded system and a

PC system have shown that SEEdit resolves the problems

creating security policy and practical security policy can

be created with SEEdit.

8 Future work

There are remaining issues in ensuring the results of

SPDL converter (section 5.2.2) and trade-offs in SEEdit

(section 5.2.4). Another issue is co-existing with ref-

policy. Currently SEEdit can not be used with refpol-

icy because type configurations generated by SPDL con-

verter conflict with existing type configurations in refpol-

icy. SPDL converter has to be improved to resolve such

conflicts.

9 Availability

SEEdit is available from sourceforge[27]. It is licensed

under the GPL.

References

[1] Security-Enhanced Linux, http://www.nsa.gov/

research/selinux/

[2] Loscocco, P. and Smalley, S.: Integrating Flexible

Support for Security Policies into the Linux Oper-

ating System: Proc. FREENIX Track of the 2001

USENIX Annual Technical Conference, pp. 29 - 42

(2001)

[3] CVE-2008-0600: Common Vulnerabilities and

Exposures (2008), http://cve.mitre.org/cgi-bin/

cvename.cgi?name=CVE-2008-0600

[4] CVE-2007-5964: Common Vulnerabilities and

Exposures (2007), http://cve.mitre.org/cgi-bin/

cvename.cgi?name=CVE-2007-5964

[5] Boebert, W. E. and Kain, R. Y.: A Practical Alter-

native to Hierarchical Integrity Policies. Proc. the

Eighth National Computer Security Conference,

pp. 225-237 (1985)

[6] Coker, F., Coker,R.: Taking advantage of SELinux

in Red Hat Enterprise Linux:Redhat magazine

Issue 6 April 2005 (2005) ,

http://www.redhat.com/magazine/006apr05/

features/selinux/

[7] Linuxdevices.com:MontaVista readies new Linux

mobile phone OS (2007), http://www.linuxdevices.

com/news/NS4364061392.html

[8] SELinux Reference Policy, http://oss.tresys.com/

projects/refpolicy/

[9] PeBenito,C., Mayer,F., and MacMillan,

K.:Reference Policy for Security Enhanced

Linux.Proc. 2006 Security Enhanced Linux Sym-

posium (2006), http://selinux-symposium.org/

2006/papers/05-refpol.pdf

[10] Smalley,S. : Configuring the SELinux policy,

NAI Labs Report #02-007, http://www.nsa.gov/

research/selinux/docs.shtml

10

[11] GNU m4, http://www.gnu.org/software/m4/m4.

html

[12] Linux man pages for audit2allow(1), http://

linuxcommand.org/man pages/audit2allow1.html

[13] Yamaguchi, T., Nakamura, Y. and Tabata, T: In-

tegrated Access Permission: Secure and Simple

Policy Description by Integration of File Access

Vector Permission: Proc. The 2nd International

Conference on Information Security and Assur-

ance(ISA2008), pp. 40-45 (2008)

[14] Wells, N.: BusyBox: A Swiss Army Knife for

Linux, Linux Journal, vol.2000, n.78es (2000)

[15] Denis, J.: Setroubleshoot: A User Friendly

Tool to Diagnose AVC Denials: Proc. 2007

Security Enhanced Linux Symposium (2007),

http://selinux-symposium.org/2007/papers/

09-setroubleshoot.pdf

[16] SLIDE: http://oss.tresys.com/projects/slide

[17] Walsh, D.: A step-by-step guide to building a new

SELinux policy module: Redhat magazine(2007),

http://magazine.redhat.com/2007/08/21/

[18] Sniffen, B., Ramsdell, J. and Harris, D.:

Guided Policy Generation for Application Au-

thors:Proc 2006 Security Enhanced Linux Sympo-

sium (2006), http://selinux-symposium.org/2006/

papers/14-guided-polgen.pdf

[19] Kuliniewicz, P.: SENG: An Enhanced Pol-

icy Language for SELinux: Proc 2006 Se-

curity Enhanced Linux Symposium (2006),

http://selinux-symposium.org/2006/papers/

09-SENG.pdf

[20] Sellers,C., Athey, J., Shimko, S. , Mayer, F.

and MacMillan, K.: Experiences Implementing

a Higher-Level Policy Language for SELinux:

Proc 2006 Security Enhanced Linux Symposium

(2006), http://selinux-symposium.org/2006/papers/

08-higher-level-experience.pdf

[21] CDS Framework IDE, http://oss.tresys.com/

projects/cdsframework

[22] OpenSolaris Project: Flexible Mandatory Access

Control, http://www.opensolaris.org/os/project/

fmac/

[23] SETools, http://oss.tresys.com/projects/setools

[24] Guttman, J., Herzog, A., Ramsdell, J. and Sko-

rupka, C.: Verifying information goals in security-

enhanced linux: Journal of Computer Security.,

13(1), pp 115-134 (2005)

[25] MITRE Security-Enhanced Linux, http://www.

mitre.org/tech/selinux/

[26] Jaeger, T., Edwards, A. and Zhang, X.: Managing

access control policies using access control spaces:

Proc the seventh ACM symposium on Access con-

trol models and technologies (SACMAT 02), pp. 3-

12 (2002)

[27] SELinux Policy Editor Website, http://seedit.

sourceforge.net/

11

