
Assisted Firewall Policy Repair
Using Examples and History

Robert Marmorstein and Phil Kearns – The College of William & Mary

ABSTRACT

Firewall policies can be extremely complex and difficult to maintain, especially on networks
with more than a few hundred machines. The difficulty of configuring a firewall properly often
leads to serious errors in the firewall configuration or discourage system administrators from
implementing restrictive policies.

In previous research, we developed a technique for modeling firewall policies using
Multiway Decision Diagrams and performing logical queries against a decision diagram model.
Using the query logic, the system administrator can detect errors in the policy and gain a deeper
understanding of the behavior of the firewall. The technique is extremely efficient and can process
policies with thousands of rules in just a few seconds. While queries are a significant improvement
over manual inspection of the policy for detecting that errors exist, they provide only limited
assistance in repairing a broken policy. In this paper we present two extensions to our work,
examples and history, which enable the administrator to more easily repair a policy which contains
errors.

An example is a representative packet which illustrates that the firewall complies with or
(more importantly) deviates from its expected behavior. History records the specific rules involved
in the deviation. Examples and history provide guidance in finding and fixing faults in a firewall
rule set. These contributions can be also be used with the equivalence class analysis to reduce the
burden of designing a complicated set of assertions.

Introduction

The administrator who maintains a restrictive
firewall policy on a large network must spend a con-
siderable amount of time and effort updating and test-
ing the filtering rules. Requests for new services,
changes in the physical topology of the network, and

Chain Forward (Default Drop)
Target Source Destination Interface Flags
1 DROP 192.168.1.0/24 anywhere !eth2
2 DROP 192.168.3.0/22 192.168.2.0/24 any
3 ACCEPT anywhere 192.168.2.4 any dpt:tcp 80
4 DROP anywhere 192.168.2.0/24 any
5 ACCEPT 192.168.1.0/24 anywhere any

Figure 1: A rule set which incorrectly blocks access from the 192.168.1.0/24 subnet. Rule 1 of the policy ensures
that traffic from the 192.168.1.0/24 subnet arrives on the correct interface. Rule 2 blocks traffic from the inse-
cure wireless network to the server subnet. Rule 3 grants HTTP access to the web server to appropriate hosts.
Rule 4 prevents external access to other servers. Rule 5 allows hosts on the trusted subnet to transmit packets
that have not been blocked by some previous rule.

the emergence of new security threats require contin-
ual modification of the policy. As the policy changes
and grows, it can be difficult for the administrator to
avoid introducing errors into the rule set. Repairing
these errors is often very challenging. Firewall policy
errors are subtle and difficult to detect. Even when the
existence of an error is obvious, discovering the source
of the problem and correcting it can be tedious and
expensive.

In previous work, we introduced techniques for
quickly and easily validating a firewall policy using
logical queries against a Multiway-Decision Diagram
model of the firewall policy. The MDD approach is
very efficient (complex queries involving rule sets
with hundreds of rules usually take only a few sec-
onds) and allows for very flexible identification of
errors. Like most existing approaches, the MDD query
technique addresses the issue of testing the firewall for
errors, but leaves the problem of repairing the policy
entirely up to the administrator. Because tracing through
dozens or perhaps hundreds of correct rules to find the
two or three critical inconsistencies can take hours or
even days, this is a significant burden for administrators
of a large network.

21st Large Installation System Administration Conference (LISA ’07) 27

Assisted Firewall Policy Repair Using Examples and History Marmorstein & Kearns

In this work, we present two novel techniques
that enable ‘‘directed repair’’ of the firewall policy.
Using these techniques, the system administrator not
only can identify the existence of an error in the pol-
icy, but can trace it backs to its root causes without an
expensive manual inspection of the rule set. The first
major contribution is a technique for providing exam-
ple packets that illustrate that the firewall violates a set
of security requirements. The second contribution cre-
ates a history map which identifies the particular fire-
wall rules which cause the firewall to deviate from its
desired behavior.

While these techniques do not fully automate the
process of repairing the firewall, they do provide the
system administrator with information that makes re-
pair much easier than a simple verification of the pol-
icy. We have implemented both techniques in ITVal
[6], a firewall analysis and repair tool for iptables fire-
walls. Although we use the Linux iptables firewall for
the examples in this paper, it is possible to adapt these
techniques to work with other platforms such as PIX
and Checkpoint firewalls. There are also several fairly
effective scripts for converting ipfw and ipchains fire-
wall to iptables syntax [11] which can be used to adapt
such policies to a format compatible with ITVal.

The remainder of this paper is structured as fol-
lows. The next sectoin describes the difficulties which
a system administrator encounters in repairing a fire-
wall. Then we discuss partially automated repair of the
policy. The next two sections detail our techniques for
generating examples and history, respectively. Sec-
tions on implementation using MDDs and a descrip-
tion how this work can be combined with our previous
work on equivalence class analysis of a firewall policy
follow. Finally, we discuss related work and make a
few concluding remarks.

Firewall Policy Errors

The techniques discussed in our previous work
allow a system administrator to perform basic logical
queries against a firewall policy using a simple speci-
fication language. For instance, to ask which hosts can
access a web server, host 192.168.2.4, the administra-
tor can use the query QUERY SADDY TO 192.168.2.4
AND FORWARD ACCEPTED; which will list the source
addresses of any host that can access the web server
without being blocked by the firewall. Inspecting this
list of addresses may allow the user to detect an error
in the configuration of the firewall. If the address of a
malicious host appears in the list, for instance, it is
clear that there is a problem with the firewall policy.

Queries allow the system administrator to iden-
tify many serious errors in the configuration of a fire-
wall, but provide only a limited amount of information
about each error. For instance, if the system admini-
strator uses the query ‘‘Which hosts can connect to the
mail server?’’ to determine whether the firewall blocks

external hosts, the analysis engine will list those hosts
that have unwanted access to the server, but will not
provide any additional information that can be used to
understand why the firewall failed to prevent access. It
may be that the error only occurs when connections
are made on a particular network interface or by a par-
ticular network protocol. Access to this information
could greatly assist the system administrator in repair-
ing the policy, but traditional testing tools do not pro-
vide these helpful clues. Another way to think about
this is to say that a query engine discovers an error
(the ultimate consequence of a problem in the policy),
but not the fault (the mistake in the rules that causes
the error).

Sometimes, helpful information can be obtained
using additional queries or by refining the query to pro-
vide more information. Often, however, the process of
developing a sufficiently detailed set of queries requires
almost as much effort as manual repair of the policy.

This means that query tools are usually limited to
detecting whether an error exists and have only lim-
ited utility in guiding repair of the policy. To repair the
policy by hand, the system administrator must care-
fully consider each filtering rule to determine whether
it is relevant to the error and, if so, whether it is cor-
rect. Since most of the rules will usually be either
irrelevant or valid, manual repair is a very inefficient
and time consuming process, especially when an error
has many potential causes.

Figure 2: A typical firewall, which protects hosts on
two subnets against intrusions from a third, un-
trusted network and the outside world. One of the
protected subnets contains a web server, host
192.168.2.4, to which remote connections are al-
lowed.

Figure 1 shows how difficult it can be to trace a
firewall error to its source. This rule set protects work-
stations on the subnet 192.168.1.0/24 and servers on
the 192.168.2.0/24 subnet against attacks from the
outside world and an insecure wireless network on the
192.168.3.0/24 subnet. An illustration of the network
is given in Figure 2.

The system administrator wants to allow access
to the web server, host 192.168.2.4, from any system
in the outside world except those on the unsecured
wireless network. All other external traffic to the web
server should be blocked.

28 21st Large Installation System Administration Conference (LISA ’07)

Marmorstein & Kearns Assisted Firewall Policy Repair Using Examples and History

It is fairly easy to determine that the rule set fails
to enforce these requirements. If the system administra-
tor opens up a web browser and tries to connect to the
web server from a host on the trusted network, the fire-
wall will refuse to allow the connection. Discovering
the cause of this error is more challenging, since nearly
every rule of the policy plays some role in the filtering
decision. An error in rule 4, which drops traffic to the
protected subnet, could be the source of the error. A
typo in rule 3, which overrides rule 4 to allow web traf-
fic to enter the network might be another the cause.
Rule 1, an anti-spoofing rule which blocks traffic from
the ‘‘wrong’’ interface, might also be to blame.

As it turns out, the fault that produces the ob-
served error is in rule 2. An incorrect subnet mask in
rule 2 causes the firewall to block traffic from the pro-
tected network as well as the untrusted net. Manual
analysis of the policy requires a careful and tedious
inspection of every rule in the policy to identify this
fault. For the five rule policy shown here, this inspec-
tion might not take too long. However, a policy with
more than a few dozen rules would be much more dif-
ficult to analyze. Partially automating the repair process
in a way that narrows down the potential sources of the
error to just one or two rules could save the administra-
tor a significant amount of effort.

Partially Automated Firewall Repair

Unfortunately, it is impossible to fully automate
repair of a generic firewall policy because incorrect
behavior on one network may be expected behavior on
another. For instance, on one network it may be desir-
able to allow SMTP traffic to reach certain hosts, such
as the mail servers. On another network, however, a
policy that permits SMTP traffic may spam-bots to
compromise important systems. Without input from
the user, a repair algorithm cannot distinguish between
these two cases.

While a fully automatic strategy for firewall repair
is impossible, partial automation is possible. Gouda,
Liu, et al. have done significant work on repair of struc-
tural errors in the firewall policy [4]. Their technique
uses transformation of decision diagrams to produce an
improved rule set in which problems such as shadowed
or duplicate rules have been eliminated. This strategy
does not require any assistance from the user. Unfortu-
nately, these techniques do not address repair of logical
errors such as typos or out-of-order rules.

Another approach is to allow the user to make
the final decision about how to repair the policy, but
automate the process of finding the faults responsible
for the error. By providing the system administrator
with sufficient information about the possible causes
of the error, we can guide her toward a few possible
solutions, from which she can choose the one best
suited to her network. This ‘‘directed repair’’ of the
policy alleviates much of the tedious work required to
find faults and fix the policy.

Directed Repair

In previous work [7, 8, 9], we explored ways to
detect errors in a firewall configuration using logical
queries and an equivalence class decomposition of the
network. In this paper, we describe two extensions of
this work that enable directed repair of the firewall
policy. One technique generates relevant counterexam-
ples from which the system administrator can obtain
detailed information about security failures in the pol-
icy. The second technique provides an extensive ‘‘his-
tory analysis’’ that identifies potential sources of the
error and lists rules which should be considered for
modification. The history analysis can also be used
with the equivalence technique described in [9], which
addresses the need for extensive preparation of logical
queries. We implement both of these techniques as
extensions to ITVal [6], an open source firewall testing
tool developed as part of our previous work.

FROM <address_range>
matches all packets with source address in address_
range.

TO <address_range>
matches all packets with destination address in
address_range .

ON <port_range>
matches all packets with source port in port_range.

FOR <port_range>
matches all packets with destination port in port_
range

IN <s>
matches all packets associated with connections in
state s

WITH <flag_set>
matches all packets with the TCP flags in flag_set
enabled

ACCEPTED <chain>
matches all packets accepted by built-in chain chain

DROPPED <chain>
matches all packets rejected by built-in chain chain

INFACE <iface>
matches all packets received by network interface
iface

OUTFACE <iface>
matches all packets transmitted on network inter-
face iface

Figure 3: ITVal primitives.

To use these techniques, the user specifies the
desired behavior of the firewall using logical asser-
tions. The syntax for assertions is derived from the
query language explained in [8]. The right and left
conditions of the assertion are built from a set of sim-
ple primitives such as those in Figure 3, which can be
combined using the logical operators AND, OR, and
NOT to create complex conditions describing sets of
packets whose treatment by the firewall requires anal-
ysis. For example, we can describe all accepted SSH

21st Large Installation System Administration Conference (LISA ’07) 29

Assisted Firewall Policy Repair Using Examples and History Marmorstein & Kearns

packets from subnet 192.168.1.0/24 on interface eth0
using the condition
FOR TCP 22 AND
FROM 192.168.1.* AND
INFACE eth0 AND

(ACCEPTED FORWARD OR
ACCEPTED INPUT);

Chain FORWARD (Default DROP)
Target Source Destination Interface Flags
1 ACCEPT anywhere 192.168.1.0/24 eth0 dpt:tcp 22
2 ACCEPT anywhere 131.106.3.253 eth1
3 DROP 63.118.7.16 anywhere eth0
4 DROP 192.168.2.0/24 anywhere any
5 ACCEPT anywhere anywhere any dpt:tcp 80

Figure 4: An incorrect forwarding chain which allows non-SSH traffic from hosts on the 192.168.2.0/24 network.

The user can construct two types of assertions from
these conditions. Equality assertions have the form:
ASSERT <A> IS

where A and B are conditions. Containment assertions
have the form
ASSERT <A> SUBSET OF

Equality assertions specify that those packets which
match condition A are exactly those that match condi-
tion B. Containment assertions specify that the set of
packets that satisfy condition A is (non-strictly) con-
tained in the set of packets that satisfy condition B.
Using these assertions, the user can describe important
high-level security invariants which the policy should
always satisfy.

For instance, the containment assertion
ASSERT FROM 192.168.3.*

SUBSET OF DROPPED FORWARD;

specifies that any packet from subnet 192.168.3.0/24
is dropped. The equality assertion
ASSERT FROM 192.168.2.*

IS (FOR TCP 80
AND ACCEPTED FORWARD);

can be used to check that only HTTP packets are
allowed to enter the network from the 192.168.2.0/24
subnet and that no other web connections are allowed
by the firewall. We call the set of packets that match a
condition its match set and the set of packets that cause
an assertion to fail the assertion’s fail set. Assertions
provide many advantages over simple queries. While
queries allow the user to obtain a significant amount
of information about the policy, a query does not pro-
vide the analysis engine with any description of the
expected behavior of the firewall. Therefore, using
assertions enables the engine to provide more useful
and relevant output.

Counterexamples and Witnesses

One useful advantage of assertion analysis is that
it allows generation of relevant counterexamples. These

counterexamples provide a context for the error which
can often help the administrator discover why a failure
has occurred.

The example policy in Figure 4 isolates an un-
trusted research network 192.168.2.0/24 from the out-
side world. SSH traffic from the untrusted network to
hosts on subnet 192.168.1.0/24 is permitted, but all
other traffic from the network is denied. The 192.168.
1.0/24 subnet contains several world-accessible web
servers to which the policy grants access. However,
the rule set blocks connections from 63.118.7.16, a
malicious host. Trusted hosts are allowed to make
connections to the web servers and an external server,
host 131.106.3.253, but cannot make any other con-
nections.

To test whether the untrusted hosts are suffi-
ciently restricted by the firewall, the administrator
uses the assertion
ASSERT (FROM 192.168.2.*

AND NOT FOR TCP 22)
SUBSET OF DROPPED FORWARD;

which specifies that only SSH traffic is accepted from
hosts on the untrusted network. Due to an error in the
ordering of rules 2 and 4, the assertion will fail. This
subtle error could be very difficult to detect in a
lengthier policy in which the rules were much further
apart. Using ITVal, the administrator can easily dis-
cover that the assertion fails. Knowing that the asser-
tion does not hold is an important first step, but does
not give much information about the cause of the
error. To give the user more information about the
source of the error, we generate a counterexample – a
packet that demonstrates the falsity of the assertion.
Figure 5 shows the generation of one possible coun-
terexample. The user specifies that an example should
be generated by inserting the keyword EXAMPLE at the
beginning of the assertion.

Examination of the counterexample gives the
system administrator important information about the
assertion failure. One significant clue is that the exam-
ple packet arrived on interface eth1. Since only rule 2
mentions eth1, this fact draws the administrator’s im-
mediate attention to the rule ordering error, which can
now be corrected by moving rule 2 to the correct loca-
tion in the policy.

Sometimes it is desirable to obtain an example
even when an assertion succeeds. We call such an

30 21st Large Installation System Administration Conference (LISA ’07)

Marmorstein & Kearns Assisted Firewall Policy Repair Using Examples and History

example a ‘‘witness,’’ since it illustrates the assertion.
Witnesses are less powerful than counterexamples in
that the existence of a counterexample demonstrates
conclusively that an assertion is false while the exis-
tence of a witness only demonstrates that it is possible
to satisfy the assertion. Nevertheless, witnesses can be
very useful for convincing yourself (or others) that an
assertion really holds. They can also be useful for
debugging certain kinds of problems that can best be
tested with an assertion that you expect to fail.

ASSERT EXAMPLE (FROM 192.168.2.*
AND NOT FOR TCP 22)
SUBSET OF DROPPED FORWARD;

Assertion failed.
Counterexample:
TCP packet from 192.168.2.1:6362[eth1]

to 131.106.3.253:25[eth1]
in state NEW with flags[].

Figure 5: Counterexample for the example assertion.

Suppose that you wanted to ensure that the fire-
wall policy does not block all SMTP connections. To
test whether your firewall correctly implements this
policy, you might use the assertion:
ASSERT EXAMPLE FOR TCP 25

SUBSET OF DROPPED FORWARD;

If the policy is correct, the assertion should fail, since
the assertion implies that all SMTP packets are dropped.
In this situation, a witness can often provide useful
information that allows you to discover why the asser-
tion succeeds. Since using assertions in this manner is
very counter-intuitive, we provide the user with NOT
SUBSET OF and IS NOT operators that can be used in
place of the SUBSET OF and IS keywords. This allows
the user to avoid using ‘‘backward assertions’’ like the
one above. Using these operators, the user can test
whether all SMTP packets are dropped as follows:
ASSERT EXAMPLE FOR TCP 25

NOT SUBSET OF ACCEPTED DROPPED;

This new assertion will hold in exactly the cases in
which the old assertion would fail and vice versa, but
is much more intuitive to use.

Rule History

Wi t n e s s e s and counterexamples provide the sys-
tem administrator with very detailed information about
the causes of an assertion failure. Nevertheless, it can
be difficult to trace an error to the fault that causes it
even when a good counterexample is available. We can
obtain more precise information about the particular
rules that create an error by constructing a ‘‘history
map’’ during generation of the rule set MDD. The his-
tory map matches each packet to the set of rules that
potentially accept or drop it.

Using the history map, we can associate packets
in an assertion’s fail set with a small number of filter-
ing rules – usually much smaller than the number of

rules in the entire policy. This permits the administra-
tor to narrow his inspection of the policy to just a few
critical areas. Since the set of rules to examine includes
every rule that matches a packet in the assertion’s fail
set, it is possible that we may list some correct rules as
well as the incorrect ones. In many cases, however, the
history map will enable the system administrator to
ignore most of rules that are not related to the problem.

Implementation

To evaluate an assertion, we represent each con-
dition using a Multiway Decision Diagram (MDD), a
data structure which is suitable for representing and
manipulating large sets of packets. An MDD is a
directed acyclic graph in which the nodes are orga-
nized into levels and all arcs from a node at a given
level point to nodes at the level below.

Figure 6: MDD representing FROM 192.168.1.*.

Each level of the MDD corresponds to an at-
tribute such as protocol, connection state, or destina-
tion port. For instance, level K, the top level of the
graph, represents the first source octet of a packet. The
bottom level of the MDD is a special terminal level
which indicates whether or not a packet belongs to the
match set. For space reasons, our figures show only
some of the levels of each MDD. We also use an aster-
isk as a wildcard character to represent ‘‘all arcs not
explicitly listed in this node’’ when many of the arcs
leading from a node point to the same child.

To construct an MDD representation of a primi-
tive such as FROM <address> or FOR <port>, we use
nodes with all arcs pointing to the same child to mask
out all but the relevant levels of the MDD. To repre-
sent FROM 192.168.1.*, we start at the top of the MDD
and work down, inserting a node with just one arc
labeled ‘‘192’’ at the top level (since the top level cor-
responds to the first octet of the source address). This
arc connects to a node at the next level down which
has a single arc labeled ‘‘168’’ which points to a node
with an arc labeled ‘‘1’’ in the next level. The ‘‘2’’ arc
connects to a node representing the fourth source octet

21st Large Installation System Administration Conference (LISA ’07) 31

Assisted Firewall Policy Repair Using Examples and History Marmorstein & Kearns

of the condition. All the remaining nodes in the graph
are labeled with the wildcard character, since the other
criteria are not relevant to the condition. This process
is illustrated by Figure 6, which shows a simple condi-
tion MDD.

To test whether a particular packet is in the
match set of a condition, we simply descend the MDD
from its root to a terminal node using properties of the
packet to guide the descent. If we reach the ‘‘matches’’
node, the packet is in the set. Otherwise, it is not. In
Figure 6, a packet from 192.168.1.1 to 64.130.15.7 on
TCP port 25 matches the condition, but a packet from
192.168.4.1 does not, since there is no arc for ‘‘4’’ leav-
ing the node for source octet three.

The primitives ACCEPTED <chain> and DROPPED
<chain> require special treatment. To generate MDDs
for these conditions, we construct an MDD representa-
tion of each firewall chain. We then remove all the
paths except those which point to the correct terminal
node (either ACCEPTED or DROPPED) using a pro-
jection operation.

Figure 7: MDD for the FORWARD chain.

Figure 7 shows part of the MDD for the chain in
Figure 1. To create an MDD representing ACCEPTED
FORWARD, we copy those paths of the chain MDD
which lead to the ACCEPTED node into the condition
MDD and ignore paths leading to the DROPPED
node. The resulting MDD is given in Figure 8.

Complex conditions containing the AND, OR,
and NOT operators can be represented by using MDD
intersection and union operators to combine the primi-
tive MDDs. An example MDD for a more complex
condition is given in Figure 9. Union and intersection
can be performed very efficiently using MDDs. Using
operation caches, we can obtain a guarantee that each
pair of nodes in the graph is visited only once during
these operations. Since the number of nodes in the
graph is usually much smaller than the number of
packets represented by each condition, we can com-
plete these operations very rapidly. The complement

operator is also very efficient. It requires a single
descent of the MDD, which is linear with respect to
the size of the graph.

Figure 8: Packets accepted by the FORWARD chain.

Figure 9: MDD representing FOR TCP 25 AND (FROM
192.168.1.* OR FROM 192.168.2.*).

To determine whether a containment assertion
holds, we examine the set of packets that match condi-
tion A, but do not match condition B. If the assertion
fails, this set will be non-empty, as illustrated by Fig-
ure 10.

The pseudocode in Figure 11 describes this pro-
cess in detail. First, we construct MDDs representing
the packets that match condition A and condition B,
respectively, in steps 1 and 2. In step 3, we use an
MDD complement operation to find the set of packets
which do not match condition B, the right-hand side of
the assertion. We intersect the MDD returned by the
complement operation with the MDD representing
condition A, the left-hand side of the assertion, in step
4. This creates an MDD representing the fail set of the
assertion. In steps 5 through 8, we test whether the set
is empty and return an appropriate value.

To test an equality assertion, we use the algo-
rithm given in Figure 13, which is similar to the

32 21st Large Installation System Administration Conference (LISA ’07)

Marmorstein & Kearns Assisted Firewall Policy Repair Using Examples and History

algorithm for testing a containment assertion. Steps 1
through 7 create an MDD representing the fail set. If
the fail set is non-empty, we have the situation illus-
trated by Figure 12 and the assertion fails. If it is
empty, the assertion holds.

Chain Forward (Default DROP)
Target Source Dest Flags
1 DROP 192.168.2.0/22 anywhere
2 ACCEPT anywhere 192.168.3.0/24
3 ACCEPT anywhere anywhere dpt:tcp 25

Figure 15: Example rule set which protects a network 192.168.4.0/24.

Figure 10: Fail set for the SUBSET OF operator.

bool testSubsetAssertion(cond A, cond B):
[1] mddA = condition_to_MDD(A);
[2] mddB = condition_to_MDD(B);
[3] notB = MDD_complement(mddB);
[4] result = MDD_intersect(mddA, notB);
[5] if notEmpty(result) then:
[6] return ASSERTION_FAILED;
[7] else:
[8] return ASSERTION_HELD;

Figure 11: Checking a containment assertion.

Figure 12: Fail set for the IS operator.

These techniques allow us to determine whether
or not a firewall policy satisfies a set of assertions.
These operations form a basis for performing more
advanced calculations, such as example generation
and history analysis.

Implementing Examples

To generate the counterexample for an assertion,
we change the algorithms in Figure 11 and Figure 13
to return an arbitrary element from the fail set. This is
done by replacing the last four lines of each algorithm
with those in Figure 14.

The function choose_element(X) picks an arbi-
trary element from the set represented by MDD X. If
the assertion does not fail, we choose an element from

the fail set as the counterexample. If the assertion
fails, we choose an element from the match set of the
left-hand condition as a witness, since the elements of
that set must match both conditions. To select an ele-
ment, the choose_element function walks the MDD
from the root node to the bottom of the graph, arbitrar-
ily selecting arcs at each level (in practice, we select
the first non-zero arc of each node) and storing each
selected attribute in a ‘‘packet’’ structure which can be
printed at the end of the traversal.

bool TestISAssertion(cond A, cond B):
[1] mddA = condition_to_MDD(A);
[2] notB = MDD_complement(mddB);
[3] resultA = MDD_intersect(mddA, notB);
[4] mddB = condition_to_MDD(B);
[5] notA = MDD_complement(mddA);
[6] resultB = MDD_intersect(notA, mddB);
[7] result = MDD_union(resultA, resultB);
[8] if notEmpty(result) then:
[9] return ASSERTION_FAILED;
[10] else:
[11] return ASSERTION_HELD;

Figure 13: Checking an equality assertion.

bool TestSubsetAssertion(cond A, cond B):
[5] if notEmpty(result) then:
[6] return choose_element(result);
[7] else:
[8] return choose_element(mddA);

Figure 14: Generating an example.

Implementing History

In order to build the history map, we construct a
‘‘history MDD’’ for each built-in chain of the firewall.
The history MDD is similar to the MDD for a rule set
or an assertion, but has two extra levels at the bottom
of the graph. The top levels of the MDD correspond to
the levels of a rule set MDD. The extra levels at the
bottom represent a chain identifier and an index for
each rule. We reserve index 0 for the default policy of
a chain and index the remaining rules sequentially
starting from 1. Construction of the history MDD is
done concurrently with construction of the MDD repre-
sentation of each firewall chain. As we insert rules into
the rule set MDD for the chain, we copy those rules
into the history MDD, adding nodes to identify the
chain and rule to the bottom levels. If we encounter a
rule which matches packets already matched by some
other rule, we use MDD union to store a mapping to
both rules.

Suppose we want to test the assertion

21st Large Installation System Administration Conference (LISA ’07) 33

Assisted Firewall Policy Repair Using Examples and History Marmorstein & Kearns

ASSERT HISTORY NOT FROM 192.168.2.*
AND TO 192.168.4.*
AND FOR TCP 22

SUBSET OF ACCEPTED FORWARD;

against the policy given in Figure 15. The assertion
verifies that SSH traffic is allowed to a protected net-
work 192.168.4.0/24 unless it originates on an un-
trusted network 192.168.1.0/24, from which all traffic
is blocked by the firewall. The assertion will fail due
to a typo in the subnet mask of the source address in
rule 1. As a consequence of this fault, an SMTP
packet from 192.168.3.1 to 192.168.4.2 that should be
accepted will be dropped.

Figure 16: History MDD for a firewall chain.

An example history MDD for the rule set is
given in Figure 16. To save space, only some levels of
the MDD are represented in the figure.

We can use the history MDD to find the rules
that match this packet by descending the graph. To
make this descent easier to follow, we have high-
lighted the path representing the example packet in
Figure 16. Starting from the root node, we follow the
arc labeled 192, since the source address of our exam-
ple packet begins with 192. We next follow the arc
labeled 168.

Because there is a typo in the subnet mask of rule
1, the node we are now examining has arcs for 0, 1, and
3 that point to the same child node as the arc for 2. We
follow the arc labeled 3 to a node with all arcs pointing
to the same child. We continue past the child node. The
destination address of our example packet begins with
192, so we follow the arc labeled 192. We then follow
the arc labeled 168 and the arc labeled with a wildcard,
which represents all values other than 3.

This brings us to another node with all arcs
pointing to the same child, which we continue past.
We now take the arc labeled TCP, then the arc labeled
25. This takes us to a node at the chain level. The only
arc leaving this node is labeled 1, so we know that the
only rules that affect this packet are in the FORWARD
chain. Following the arc takes us to a node represent-
ing rules 1, 3, and the default policy (represented by

the label 0). Rule 2 is not listed since it matches only
packets sent to subnet 192.168.3.0/24.

Figure 17: History MDD for an assertion.

This traversal gives the history map for a single
packet. To find the rules that match those packets that
violate the assertion, we intersect the history MDD for
a chain with an MDD representing the fail set of the
assertion. The fail set MDD can be computed as for
counterexample generation, except that the result must
be extended to include levels for the rule index and
chain identifier. This can be done by padding the fail
set MDD with wildcard nodes at the bottom two lev-
els. This is illustrated by Figure 17, which gives an
extended fail set MDD for the assertion.

The top four levels of the MDD correspond to
the source addresses of packets that match the asser-
tion. In this case, the assertion matches all packets
except those from the 192.168.2.0/24 subnet. The next
four levels represent the destination addresses of pack-
ets that match the assertion. In the example, only
packets to subnet 192.168.4.0/24 match. The next lev-
els represent protocol and destination port. The bottom
levels represent the chain identifier and rule index of

34 21st Large Installation System Administration Conference (LISA ’07)

Marmorstein & Kearns Assisted Firewall Policy Repair Using Examples and History

the packet. Since we have not yet determined which
rules are related to the assertion, these are represented
as wildcard nodes.

Figure 18: Result MDD after intersection.

Intersecting the extended fail set MDD with the
rule set MDD gives us the history map MDD in Figure
16. ITVal converts this graph into the human readable
output given in Figure 19. From this output, it is very
easy to see that the fault lies in either rule 1 or rule 3.
Rule 2 is ignored, since it only matches packets that
do not cause the assertion to fail. In a longer policy,
other extraneous rules would also be ignored.

ASSERT HISTORY NOT FROM 192.168.2.*
AND TO 192.168.4.* AND FOR TCP 25

SUBSET OF ACCEPTED FORWARD;
#Assertion failed.
Critical Rules:
Firewall 0 Chain 1 Default Policy.
Firewall 0 Chain 1 Rule 1:
DROP all -- * * 192.168.2.0/22

0.0.0.0/0
Firewall 0 Chain 1 Rule 3:
ACCEPT tcp -- * * 0.0.0.0/0

0.0.0.0/0 tcp dpt:25

Figure 19: Human readable history map.

In this case the fault lies in rule 1. An examina-
tion of that rule quickly reveals the typo. Our algo-
rithm also lists rule 3 and the default policy of the
FORWARD chain. Rule 3 is the rule that should have
accepted the dropped packets and therefore may help
the administrator understand the error. The default
policy can be ignored, since it always matches every
packet seen by the firewall. Using this enumeration of
the matching rules, the system administrator can con-
centrate on the rules directly relevant to the problem.

History and Equivalence Classes

It is often much easier to use assertions than to
perform a manual inspection of the policy. For one
thing, the rules in a policy interact with each other in
ways that can be confusing to the user. One rule in the

policy might mask another rule or cause the rule to be
applied only in certain, unusual, circumstances. Be-
cause each assertion is independent of the others, writ-
ing and understanding a list of assertions is often eas-
ier than manually correcting the rule set. More impor-
tantly, it is possible to construct a partial or high-level
specification of the policy using assertions. This par-
tial specification can ignore many of the details of the
policy, which allows it to be simpler than the rule set
to which it is applied.

Nevertheless, debugging the firewall using asser-
tions has certain limitations. There is a tradeoff between
the completeness of a specification and how easy the
specification can be constructed. Deriving assertions
that are both useful and effective can be a very chal-
lenging task.

Another limitation of the assertion approach is
that certain kinds of faults cannot easily be identified
using history maps for an assertion.

The policy in Figure 20 is supposed to protect a
secure subnet 192. 168. 2. 0/24 from intrusions on an
untrusted network 192. 168. 1. 0/24. An assertion check-
ing that legitimate SSH traffic can reach the protected
network is also given in the figure. A typo in rule 2
causes the assertion to fail. Unfortunately, the history
map for the assertion will show only the default policy.
None of the other rules in the policy match any packets
in the fail set. In particular, rule 2, which contains the
fault, does not match any packets from the 192.168.
2.0/24 subnet and, therefore, is not listed.

One way to address this problem is to create an
assertion that checks whether packets from 192.186.
2.0/24 are accepted. The history map for such an
assertion would immediately identify the typo in rule
2. The problem with this is that the system administra-
tor has no way of knowing such an assertion is
needed. It is not practical to create assertions for all of
the possible typos in a policy, since doing so would
require at least as much work as manual inspection of
the policy.

A better way to address the problem is to extend
the technique described in [9] to provide history infor-
mation that can be used to discover faults in the pol-
icy. In that work, we described a technique for separat-
ing the computers on a network into related classes of
hosts based on information taken directly from the fire-
wall policy. Hosts in each class are equivalent in the
sense that the firewall will accept or drop a packet from
(or to) a host in the class only if it will accept or drop
an otherwise identical packet from (or to) any other
host in the class. For instance, if the firewall drops all
SSH packets from host A, it will also drop all SSH
packets from host B if they are in the same class. Each
class of hosts on the network is represented as a five
level ‘‘class MDD’’ which can be manipulated effi-
ciently using MDD intersection and union operators.

Figure 21 lists the three classes shown in Figure
20. Class 2 corresponds to the untrusted subnet 192.

21st Large Installation System Administration Conference (LISA ’07) 35

Assisted Firewall Policy Repair Using Examples and History Marmorstein & Kearns

168.1.0/24. Class 3 is an anomalous class of hosts
caused by the typo in rule 2. The existence of this
class is an immediate clue to the system administrator
that the firewall policy contains a serious error. Class
1 corresponds to all other hosts on the network.

Chain Forward (Default DROP)
Target Source Destination Flags
1 DROP 192.168.1.0/24 anywhere
2 ACCEPT anywhere 192.186.2.0/24 tcp dpt:22

ASSERT HISTORY TO 192.168.2.* AND
FOR TCP 22 AND
NOT FROM 192.168.1.*

SUBSET OF ACCEPTED FORWARD;

Figure 20: A fault that history mapping misses.

QUERY HISTORY CLASSES;
There are 3 total host classes:
Class 1:

<Everything not in the other classes>
Class 2:

192.168.1.[0-255]
Class 3:

192.186.2.[0-255]

Figure 21: Equivalence class decomposition of a pol-
icy.

Partitioning the hosts on a network into equiva-
lence classes allows us to generate a ‘‘policy map’’
that shows functional groupings of the hosts on a net-
work. The only input necessary to create a policy map
is the firewall policy itself. When the policy contains a
fault, it will often be manifested in the policy map as a
missing class or by the presence of an unexpected
class of hosts. The equivalence class technique can
detect many kinds of faults that are difficult to identify
using assertions. These faults include typos, overly
broad rules, shadowed rules, outdated rules, and even
missing rules. Unfortunately, while the policy map
assists the system administrator in detecting these
problems, it provides him with little information that
can be used to identify the rules that must be changed
to repair the issue.

We can enhance the policy map by annotating
each class of hosts with a list of rules that match pack-
ets to and from a host in the class. To do this, we
extend each class MDD with wildcard nodes. The
resulting graph is similar in structure to the condition
MDDs used to analyze assertions, but has wildcards at
every level except the source address levels. This
MDD matches the set of all packets whose source
address matches a host in the class. We then repeat the
procedure to produce an MDD with wildcards every-
where except the destination address levels. We can
now intersect with the history MDDs for each chain to
determine which rules match these packets. This inter-
section generates a result MDD which can be trans-
lated into a human-readable history map.

An MDD representing all packets with source
address from class 3 is given in Figure 22. The top
four levels of the MDD correspond to source ad-
dresses on subnet 192.186.2.0/24. The remaining lev-
els contain wildcard nodes.

Figure 22: History MDD for class three.

Class 3:
Firewall 0 Chain 1 Default Policy.
Firewall 0 Chain 1 Rule 2:
ACCEPT all -- * * 0.0.0.0/0 192.186.2.0/24

tcp dpt:22

Figure 23: History Map for class three.

A portion of the history map for the equivalence
classes of the policy in Figure 20 is given in Figure
23. The existence of an anomalous class containing
hosts from the 192. 186. 2. 0/24 subnet immediately
alerts the system administrator to a serious error. A
quick glance at the history map for class 3 reveals that
only two rules are of interest: the default policy and
rule 3. The system administrator now takes a careful
look at rule 2 and discovers the fault, which enables
her to repair the policy.

Existing Work

There are many good techniques for finding
errors in a firewall policy. Tools such as nmap [3],
Nessus [5], and ftester [1] allow the system admini-
strator to actively test a firewall for specific well-
known vulnerabilities. Unfortunately, these tools are

36 21st Large Installation System Administration Conference (LISA ’07)

Marmorstein & Kearns Assisted Firewall Policy Repair Using Examples and History

little help in identifying the faults which cause an
error. For instance, nmap may indicate that a critical
network port is unavailable for a variety of reasons: if
the host is down, the firewall prohibits access to that
port, the TCP wrappers on the server are incorrectly
configured, or a routing error makes the host unreach-
able. Distinguishing between these potential causes is
extremely difficult. Once the error has been narrowed
down to the firewall, these tools do not provide any
information about the policy itself that aid the user in
determining why the error has occurred.

More rigorous testing can be done using passive
testing tools, such as the Lumeta firewall analysis
engine [10, 12], that perform an exhaustive off - l i n e
analysis of the policy. These tools simplify the task of
determining whether the firewall policy contains errors
by allowing the user to specify a set of logical queries
that provide information about the policy. Some work
has also been done on using expert systems to test the
firewall policy [2]. The Lumeta engine provides sup-
port for History Mapping and limited example genera-
tion. However, the Lumeta engine is a proprietary
closed-source product, which does not support ipta-
bles. These passive analysis tools also do not provide
class-based analysis and therefore require the user to
invest a significant amount of time designing appro-
priate queries or specifications against which the pol-
icy must be tested.

Conclusion

Using examples and history mapping, a system
administrator can easily identify the two or three critical
rules in a rule set that lead to a serious firewall error.
Detecting these faults greatly reduces the amount of
time an administrator must spend in careful examina-
tion of the policy and makes it much easier to manage
and maintain a large, restrictive firewall policy. Using
counterexamples and witnesses, the system administra-
tor also gains valuable knowledge about the circum-
stances under which an error occurs. Using rule history
with equivalence classes allows the system admini-
strator to quickly and easily detect both errors and
faults in the policy without constructing a large num-
ber of complicated assertions. The only required input
is the policy itself. This greatly simplifies the process
of maintaining, debugging, and repairing a restrictive
firewall policy on a large network.

The techniques for generating a history map and
relevant counterexamples have been implemented in
our tool, ITVal, which can be downloaded from http://
itval.sourceforge.net . The web site also provides sev-
eral example specification files which can be down-
loaded and customized for use on a variety of networks.

Bibliography

[1] Barisani, Andrea, ‘‘Testing Firewalls and IDS
With ftester,’’ Insight, Newsletter of the Internet

Security Conference, Vol. 5, 2001, http://www.
tisc2001.com/newsletters/56.html .

[2] Eronen, Pasi and Jukka Zitting, ‘‘An Expert Sys-
tem for Analyzing Firewall Rules,’’ Proceedings
of the 6th Nordic Workshop on Secure IT Systems,
2001.

[3] Fyodor, ‘‘The Art of Port Scanning,’’ Phrack,
Vol. 7, Num. 51, September, 1997.

[4] Gouda, Mohamed G. and Alex X. Liu, ‘‘Firewall
Design: Consistency, Completeness, and Compact-
ness,’’ Proceedings of the International Confer-
ence on Distributed Computing Systems, IEEE
Computer Society, March, 2004.

[5] Lampe, John, Nessus 3.0 Advanced User Guide,
October, 2005, http://www.nessus.org .

[6] Marmorstein, Robert, ITVal Project Website, 2005,
http://itval.sourceforge.net .

[7] Marmorstein, Robert and Phil Kearns, ‘‘An Open
Source Solution for Testing NAT’d and Nested
iptables Firewalls,’’ 19th Large Installation Sys-
tems Administration Conference (LISA ’05), pp.
103-112, December, 2005.

[8] Marmorstein, Robert and Phil Kearns, ‘‘A Tool for
Automated iptables Firewall Analysis,’’ FREENIX
Tr a c k , 2005 USENIX Annual Technical Confer-
ence, pp. 71-82, April, 2005.

[9] Marmorstein, Robert and Phil Kearns, ‘‘Firewall
Analysis With Policy-based Host Classification,’’
20th Large Installation Systems Administration
Conference (LISA ’06), pp. 41-51, December,
2006.

[10] Mayer, Alain, Avishai Wool, and Elisha Ziskind,
‘‘Fang: A Firewall Analysis Engine,’’ Proceed-
ings of the IEEE Symposium on Security and Pri-
vacy, May, 2000.

[11] Stearns, Bill, http://www.stearns.org/ .
[12] Wool, Avishai, ‘‘Architecting the Lumeta Fire-

wall Analyzer,’’ Proceedings of the 10th USENIX
Security Symposium, August, 2001.

21st Large Installation System Administration Conference (LISA ’07) 37

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200061006d00e9006c0069006f007200e90065002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /ENU (Use these settings to create PDF documents with higher image resolution for improved printing quality. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e0065002000760065007200620065007300730065007200740065002000420069006c0064007100750061006c0069007400e400740020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e0030002000650020007300750070006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e006700200066006f00720020006100740020006600e50020006200650064007200650020007500640073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f0067006500720065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000650065006e0020006200650074006500720065002000610066006400720075006b006b00770061006c00690074006500690074002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200070006100720061002000610075006d0065006e0074006100720020006c0061002000630061006c006900640061006400200061006c00200069006d007000720069006d00690072002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a00610020004100630072006f006200610074002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006200650064007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020006400e40072006d006500640020006600e50020006200e400740074007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

