
 Ruby:

productivity
or

penance?
Andrew Hume

AT&T - Research

My motivation

• efficiently write distributed control
software
– I hate sockets and TCP/IP

• looking for a replacement for ksh/awk
– have tried perl; the answer is no!

• learn something new and useful
– Python without the ugly
– groundwork for Ruby on Rails

Opportunity
• 9 nodes each managing 8 tuners
• 1 admin node
• how to coordinate tuners recording:

– write standard sockets and TCP/IP C goo
– do (anything) else

• performance not an issue; ease was
• after eliminating perl and python, consider
ruby!
– but had to be done purely with free online stuff

Looking around

• wow! a real book
http://www.ruby-doc.org/docs/ProgrammingRuby/

• library documentation? wow!
http://www.ruby-doc.org/core/

• lots of examples
(examples from Ruby Cookbook, sadly

not available any more)

The acid test
• how to do distributed communication?

qthane = DRbObject.new_with_uri(
"druby://#{thane_ip}:#{::THANE_PORT}")

qchurl = Queue.new
churl_addr = "druby://#{my_ip}:#{::CHURL_PORT}"
DRb.start_service(churl_addr, qchurl)

while job = qchurl.deq
…

end

• how whizzy is that?

Ruby real fast
• like AWK, but a real language with

structures, objects and regexes
• many syntactic weirdos to make

Perlites feel at home (can be safely
ignored)

• full support for threads
• garbage collected memory
• iterators
• google for intros and reference guides

{new|cool|odd} things (1)
• much more on-the-fly constructions
a = [2, 3, 4]
h = {‘abc’ => ‘2234’, ‘def’ => [1, 2, 3]}

qthane.enq(‘op’ => ‘status’, 'name' => my_ip)
job = qthane.deq
puts job[‘op’]

• evaluated strings
“a=#{a} at time #{Time.now.ctime} #{`date`}”

{new|cool|odd} things (2)
• new styles for file I/O
f = File.new(‘testfile’)
puts “line 1 is #{f.readlines[0]}”

File.new(‘testfile’).each_line{ |b|
puts “read line #{b}

}

puts “we just read #{f.lineno}”

{new|cool|odd} things (3)
• objects like simple classes
class Churl

def initialize(name, state=0)
@name = name
@s = state
@t_op = 0

end
def name

@name
end
def to_s

“churl#{@name} state=#{@s} op=#{@t_op}”
end

end

{new|cool|odd} things (4)
• threads
threads << Thread.new(name){ |myname|

code here
}

threads.each{ |t| t.join }

• as always, use mutexes to synchronise
mutex = Mutex.new
. . .
mutex.synchronise do

. . .
end

{new|cool|odd} things (5)
• use if and unless modifiers
print t unless t == nil
puts “howdy!” if type == ‘Friend’

• case statement
case inputline
when ‘exit’

exit(0)
when /print (\w+)/

print_var($1)
else

puts “what the heck? >#{inputline}<“
end

{new|cool|odd} things (6)
• exceptions
f = File.new(‘testfile’, ‘w’)
begin

while data = socket.read(512)
f.write(data)

end

rescue SystemCallError
$stderr.print “I/O failed: ” + $!
f.close

end

{new|cool|odd} things (7)
• good libraries

– cgi
– kernel
– Drb
– Tk
– many Gems

• good packaging as Gems
http://rubygems.org

Careful now, C guy

• globals are trickier than they should be
• avoid and or (use && ||)
• compound statements (while, if) have

odd rules for delimiters
• be aware of exceptions
• 0 argument procedure calls can omit ()
• numbers require care, esp floating point

Epilog

• Ruby has been effective, entertaining
and only a little frustrating

• Language of choice for latest project
(recursive descent compiler and
geometric modeller)

• Many good books (your call)
• Give it a go!

