
A Forensic Analysis of a Distributed
Two-Stage Web-Based Spam Attack

Daniel V. Klein – LoneWolf Systems

ABSTRACT

Open mail relays have long been vilified as one of the key vectors for spam, and today –
thanks to education and the blocking efforts of open relay databases (ORDBs) – relatively few
open relays remain to serve spammers. Yet a critical and widespread vulnerability remains in an
as-yet unaddressed arena: web-based email forms. This paper describes the effects of a distributed
proxy attack on a vulnerable email form, and proposes easy-to-implement solutions to an endemic
problem. Based on forensic evidence, we observed a well-designed and intelligently implemented
spam network, consisting of large number of compromised intermediaries that receive instructions
from an effectively untraceable source, and which attack vulnerable CGI forms. We also observe
that although the problem can be easily mitigated, it will only get worse before it gets better: the
vast majority of freely available email scripts all suffer from the same vulnerability; the load on
most proxies is relatively very low and hard to detect; and many sites exploited by the
compromised proxy machines may never notice that they have been attacked.

Introduction

As new defenses against spam are developed,
spammers have been forced get more inventive in their
attacks. Much as antibiotic resistant bacteria force the
development of new drugs, so do spam-resistant mail
servers drive the spammers to continually create new
methods of disseminating their advertisements. A
modern anti-spam arsenal provides defense with a
combination of Bayesian filters, keyword matching,
fuzzy checksums, header and source IP checks.

Spammers have responded with text that defeats
filters, omits key words with unusual spelling or use
of graphics, random strings to confound checksums,
and more and more legitimate-looking headers. The
one thing that can truly defeat spammer is to deny
them the means to send their email. Since recent legis-
lation has made it undesirable to have a traceable
source IP address (since getting caught can now mean
stiff fines and/or jail time1), spammers used open
relays in foreign countries as an indirect (and difficult
to trace) means of promulgating their wares.

Indeed, for a while it was thought that closing off
open relays and/or denying them the ability to send
mail might be a solution. Although it took time to
spread, updates to the default configurations of mail
transfer agents (MTAs) went a long way towards alle-
viating the open-relay problem, while education
through a distributed denial of service (in the form of
ORDBs) have made open relays, if not a thing of the
past, at least a non-problem.

1On September 5, 2006 the Virginia Court of Appeals
(Record No. 1054-05-4) upheld the felony conviction of
Jeremy Jaynes under the state’s anti-spamming law (18.2-
152.3:1). The sentence (which was affirmed in the appeal)
was nine years imprisonment.

However, open relays fall into two classes:
MTAs and MUAs (mail user agents), and the ORDBs
only deal with the former class. MUAs are often
thought of as applications that send mail for an inter-
active user, but they can also be applications that send
mail on behalf of a script. In this case, the application
is a CGI script, and an improperly configured CGI
script can be exploited to send a payload to locations
that were not envisioned by their designers.

Vulnerability Summary

The vulnerability in CGI scripts that send email
is easy to spot, and trivial to fix. It may best be sum-
marized in the following highly simplified example
(see Example 1).

At first blush, the form and the CGI script look
innocuous enough. A surfer can enter a single line of
text for their name, another for their email address,
and a multi-line complaint. The script then sends an
email from the user to a fixed address (in this case,
mine), and lets me know their complaint. Compliant
browsers all provide this functionality, but the problem
is not in browsers, but rather in the fact that it does not
take a browser to surf the web! Surely the notion of
robots is no mystery (all of the search engines use
them to harvest information from the web), so it
should likewise be no surprise that a robot can submit
forms. Combine this with a fundamental feature of the
HTTP and SMTP protocols, and you have a trivial
means for a spammer to abuse this simple form.

Although browsers only allow a single line of data
to be supplied for an input item of type ‘‘text,’’ the
HTTP protocol allows arbitrary text, and robot can eas-
ily provide that arbitrary text. When connecting to
Sendmail (and other MTAs), mail headers are separated

20th Large Installation System Administration Conference (LISA ’06) 31

A Forensic Analysis of a Distributed Two-Stage Web-Based Spam Attack Klein

from the body of the message by a blank line. So if a
legitimate surfer enters ‘‘Dan Klein’’ for the Who field,
‘‘ d a n @ k l e i n . c o m ’’ for the Addr field, and ‘‘This
form\nis really dumb!’’ for the Complaint field, then
the following would be handed to Sendmail:

<FORM ACTION=mail.cgi>
Your name:
<INPUT TYPE=TEXT NAME=Who>

Your email address:
<INPUT TYPE=TEXT NAME=Addr>

Your problem:
<TEXTAREA NAME=Complaint>
Type your complaint here!
</TEXTAREA>
<INPUT TYPE=SUBMIT>
</FORM>

#!/usr/bin/perl
use CGI ’:all’;
import_names;
open MAIL "| sendmail -oi -t";
print MAIL <<"==END==";
To: dvk\@lonewolf.com
From: "$Q::Who" <$Q::Addr>
Subject: Whine whine whine...

$Q::Complaint
(whew)
.
==END==
close MAIL;

Example 1: CGI Form and CGI Script.

dan@klein.com>\nBcc: your@address.com, target@victim.com,\nanother@mark.com,more@
suckers.com\nSubject: Increase your pennies\n\nGet bigger pennies! The 19th century\n
English pennies are HUGE! Impress your woman!\n\n

Example 2: Nefarious text handed to the complaint field.

To: dvk@lonewolf.com
From: Dan Klein <dan@klein.com>
Subject: Whine whine whine

This form
is really dumb!
(whew)

Notice that the newline in the Complaint field is
accurately translated when sending the email. So now
consider that a spammer has instead supplied the value
in Example 2 for the Addr field. Here is what is
handed to Sendmail:
To: dvk@lonewolf.com
From: Dan Klein <dan@klein.com>
Bcc: your@address.com, target@victim.com,

another@mark.com, more@suckers.com
Subject: Increase your pennies

Get bigger pennies! The 19th century
English pennies are HUGE! Impress
your woman!

>Subject: Whine whine whine

This form
is really dumb!
(whew)

Since the spammer cannot see the script (only its
results), s/he must treat it as a black-box, making a
number of attempts until the proper formatting is dis-
covered. Notice the careful placement of the ‘>’ charac-
ter to guarantee (in this case) that Sendmail properly
parses the input. The spammer typically creates a short-
term-use email account and uses that address as a test
target, trying a collection of well-known formats with
specially coded messages with an annotation (repre-
senting the format type) included. Once one email is

received at the test address, the spammer knows from
the annotation the correct format to use.2 Suddenly the
innocuous email form is a vehicle for sending spam!

In retrospect, I should have noticed the problem
with my form when the spammer first tested their
script. I received a short collection of very similar
spam messages from all over the world, but like most
people, I simply deleted them. Initially, I received
them because the spammer had not yet determined
how to properly exploit my script (for example, they
had appended the Bcc addresses in the Complaint field).

After the exploit was fine-tuned to match my
script, I received approximately 5,000 spam emails
(because in my script, I was listed as the To address).
Each of the messages were also Bcc’d to 380-390
other addresses. Had I not detected the attack, this ulti-
mately would have resulted in close to 2,000,000
spam messages being sent from my mail server. It is
interesting to note that my desktop spam blocking
software helpfully deleted most of the spam messages
addressed to me. Thus I never knew I was being
attacked – at least until I checked my various RRD
logs, as shown below.

The Larger Problem

A very quick survey using Google reveals the
severity of the problem. Searching for ‘‘email cgi
script,’’ ‘‘Perl CGI email’’ and ‘‘Perl email script’’
yielded the expected plethora of results, but a union of
the top-10 of each search yielded 21 unique pages. Of
these 21 scripts, one third suffered from the vulnera-
bility described above:

• 7 scripts had obvious flaws that allowed spam
email exploitation of the type seen in the exam-
ple above.

2Some of the test emails also include the correct use of
MIME headers and separators, some of which (through mul-
tipart/alternative) appear to be specifically calculated to
hide the original legitimate contents of the form-generated
email.

32 20th Large Installation System Administration Conference (LISA ’06)

Klein A Forensic Analysis of a Distributed Two-Stage Web-Based Spam Attack

One of the flawed scripts was #1 on a par-
ticular Google results page.
Another of these scripts ‘‘sanitized’’ the
user data by removing brackets and shell
wildcard characters from mail headers, but
failed to remove line breaks!
A third script removed all instances of
‘‘\r\n’’ followed by removing all ‘‘\n’’
characters. This allows a spammer to use
‘‘\n\r ’’ as a line break, leaving a bare ‘‘\r ’’
after the so-called sanitization is per-
formed.

• 3 scripts had code to successfully prevent spam
email exploitation.

• 2 were at perl.com (and thus were assumed by
this author to be correct).

• The remainder of the links were located on pay-
sites, were too convoluted to search, or had bad
pointers to scripts.

Matt’s Script Archive (a tremendously popular
website for perl scripts) provided a secure script, but
looking at his change log, I found that the script was
only secured in August of 2001. Although he urges
current users to upgrade to the secured version, the
site also has the following note: ‘‘This script has been
downloaded over 2 million times since 1997.’’ I noted
that other publicly available scripts were based on the
buggy versions of Matt’s script, and hesitate to guess
how many of the buggy derivative scripts are still in
use throughout the world.

At least half of the most likely-to-be-copied scripts
were sufficiently flawed as to allow easy exploitation by
a spammer. A random sampling of other email scripts
listed later in Google’s results indicated that on the
order of half the scripts were equally vulnerable.

Solution

Fortunately, there is a trivial fix to the problem.
An obvious (yet regrettably often overlooked) rule of
thumb is ‘‘never trust your users’’ – especially when
those users are unvetted and/or from the web. A sim-
ple rule that the script could follow is: ‘‘don’t trust
user input,’’ and simply sanitize the user data to
accomplish this. Not allowing any user data in email
headers is the best solution – fixed header-content
guarantees a known result (using Sendmail’s -oi switch
is also highly recommended, or whatever the equiva-
lent is in other MTAs). However, since it is also conve-
nient to be able to reply to emails from forms (and thus
allowing the user to specify input that will ultimately
be placed in email headers), a less draconian solution
is to simply remove newlines (or more generally,
replace all contiguous whitespace with a single space
character) in any user input that may find its way into
an email header. Either action will fix the vulnerability
and allow a user to Reply to form-based email.

There is no need to go to the extra effort of deter-
mining if the user has supplied a valid email address.3

Sendmail will simply fail to deliver mail with bogus
From, To, Cc, or Bcc headers, so in general it is better to
leave the address parsing to the program most respon-
sible for it.

Discovering the Attack

In addition to reading my email, one of my
morning rituals is to scan the SNMP statistics from the
various machines on my network. A single click in my
tabbed web browser brings all this data readily to
hand.4 These include critical statistics such as network
load, free disk space, web server statistics and email
traffic, as well as more incidental data including load
average, number of active users and processes,
machine uptime, and NTP synchronization data. Any
anomalies can thus be quickly investigated, and prob-
lems can be readily averted or remedied.

My network consists of my laptops and desktops,
a web server, an email server, a backup server, a pair
of name servers, and a semi-public wireless network.
Figure 1 shows the overall traffic on my T1 serial line.
The pattern of activity is not particularly noteworthy,
and can readily be accounted for by a newly popular
page on one of my websites, or one of my wireless
customers uploading a particularly large file.

Figure 2 (available to me on the same dashboard)
shows network traffic broken down by LAN.
Although a second look showed me that the primary
load was on the downstairs network (where the mail
and DNS servers are located), initially this graph did
not look at all ominous. The spikes at 03:50 and 04:20
are normal for a Saturday morning – they result from
an upstairs machine performing a remote disk-to-disk
backup to the downstairs backup server.

Figure 3 is a more detailed view of the down-
stairs network, and shows that the backup server
(called cow) receives backup data from upstairs, and
additionally gets backup data from maxwell at 03:30
and samantha at 05:30. But more ominous (again, only
in retrospect) is the outbound data from maxwell
(which is also my mail server) starting at 06:00, and
the same time, the relatively large amount of output
from ns. Typically, the name server accounts for a neg-
ligible load, and is all but imperceptible in the graphs.

Indeed, except for data recognized in hindsight,
there was nothing to indicate that anything was amiss.
The network traffic was cursorily ‘‘normal’’ (although
the traffic from the name server was ‘‘unusual’’), and

3A myriad of email form scripts get this wrong by forbid-
ding ‘+’ or other legal address characters. For a complete
and correct regular expression for parsing email addresses,
consult Jeffrey Friedl’s excellent book ‘‘Mastering Regular
Expressions’’ (ISBN 0-596-00289-0), or look at http://exam-
ples.oreilly.com/regex/email-opt.pl

4I use Cricket (http://cricket.sourceforge.net/) to collect the
data, RRDTool to store it, and drraw (http://web.tara-
nis.org/drraw/) to display it in ‘‘dashboards.’’ Drraw is indis-
pensable, because it allows unrelated data to be collected in
a single view.

20th Large Installation System Administration Conference (LISA ’06) 33

A Forensic Analysis of a Distributed Two-Stage Web-Based Spam Attack Klein

Figure 1: Overall network traffic.

Figure 2: Internal network traffic by LAN.

Figure 3: Internal network traffic on the downstairs LAN.

Figure 4: Apache States.

34 20th Large Installation System Administration Conference (LISA ’06)

Klein A Forensic Analysis of a Distributed Two-Stage Web-Based Spam Attack

if network traffic had been my only critical indicator, a
quick visual survey would have raised no red flags.

I had received a number of odd mail messages
from the script that was being attacked, but I wrote
those off as ‘‘someone messing with the site’’ (and
was unconcerned given that I thought my scripts were
secure). I also received one email message for each of
the actual attack messages (since the script was
designed to send me that mail). However, after the
first few, my desktop spam filters ‘‘helpfully’’ blocked
those messages, and except for the SNMP data, I was
otherwise unaware of the thousands of spam messages
being sent to AOL from my machine.

Figure 5: Apache requests from the web.

Figure 6: Kbytes served to the web by Apache web server.

Figure 7: Load Average of Mail Server.

What ultimately triggered further analysis was
the graph of Apache states, found in Figure 4 (how-
ever, this is only after first noticing the highly unusual

mail statistics in Figures 10 and 14, below). Mine is a
lightly loaded web server, with MinSpareServers and
MaxSpareServers set to 15 and 25, respectively. Typi-
cally fewer than a half-dozen servers are active serv-
ing requests. Thus when Apache reported 40 to 80
active processes for a span exceeding an hour, I deter-
mined that something was amiss.

It is especially noteworthy that there was no
surge in the requests made of the webserver, nor in the
amount of network traffic that that the webserver was
generating (seen in Figures 5 and 6). Thus each writing
process (shown in Figure 4) was taking a lot of time to
perform its job, but did so without generating a lot of
data. Since Apache does not block on locked files, the
only reasonable explanation was CGI script execution,
where each script was taking a long time to complete.

20th Large Installation System Administration Conference (LISA ’06) 35

A Forensic Analysis of a Distributed Two-Stage Web-Based Spam Attack Klein

Indeed, as Figures 7 and 8 show, there were a
large number of active processes. The load average on
the machine (which is typically below 1.0) surged to a
high of 16 before Sendmail’s RefuseLA safeties cut in,
and the number of active processes nearly quadrupled
from 200 to 700.

Figure 8: Number of Processes Active on Mail Server.

Figure 9: Load on Name Server.

Figure 10: Mail Deliveries Made by Attacked Host.

Figure 9 shows the load on the name server
machine. Typically, it putters along with a load aver-
age of 0.1 or less, but the large volume of email con-
sumed nearly all of the resources of this machine. This
small machine has a single purpose, and under ordi-
nary conditions adequately services 15 internal hosts
(all of whose webservers are configured to do reverse
lookups), and is the authoritative name server for 185
domains. Therefore the load on the name server

presented by the spam attack is vastly in excess of any
normal load experienced.

The volume of mail delivered (and deferred) by
the attacked webserver is shown in Figure 10. From
the start of the attack, the messages actually delivered
(labeled ‘‘forwarded to a remote client’’) steadily
climbs until it reaches a peak of nearly four messages
per second. At approximately 08:00, AOL graylisted
my server, the deliveries dropped, and the number of
deferred deliveries grew steadily.

The peaks in deferred deliveries seen every 30
minutes are Sendmail re-running the queue (because the
-q30m option was specified at startup). I estimate that
between 15,000-20,000 pieces of spam mail were sent
until AOL graylisted my server. As will be seen below,

36 20th Large Installation System Administration Conference (LISA ’06)

Klein A Forensic Analysis of a Distributed Two-Stage Web-Based Spam Attack

this is a fraction of the potential impact on both my
server and AOL. However, mine was but one of poten-
tially hundreds of thousands of vulnerable email scripts.

Figure 11: Number of messages in the outbound mail queue.

Figure 12: Volume of message in the outbound mail queue.

Figure 13: Mail traffic to my desktop.

Figures 11 and 12 show the number of message in
the outbound mail queue, waiting to be sent. The num-
ber climbs steadily following the onset of the attack,
and peaks at around 07:45, when the attack ceased (the
precipitous drop off at 12:30 is due to my manually
purging the queue). These numbers may appear small
to someone who is used to running a larger site, but the
sparseness of these numbers is misleading.

At its peak, the outbound mail queue contained
5,000 messages, with 80 MB of data. This may seem
like a pittance, except when you consider that each
message was typically addressed to 380-390 victims,
so a queue size of 5,000 messages represents nearly

two million email targets. For a medium to large host,
this additional traffic might go completely unnoticed,
and I posit that the problem of unprotected scripts is
far larger than we suspect!

It is essential to note that no one bit of data
would have triggered my awareness of this spam
attack (and the search that followed). It is only in
aggregate that the data indicated something was amiss.
In fact at some sites, an increase in queue size such as
this might only suggest a stuck queue, and merely
prompt a restart of the mail server. Likewise, if only
the queue volume was used as a metric, this graph
could easily have been confused as a user emailing a
large file (such as a movie or collection of photos) that
was not being accepted by the remote site. Plus, 80
MB of outbound mail is a pittance for many ISPs.

20th Large Installation System Administration Conference (LISA ’06) 37

A Forensic Analysis of a Distributed Two-Stage Web-Based Spam Attack Klein

Because my desktop spam filters deleted the
large faction of confirmation and spam bounce emails
addressed to me, the volume of these messages was
not immediately obvious. However, as Figure 13
shows, the number of email messages that were
received (and automatically deleted) is greatly in
excess of any ‘‘normal’’ traffic that my desktop would
otherwise see.

Yet what is perhaps most interesting is the spam
statistics for the machine that was attacked. As you
can see in Figure 14 (which tracks types of spam
received), there is nothing to indicate that spam is
being sent. During the attack, the spam ratios and rates
look completely normal (the spike of ‘‘unknown
users’’ at noon is a different, but unrelated attack).

Figure 14: Spam detection.

Figure 15: Spam to Ham Ratio.

However, Figure 15 is very interesting. This
graph tracks the ratio of spam to ham (and also tracks
that which is unknown). Surprisingly, the amount of
ham goes up during the attack. This is for two reasons.
The first is that the exploited script will still send an
email to the originally intended email address within
our site. This is definitely considered ham, because it
originates inside our network and is targeted to
another machine inside our network. The second is
because the bounced emails (that fail to reach their
intended target at AOL) are unknown. They cannot be
classified as either spam or ham, so again the ratio of
spam to ham goes down. It was ultimately this graph
that caused me to look more closely at what was

happening, since nothing (at the time) could immedi-
ately explain that erratic behavior.

Analysis of the Attack

The fact that I was attacked (and the solution to
the vulnerability) was now obvious. The biggest prob-
lem I still had is that I didn’t know exactly how I was
attacked. I know the reason (sending spam email), the
target (a few million email addresses), the vector (my
faulty CGI script), but not the source! In the 24-hour
period with the most accesses of my vulnerable script,
my web logs show a collection of 259 source-IP
addresses scattered around the world.

Since web-servers report on the source-IP of the
host that made the connection, my initial assumption
was a collection of virus-infected Windows machines
were attacking me, coordinated through some central
database server. These compromised hosts could likely
comprise a bot-net, but a problem exists with this
hypothesis – a number of the machines were UNIX- or
Linux-based machines! I attempted to contact a web
server port 80 for each of the 259 machines. 27 of
these identified themselves as UNIX/Linux Apache
servers, 13 as Windows IIS servers, 6 as Squid prox-
ies, and 6 as other web servers (the remaining 207
machines did not respond to queries on port 80).

I also considered that the attacker was using
forged source IP addresses, but this possibility was
quickly ruled out. Certainly, the SYN packets could

38 20th Large Installation System Administration Conference (LISA ’06)

Klein A Forensic Analysis of a Distributed Two-Stage Web-Based Spam Attack

have come from a forged address, but in order to make
a request from my web server, the 3-way TCP hand-
shake needs to be completed. The only way this could
be done is for the attacker to be in the routing path of
the forged address, and to make sure that the real
machine does not respond to any response packets.
While theoretically possible, this type of attack is highly
unlikely, given the wide distribution of IP addresses.

My next thought was that these machines had
open web proxies on them, and this seems the most
likely explanation. Using nmap, I scanned each of the
machines involved. Since my probes were done some
months after the attack, it is very likely that some of the
machines were either reprovisioned or reconfigured,5

and approximately 45% of the machines probed were
reported as ‘‘down’’ (some of these responded very
erratically, with long connection delays that often timed
out). Of the remainder I determined that a large number
(approximately 50%) of the machines were currently
running web servers or proxy servers on ‘‘obvious’’
ports (80, 3128, 800x, or 808x). Some of the proxy
servers currently required authentication, and although
I did not have the proper credentials, it is highly likely
that the spammer did. Sniffing software is readily avail-
able to find proxy passwords on unencrypted networks.
There are also hundreds websites listing ‘‘free prox-
ies,’’ and hundreds of others that share passwords – the
combination of services is equally likely. I also have no
doubt that some of the machines were running proxy
servers on unobvious ports as a result of a virus or tro-
jan with an HTTP proxy payload

Finally, I considered compromised logins, espe-
cially for those machines running UNIX or Linux. I
found that approximately 25% of the machines had
open ssh or telnet ports, so this hypothesis is possible,
but it seems much more likely that open proxies are
the vector for the attack.

In general, the attacker was smart. A small num-
ber of test emails were sent, and once a successful
exploitation was found, a relatively small number of
spam messages were sent (only a couple of thousand),
and then the spammer moved on, presumably to
another victim.

Because the attack was distributed through a col-
lection of proxies, it is very difficult to determine the
source of the attack. To do so would require accessing
the proxy logs from a collection of the participating
machines (which would require international coopera-
tion from people who may not even know that they
have proxy running), and this effort might in turn dis-
cover that the participating proxies were contacted by
other proxie to further obscure the attack. And
although this might eventually lead to a single source
ISP, all that we would discover would be a temporary

5A webmaster that I contacted directly indicated that on the
date of the attack he indeed had had a proxy running, but had
since taken it offline due to ‘‘configuration issues.’’

AOL account (to verify that the test emails were
received), used only for a day or two and probably
created using a forged or stolen credit card.

Further, although the spammer used my script
and MTA to send approximately two million spam
emails, the volume was not so large that my MTA was
swamped, nor would the load have persisted for more
than a few days. For a larger ISP, the excess web and
email load might even go completely unnoticed!6

Once the script was used to send emails, renewed
probes occurred daily for a few days as two to five
tests were sent per host. Since I had by this time fixed
the bug in the script, this probing gradually trailed off
for the month after the initially discovered attack.
However, it seems that the attackers are not fully coor-
dinated, as my script is still probed a few times almost
every day from locations around the world. I am ‘‘on
their list,’’ and it seems that it will take quite some
time before I am removed (if ever).

Lessons Learned

A number of lessons can be learned from this
attack. Many of them are ‘‘obvious,’’ in that they are
things that I should have learned and taken to heart
ages ago. Experience is recognizing a mistake when
you make it the second or third time, and I have plenty
of that. Security, on the other hand, is not allowing
oneself to make the same mistake the second time! I
pass on my experience in the hope that my readers
may have better security.

• Audit your scripts. It is far too easy to fall into
the trap of thinking ‘‘if it is available on the web,
it must be good.’’ The truth is of course ‘‘not by
a long shot,’’ but internally developed scripts are
equally vulnerable, and should also be audited.
If you have a colleague who can audit your
scripts, have them do so. But even a lay person
can help you audit. I call this the ‘‘mannequin
theory of programming.’’ If I take the time to
explain my code to a total dummy, then I slow
myself down enough to think about what might
go wrong (and can then make notes to fix it).

• Notes are useless without a corresponding
action. ‘‘I’ll get to it’’ has severe consequences
when you don’t get to it! Once you find bugs,
fix them!

• Finding a bug in one script probably means that
the same bug exists in others. When you find a
bug, exhaustively search your site(s) for scripts
which have similar behavior to see if the mis-
take has been repeated.

• Audit your configurations. Most UNIX/Linux
systems have Apache and Squid trivially avail-
able to them, and both can be (mis?)configured

6The open proxies are perhaps not as lucky. Some of the
open proxies I examined had response delays of 45 seconds
or more. While they may be intentionally throttled to pre-
vent abuse, they are more likely seriously overloaded by that
selfsame abuse.

20th Large Installation System Administration Conference (LISA ’06) 39

A Forensic Analysis of a Distributed Two-Stage Web-Based Spam Attack Klein

as an open reverse proxy. While I will not
engage in the privacy and anonymity arguments
that proxy use can engender, I will only note
that with every freedom there is a concomitant
potential for abuse of that freedom. If you
intentionally run a proxy, make sure it does
what you intend it to do.

• Monitor your network. Daily dashboards are
great for detecting anomalies, but beware of
slowly changing things, too. A slowly filling
disk (due to non-deletion of old log files)
wasn’t noticed for a year, because I only looked
at daily, weekly, and monthly logs (and only the
yearly log showed the slow trend)!

• Don’t rely on automated detection. Tools like
IDS systems are only as good as their process-
ing rules (that in general rely on past experi-
ence), and they tend to discourage vigilance
and encourage laziness. For example, would
cfengine have found this attack? In a private
communication, Mark Burgess (author and
designer of cfengine) only says ‘‘maybe.’’ More
accurately, he said:

The cfenvd daemon would certainly have
noticed the rise in SMTP, DNS, processes
etc., but the question is – would your moni-
toring policy have bothered to report it to
you? In cfengine, you have to tell it what
you want to hear about. The default is
always – nothing!

Cfengine does a kind of ‘‘lazy evaluation’’
on the data. If you ask to see anomalies in,
say SMTP, you can also ask it look more
closely at the distribution of IP sources. It
uses the ‘‘informational entropy’’ (i.e., how
sharp the distribution is) as a policy param-
eter. So you could say ‘‘tell me only about
low entropy SMTP anomalies’’ (meaning
tell me only about SMTP anomalies that
come from one or proportionally few IP
sources – a sharp attack from a single
source). Or you could say ‘‘show me all of
them,’’ or ‘‘high entropy’’ (wide range of
sources). So as with all systems, it depends
on how you had it configured.

• Know what you are looking at (and looking
for). If you don’t know your data, then it is that
much harder to recognize an anomaly. In my
case, a single anomalous graph would not have
triggered my search. Instead, it was the correla-
tion of a number of unusual bits that did so.
Your data should provide specific information
as well as the overall gestalt of your network.

• Know your systems and your configuration,
and where possible, leave yourself clues. Trou-
bleshooting is as much an art as it is a science,
and the more you know about your environ-
ment, the more likely you are to inuit the source

of a problem. In my case, I immediately recog-
nized the 10-year old script I had written from
the text of the email messages it was sending.
However, even if I hadn’t, I had unique text in
every email (tagged to the script) that would
have enabled me to quickly grep for the offend-
ing script. An even better clue would be to put
both the URL and the location of the file on
your server in the script output.

Author Biography

Daniel Klein has been teaching a wide variety of
Unix-related subjects since 1984, and has been
involved with Unix since 1976. His experience covers
a broad range of disciplines, including the Internals of
almost every Unix kernel released in the past 30 years,
real-time process control, compilers and interpreters,
medical diagnostic systems, system security and
administration, web-related systems and servers, graph-
ical user interface management systems, and a race-
track betting system. He contributes regularly to the
proceedings of the USENIX Association, and is also
their tutorial coordinator. He holds a Masters of
Applied Mathematics from Carnegie-Mellon Univer-
sity in Pittsburgh, and in his free time is director of an a
cappella group and a member of an improvisational
comedy troupe.

Conclusion

Spam is a problem that is going to plague us as
long as we provide a means for spammers to send
their messages. Crime may not pay, but spam certainly
does (it has been estimated that Jeremy Jaynes was
earning $400,000 to $750,000 per month). While pro-
viding an open mail relay or an open web proxy may
be viewed as an exercise in free speech, CGI scripts
which allow email to be sent to any address other than
the intended one can only be viewed as software with
a bug. Fixing this particular bug is relatively easy, and
has an immediate beneficial effect. While the overall
impact of fixing this vulnerability on the volume of
spam can only be speculated at, it is unquestionable
that the volume will be reduced by doing so.

40 20th Large Installation System Administration Conference (LISA ’06)

