
Interactive Network Management
Visualization with SVG and AJAX

Athanasios Douitsis and Dimitrios Kalogeras
– National Technical University of Athens, Greece

ABSTRACT

The area of visualization has always been one of the most attractive sections of network
management technology. Successful management tools must not only fulfill objective management
needs but also be aesthetically appealing. Consequently, the seemingly mundane task of presenting
information to the user has become almost a true art. The application proposed in this paper is a
vehicle for the presentation of network management data using interactive graphs. By using the
Scalable Vector Graphics markup language (SVG) [1] and Asynchronous Javascript and XML
(AJAX) [2], it strives to aid the rapid development of visually impressive management
applications that are accessible through the use of a web browser. These highly interactive and
versatile applications can respond to user actions and present data which is organized into layers
and is retrieved and refreshed on demand. The data of these layers is generated by network
management tools that plug in to the application through the use of a modular framework.

Motivation and Problem Statement

The Need for Abstract Visualization

Vi s u a l i z a t i o n of data has always been important
in many areas of human knowledge and engineering, as
it allows people to perceive information in more effi-
cient ways which, in turn, can expedite the learning
process and help understand and deal with relevant
problems more efficiently. Many network management
tools resort to various forms of visualization to depict
the topology of a computer network and the relevant
information concerning it. Unfortunately, representa-
tion of additional information is often cumbersome due
to inefficient visual network topology abstraction.

Furthermore, most management tools tend to use
inappropriate ways of producing their visual presenta-
tions, resulting in increased development effort and
doubtful results from the user perspective. This is
because most graphics generation libraries and APIs
are too much low-level, which increases the burden of
implementing the visualization part and consequently
fail to abstract the production of visually rich network
representations.

The Need for Interactivity

It is also generally recognized that a large part of
the usefulness of a network management tool lies in its
interactivity. The element of interactivity is essentially
defined as the ability to dynamically change graphical
representations and respond to user actions. In fact,
interactivity is the very element that generally makes
the difference between a real usable application and a
mere depiction. Again, the development difficulty lies
in the fact that the implementation of interactivity
incorporates a great deal of unnecessary details and is
generally cumbersome. So, a framework that can help

easily produce highly interactive visual network man-
agement applications, will naturally contribute heavily
to its success from both the perspective of the devel-
opers and the users.

Underlying Technologies and Dominant Trends on
Network Management Tools

Depiction Of Networks As Graphs

Visualization of networks has been an area
directly connected with the visualization of graphs.
This is mainly because of the similarity between com-
puter networks and graphs. In fact, it can be argued
that one of the most efficient ways to present informa-
tion on the status of a computer network to humans, is
through a two-dimensional graph where the elements
of the network (like routers and switches) are depicted
as vertices and the connections between them as
edges. Essentially all relevant network management
tools today use this approach in one way or another, to
provide a representation of real computer networks.
Clearly, depiction of networks as graphs is the most
intuitive choice for most purposes.

Separation of Functions

One other dominant trend among network man-
agement tools is the distinction between the presenta-
tion layer and the instrumentation layer. This distinc-
tion is highly beneficial as it allows to focus on the
individual problems and solve them separately. One
added benefit is that, if the model of presentation is
well thought out, an interface mechanism can be cre-
ated which can be potentially reused in many different
network management tools. This is relevant to estab-
lishing a well defined presentation mechanism to be
used by software to build interfaces easily.

20th Large Installation System Administration Conference (LISA ’06) 233



Interactive Network Management Visualization with SVG and AJAX Douitsis & Kalogeras

Application Interface Technology

A question that has been posed many times in the
past is which approach is the most suitable for applica-
tions to build a rich client interface, which is also con-
nected with the element of interactivity. It should be
noted that this question not only concerned network
management tools, but applications of any kind. Dur-
ing the late nineties, it was thought that rich clients
that were specifically developed for their distinct
application, were the way to go. But with the prolifer-
ation of the Web, people soon realized that it is in fact
more efficient (and easy) to develop applications that
present their interface through a browser. During the
last years, with the advent of Asynchronus Javascript
and XML (AJAX) techniques, it was proved that web
based applications can provide the same experience
like any native rich client application. A large portion
of the applications of tomorrow will be web based.

Regardless of the way the application interface is
generated, in order to be used it must be made avail-
able to the user. Among popular network monitoring
applications, some of the most common approaches to
transporting the user interface to the user are:

1. The client application code is actually run in
the server and the user interface is transported
to the user terminal by using a specialized
client-server protocol such as the X-Window
System [3], VNC [4], ICA [5], RDP [6], Sun-
Ray [7], etc. This method is very powerful
because it can transport a window or an entire
desktop anywhere, but its use has declined
because it places high loads on the server, it has
several security disadvantages, it is cumber-
some to deploy and use (special clients, permis-
sions, etc.) and it may have gargantuan band-
width requirements in order to operate in a
speedy manner.

2. The client application is presented through a
web browser, which in turn loads a presentation
and management Java applet [8] that connects
to the server using some special management
protocol. This method is very flexible because
the presentation and interface capabilities of the
Java applets are really powerful and the proto-
col is specially designed for this particular
application. However, the usage of a special
client-server protocol for this purpose has other
implications. On the server side, the protocol
handler will typically have to be implemented
from scratch, which introduces additional costs
and adds security concerns (from having yet
another protocol). Even more, on the client side
the Java applet will have to carry classes that
implement that special protocol, a fact that
increases its size, makes it difficult to extend
and more susceptible to bugs.

3. The client application is merely a web browser
and the graphical images are produced on the

server side. In this case, interactivity is very
difficult to implement. On the server side, it
requires the production of multiple images,
which places additional burden on the servers.
On the client side, it requires elaborate tech-
niques using image maps which are difficult to
produce and manipulate.

Generation of Graphics

To address the design requirements that are rele-
vant to the graphical representation of graphs, a power-
ful way to create graphics inside a web browser is
required. Usually, when a custom graphical image
must be provided to the user through an application,
the image is typically generated by the server on the fly
using appropriate graphical libraries (like GD [9]) and
fetched to the user. This approach is successfully used
in our Multicast Weathermap [10] to generate images
of network traffic over a geographical map. However,
in many problems, the requirements for interactivity
and dynamic manipulation makes the usage of a server
generated static images inappropriate. It could be
argued that, although server side graphics today consti-
tute the vast majority of solutions today, there is clear
indication that this may change in the future.

Solutions where the graphics are generated on
the client side and can be manipulated dynamically
include VML [11], Adobe Flash [12], Java applets and
SVG. Of these options, the usage of SVG is the most
appealing from a development perspective as:

• SVG is a W3C specification and the markup
language is still being actively developed
through new revisions.

• SVG uses an event model and interface to its
DOM similar to ordinary web applications,
with which there is already great familiarity
among developers.

• There are already many browser based imple-
mentations available, like:

The Adobe SVG browser plugin [13].
Opera’s implementation embedded inside
the Opera browser [14].
Mozilla’s implementation embedded inside
the Mozilla Firefox browser [15].
The Apache Batik [16] project which can be
used through Java Web Start [17] by a
browser that launches the application. This is
more cumbersome and is very rarely used.

Modularity

Lastly, today’s modern networks are far more
complex than yesterday’s, and include a host of
diverse technologies such as Multicast, IPv6, MPLS,
etc., each one with its own requirements and peculiari-
ties. It is unlikely that a giant monolithic management
tool can be created which can be on top of all these
aspects of the network. The present diversity of net-
work management tools today can only serve as a
proof to that assumption. In many cases, it is helpful

234 20th Large Installation System Administration Conference (LISA ’06)



Douitsis & Kalogeras Interactive Network Management Visualization with SVG and AJAX

to use a modular approach, where many tools exist,
each one is specialized in its own specific domain, and
they are all using a unified presentation layer.

NMS server

Web Directory

Network Management System

GET

GET

GET

Clients with SVG enabled browsers

multicast
management

applet

IPv6
management

applet

layer-2
management

applet

management documents

managed network

SNMP

SNM
P

SNMP

Figure 1: Architectural overview.

Design and Architecture

Design Goals

Based on the facts presented so far, the creation
of a browser based tool that can be used as a general-
ized presentation layer for network management appli-
cations seems like a solution that can prove quite use-
ful. The design goals outlining the characteristics of
such a tool are:

• Usage of the tool through a web browser. As
mentioned earlier, the delivery of the applica-
tion through the use of a web browser is a prac-
tice that rapidly becomes commonplace, which
easily justifies this choice.

• Representation of rich visual representations of
graphs, allowing arbitrary usage of colors,
styles, images and other artifacts.

• Graphical representations that are dynamically
modifiable during application execution.

• Definition of arbitrary rules of interaction of
the graphical elements with the user. This will
allow customization to the point where the tool
becomes truly intuitive to use.

• Extensibility. Individual presentations may
require special capabilities which (at least in
theory) should be relatively easy to implement
with minimal modification.

• Well defined and simple API. This will make it
easy to create new network management tools

using the presentation application.
• Speed. The resulting application should be as

light as possible (both on the client and on the
server side).

• Security is also of great importance. Unautho-
rized usage should not be able to easily com-
promise the security of the system.

General Overview
In our proposed architecture (see Figure 1), the

Network Management Station (NMS) collects data
from the managed nodes in the network, processes it
and makes it available for remote clients to connect
and retrieve it. In this client-server approach, the client
application is actually an SVG enabled web browser
that similarly connects to the server periodically or on-
demand and retrieves information server. The server
on the other hand is the NMS which will typically do
the collection from the managed nodes using protocols
such as SNMP [18]. That way, administrative access
to the network is assigned only to the NMS while the
graphical rendering will be delegated completely to
the client browser. Use of the client can of course be
carried out from virtually anywhere.

The client application itself is an SVG document
that contains code but is otherwise devoid of actual
graphic content. To launch the application, the user
typically has to navigate to the specific URL of the
NMS server where this SVG document resides. The
Javascript [19] code that is embedded inside the docu-
ment is actually the implementation of the network
management presentation application. Its purpose is,
upon certain events, to retrieve management data from

20th Large Installation System Administration Conference (LISA ’06) 235



Interactive Network Management Visualization with SVG and AJAX Douitsis & Kalogeras

the NMS server and accordingly create, modify or
delete graphical elements inside a page. The creation,
deletion and modification of the SVG elements are
done by directly accessing the SVG DOM. Further-
more, the events to which the application is designed
to respond to, are:

1. Initial loading of the document. When the user
first launches the application by navigating to
its URL, the SVG document is empty.
Responding to the event of its creation the
application must retrieve all required data and
create the initial graph.

2. Periodic updates. To make sure that the picture
presented to the user is up to date, the applica-
tion periodically updates the network graph
based on fresh data.

3. User interaction. Responding to events gener-
ated by the user, the application may have to
retrieve additional data and make the appropri-
ate modifications to the graph.

If the content used to draw the graphical elements
of the network was to be included inside the initial
SVG document, the server would obviously have to
dynamically generate this content and send it to the
user. Although this is the most common solution, we
believe that by supplying an initial document without
graphical content and having it populate itself by
querying the NMS is a much more elegant solution
that can additionally scale up pretty well. That way, the
client document that implements the client application
is completely static, meaning that it does not need to be
generated dynamically at all. It just simply needs to be
placed somewhere where the client browser can get it.

Management Data Hierarchy
The management data that must be retrieved by

the application is organized into XML documents that
are made available by the NMS server to the client
applications through HTTP. That way, the client appli-
cations can retrieve data by using the XMLHttpRequest
[20] class, which is the typical way in which interactive
AJAX applications work. The XML management data
documents belong to following categories:

1. The configuration document that describes the
general application configuration, mainly the
HTTP locations of the other categories of XML
documents to which actual data is contained.
This is the equivalent of a configuration file for a
conventional application. Upon its retrieval, it
instructs the application to create multiple visual-
ization overlays (described later) and supplies the
required information to create and draw them.
The configuration document is structured in such
a way that a hierarchy between the visualization
overlays can be described. This hierarchy has a
double purpose, on the one hand to define the
relative z-axis order of rendering of the overlays
and on the other hand to present the user with a
structured choice of management layers.

2. Documents that describe the nodes and their
positions. Those documents are denoted as
node topology description documents. A node
topology description document usually contains
all the managed nodes of the network (routers,
switches, etc.) and their coordinates inside the
SVG page. Especially for large numbers of
nodes, the topographical layout of the nodes
can be computationally intensive and cannot be
carried out on the client side. Instead, the layout
is transmitted to the client through this docu-
ment along with the catalog of managed nodes.
The coordinates of each node are always
defined on the NMS server side and cannot be
altered by the client user. The NMS server
administrator can define the coordinates of each
node by hand, which can be very helpful in
cases where the nodes are relatively simple and
must be drawn on top of a geographical map
image. Alternatively, a program which is spe-
cialized in graph layout, like GraphViz [21],
can be used to fully automate the computation
of node coordinates in cases where a large
number of nodes exist. A typical case where
this is useful, is for large networks whose lay-
out is complex and changes frequently, like a
large campus LAN.

3. Documents that describe actual network man-
agement data and are denoted as management
overlay documents. Each one of these docu-
ments refers to a specific domain of manage-
ment information, for example there may be a
document that provides the topology, status and
traffic information of multicast inside a net-
work, while another document may provide
IPv6 traffic information, etc. Since the coordi-
nates of each network node are already decided
by the node topology description document, the
management overlay documents define arrows,
labels and other graphical elements that use the
predefined coordinates of the nodes to be laid
out. For example, for a network that is com-
prised of routers A and B, an overlay document
can contain an element that instructs the client
application to draw an arrow representing a link
pointing from A to B. Obviously the overlay
document need not bother itself with the defini-
tion and coordinates of A and B as these have
been taken care of previously by the node
topology description document. Overlay docu-
ments also contain interaction information as
will be explained later.

It is also possible that some management overlay
documents can be loaded on-demand, in response to
user interaction. The pointers to the locations of these
overlays are provided indirectly by other overlays. For
example, when the user hovers over a network link in
the graph of a specific overlay, the application may

236 20th Large Installation System Administration Conference (LISA ’06)



Douitsis & Kalogeras Interactive Network Management Visualization with SVG and AJAX

info baloon

node layout

IPv6 topology

multicast topology

source tree for 
224.1.2.3

source tree for 
230.1.5.9

IPv6 view with 3 layers

multicast view for 224.1.2.3

link BD info

XML

configuration

XML

node
description

XML

IPv6 
overlay

XML

IPv6 
over link
BD

XML

multicast 
overlay

XML

XML

group 
224.1.2.3
source 
tree
overlay

group 
230.1.5.9
source 
tree
overlay

Figure 2: Conceptual arrangement of overlays and dependence to management data documents. Overlays are trans-
posed to produce the final picture.

Figure 3: Juxtaposition of 3 different overlays to produce a composite map. The final visualization on the right is
produced by combining the other three overlays.

20th Large Installation System Administration Conference (LISA ’06) 237



Interactive Network Management Visualization with SVG and AJAX Douitsis & Kalogeras

retrieve one or more of these documents and present
more information (e.g., which multicast groups are
flowing in each direction of the link) to the user.

A conceptual explanation of management data
documents and their relation with the presented overlays
can be seen in Figure 2. An actual example can be seen
in Figure 3.

conf = new XMLHttpRequest(); //create the object
conf.open("GET", "conf.xml", true); //get the document
conf.onreadystatechange = function() {
if (conf.readyState == 4) {
...
code handling the document inserted here
...
}

Example 1: Typical code for retrieving the configuration document.

Management Applets

The main idea behind the selection of the overlay
hierarchy is that there are potentially many specialized
management tools (management applets) in the server
side, and each one of those applets is providing at least
one management overlay. The requirements for any
applet to plug into the framework are:

The applet must be registered in a configuration
document so that clients will be able to know its
existence. The registration can be carried out by
hand by the administrator when he wishes to plug
the new applet to the presentation system.

1. The applet must generate at least one manage-
ment overlay document, so that a full map over-
lay can be created. A URL pointing to this docu-
ment is provided to the clients through the con-
figuration document.

2. The applet may generate as many additional man-
agement overlay documents as needed. The
URLs for these documents can be typically pro-
vided inside other previously loaded management
overlay documents.

For example, an applet providing the IPv6 topol-
ogy of a managed network could be considered. This
applet can be written in any suitable programming lan-
guage and will be invoked periodically inside the NMS.
Each time it is executed, it will discover the topology of
the IPv6 enabled network and generate a management
overlay document that describes it precisely. Manage-
ment overlay documents can also be created which will
be revealing more information about each network link
or node. All these documents will be typically placed
inside the web document directory of the server to be
available for retrieval by the clients.

As long as these applets output XML documents
suitable for usage by the clients, the administrator is
able to easily create new ones which present new sets of
data. The schemas of the XML document categories that
were described in the previous list were deliberately
crafted to be relatively simple, in order to allow easy
manipulation and composition.

Although this is not a strict requirement, it is pro-
posed that all applets have access to a managed entity
registry which is essentially a database of all the discov-
ered managed nodes and other useful information about
them. When an applet needs to communicate with a spe-
cific node, it may need information such as its IP
address, its type, its SNMP community string, etc. These
values can be supplied separately to each applet by the
administrator using configuration files, but it is much
more convenient to have a type of common registry so
that all applets can access the same set of configuration.
Of course, applets will be able to add newly discovered
nodes to this registry. Typically, applets that discover
various topologies will also add new nodes.

As implied in the previous list, the graph(s) that
depict the various network functions (each one supported
by an applet in the server side) must exist together inside a
single SVG image. Each one of the graphs is organized
into an SVG overlay, the visibility of which can be turned
on and off at will by the client user. As the visibility of a
SVG element effects the delivery of user interaction
events to itself, only the overlays that are visible will
respond to user actions. The client code will also seek to
periodically update only those overlays that are visible to
the user. With this strategy, it is assured that only informa-
tion that the user actually wishes to see gets retrieved by
the client application.

Implementation

Overview

The implementation of the system consists of the
client application code that does the graph rendering and
the server applets that carry out the data collection and
XML documents creation.

The client application is based on Javascript,
which is the embedded scripting language in all modern
browsers. The application code has a double purpose. Its
main function is to collect the data from the NMS server
and create the SVG graphics, while its secondary
assignment is to handle all the user interaction events
and maintain the graphics accordingly.

Collection of Data Using XmlHttpRequest
Collection of data is essentially carried out by

retrieving the appropriate XML documents from the
server. As indicated, retrieval is based on the XML-
HttpRequest class. Similarly with many other web
applications, the XMLHttpRequest class is used here by
issuing a call that registers a handler.

238 20th Large Installation System Administration Conference (LISA ’06)



Douitsis & Kalogeras Interactive Network Management Visualization with SVG and AJAX

Example 1 shows typical code for retrieving the
configuration document.

This handler will be invoked when the request
completes successfully (readyState reaches 4) and its
task is to interpret the document that was retrieved.
Each of the three schemas of documents (see categories
the previous sections) is handled by a specific handler.
As they interpret these documents, the handlers will
manipulate the graphical content of the SVG page. The
application code is programmed to issue XMLHttpRe-
quest.open calls whenever needed, at the application
start, periodically or after user interaction.

function createCircle(x, y, r) {

//create the circle
var c = document.createElementNS("http://www.w3.org/2000/svg", "circle");

//set some attributes
c.setAttribute("cx", x); //x coordinate
c.setAttribute("cy", y); //y coordinate
c.setAttribute("r", r); //radius
c.setAttribute("style", "fill:#f34916");

//create the grouping element
var group = document.createElementNS("http://www.w3.org/2000/svg", "g");

//attach element c
group.appendChild(c);

return group; // return the group
}

Example 2: Creating a circle.

The programmer has the convenience of treating
the XMLHttpRequest object as an XML file or a file of
arbitrary format. Using the object as XML is actually
preferable, because this circumvents the need to parse
the document, a work that would have to be done if it
was treated as an arbitrary file.

It is reasonable to expect a lot of complexity to be
hidden inside the code that reads the XML structure and
creates piecewise the graphical content such as the net-
work graph and other artifacts. Although this is true,
there is not too much interdependency between the vari-
ous steps that are taken to complete this task. So, modi-
fication and extension in the future will be easy. Essen-
tially, the whole process of converting a management
overlay document into a graphical overlay will be
assigned to a method that will be taking the document
URI as its argument and will be returning the overlay to
be placed inside the main SVG image.

Manipulation of Graphical Content Using the SVG
DOM

Manipulation of graphical content is done by using
the SVG Document Object Model (DOM). This is also
on par with the way other modern web applications
operate. The DOM is an object oriented mapping of the
structure of a document using classes that map directly
onto document elements.

This way, a convenient interface to the content is
available to programmatically modify, create or delete

whatever aspect of the page. When a new element (for
example, a polygon) must be created, an object of
appropriate class is instantiated and then attached to a
suitable preexisting object inside the document. The
SVG specification uses the grouping (G) element heav-
ily to group other real graphical elements together. For
example, to create a circle, the programmer would write
a function like that in Example 2, and then use it to gen-
erate a circle and attach it to another element.
document.getElementById("overlay_1a").
appendChild(createCircle(100, 200, 5));

Any graphical element, including grouping ele-
ments, can be attached under another G element or even
the top SVG element itself, forming hierarchies. The
order of rendering is strictly the order of appearance in
the DOM, so the way each graphic part is placed rela-
tive to the others can be controlled. To visualize each
management overlay, elements that belong to this over-
lay are grouped and the group is placed in the appropri-
ate position inside the document.

From the point where an element has been created,
many of its properties can be manipulated afterwards to
alter its appearance. To change the color of a filled poly-
gon, the application would access its style as an object
property and modify the style property that corresponds
to the internal fill color. Almost all conceivable style
types are available in the SVG specification, such as fill
color and pattern, line stroke and pattern, object opacity,
etc. The easily accessible style model eases the pro-
gramming of visually rich graphs immensely. For exam-
ple, the code that would alter the opacity of an element
would be like:
element.style.opacity=1.0;

//make object fully opaque

Underlying Operation.

The parts that modify the SVG graphical content are
usually utilized as primitives by the parts of the applica-
tion that handle all the events, including all user interac-
tion. From the point in time where it is created, an SVG
page produces events that trigger the execution of code

20th Large Installation System Administration Conference (LISA ’06) 239



Interactive Network Management Visualization with SVG and AJAX Douitsis & Kalogeras

that the programmer has placed as handler of these events.
The event with the biggest influence is of course the
onLoad event which basically triggers the creation of the
entire page. As mentioned earlier, the document is initially
devoid of actual graphics as this is completely handled by
the application code. The tasks assigned to the onLoad
event are summarized as follows:

1. Loading of the Configuration Document and
interpretation of its contents. The configuration
document will include a URI to a node topology
description document. Additionally, several
structured references to URIs of Management
Overlay Documents will also be present.

2. Based on the URI of the node topology descrip-
tion document, the nodes are placed on the map
using appropriate symbols and their positions
will be stored in an internal array for later refer-
ence. All the graphical elements that represent
nodes, including their labels, are placed in a sepa-
rate overlay.

3. Each Management Overlay Document reference
inside the Configuration Document includes infor-
mation on how to handle the specific overlay. The
administrator will typically want some overlays to
be visible from the start, some to be available
through a menu and some to be available through
specific events, such as hovering or clicking on
other parts of the map (nodes, arrows, etc.).

Node description documents and overlay documents
contain simplified interaction information that controls the
events that will trigger the loading of other overlays.

Overlay documents mostly contain information
about arrows, labels and other shapes that their position
revolves around the position of nodes. A rule of thumb
is that the node description document contains elements
that have an absolute position and are (almost) always
visible, while overlay documents contain elements that
have a relative position that is always calculated accord-
ing to the position of other elements. The appropriate
handlers will create all these artifacts and attach them on
their respective overlays using the method that was
illustrated earlier.

The application follows a strict strategy of loading
overlays only when needed and never in advance. This
modular way of operation ensures that the software will
consume resources only when there is a clear need.
Loading all the overlay documents and caching them in
advance would be ill-advised, as in a complex scenario
many hundreds of small size overlays may be present.
Consider for example a multicast topology network
map. The main overlay can be containing the underlying
topology of the network (usually derived from the PIM
[22] neighbor tables of each node), while there can be a
secondary overlay depicting the distribution tree of a
multicast group (or, even more, a source/group pair). In
many cases there could be hundreds of group addresses
present in the multicast routing tables of the network
routers, which means that equally as many overlays
would have to be available to the user.

Likewise, the reloading strategy of overlays must
be carefully chosen. Considering the fact that each XML
file that supplies an overlay is being produced on the
server side periodically, it would be pointless to reload
more frequently than the rate by which the data is
refreshed. For that reason, the application will always
follow the individual refresh rate of each overlay as it is
supplied from the corresponding overlay document.
This means that each XML overlay description docu-
ment has builtin the refresh rate and the applet that pro-
duces it at the server side may choose to alter its refresh
rate under various circumstances.

The last mechanism of loading overlays is through
user interaction on the map itself. For example, hover-
ing or clicking on a network link may activate an addi-
tional overlay that is downloaded at that moment and
becomes visible. That overlay could incorporate addi-
tional information about the traffic that flows through
the link and depict it with various means, like a concep-
tual traffic diagram over time or a report that manifests
itself with a pop-up text box near the network link. It is
left to the imagination of each implementor of applets,
to devise new smart ways of revealing new information
in response to user events.

The management overlay document schema allows
the possibility to define pointers to the URLs of addi-
tional overlays which in turn could define other pointers
and so on. A virtually unlimited depth of overlays that
potentially activate other overlays can be created that
way. Although this capability is not currently imple-
mented, it is certain that very interesting ideas may be
derived from the concept. The map could also incorpo-
rate overlays that could activate new areas that contain
even additional nodes the ones defined in the node
description document. An interesting example of this
capability would be to have the initial map depict the
layer-3 topology of a managed domain, and program the
behavior where clicking over a link between two layer-3
nodes would reveal additional layer-2 devices that are
positioned between them. For instance, clicking an
arrow between two routers reveals the switches that are
used to connect them.
Development Platform

The client SVG application is being developed on
top of the Mozilla SVG implementation, usually inside the
latest stable release of Firefox. The Mozilla implementa-
tion is ideal for the development of applications like these,
because it already possesses an engine that can understand
most of the SVG specification and, additionally, has excel-
lent debugging capabilities built-in. Of these capabilities,
the DOM inspector is surely the most important, as it
allows to explore the SVG DOM in a tree-like fashion and
experiment with changes or observe the effects caused by
newly introduced application code.
Initial Management Applets

To test the code and provide real world proofs of
concept, a series of management applets have been devel-
oped providing various categories of network information.

240 20th Large Installation System Administration Conference (LISA ’06)



Douitsis & Kalogeras Interactive Network Management Visualization with SVG and AJAX

It is of paramount importance to explore various use cases
of our presentation system and test different scenarios of
operation regarding our applications.

Figure 4: Prototype depicting a multicast topology overlay.

1. A layer-2 topology discovery management applet
has been tested on our university’s campus to
provide a physical view of the interconnections
between all our managed switches. The topology
discovery algorithm is based on CDP [23], and
the node layout is based on the GraphViz pack-
age. This is a good example where an automated
layout is most useful because of the large number
of nodes that are depicted in the graph. An exam-
ple can be seen in Figure 5.

2. A multicast topology discovery management
applet has been developed based on the experience
gained from the development of the multicast
weathermap project [10]. The Protocol Indepen-
dent Multicast neighbor information is used to find
the PIM neighbors of each managed nodes and dis-
cover the multicast topology of the network. This
module is under testing at the Greek Research Net-
work. To give the opportunity to approximate the
geographic positions of the routers, layout is han-
dled by hand as their number is relatively small.
An example of the visualization produced by this
applet can be seen in Figure 4.

3. An IPv6 topology discovery management applet
is also available. Using newly available IPv6
MIBs [24], this application can use the prefix

information and IPv6 neighbor discovery to lay-
out an accurate depiction of the IPv6 layer-3
topology of a network. As in the case of the mul-
ticast applet, testing is been carried out on the
Greek Research Network.

Strong Points

Security

From a general perspective, the client-server way of
operation of this application coincides with the way of
operation of many other software applications with similar
requirements. The management data collection from the
managed nodes is done solely by the NMS server, which
of course increases the security of the system. Addition-
ally, as explained before, the management applets produce
XML management documents and place them inside the
document directory of a simple HTTP server where they
are available for retrieval. The fact that the application
runs entirely in the client side and retrieves these static
files which have been produced asynchronously, com-
pletely isolates the NMS server from the clients, resulting
in a very secure scheme.

Scalability

It is expected that the scalability of the system in
regard to the number of users that will be able to use it
simultaneously, will be excellent. As explained previously,
the management documents are simply placed inside an
HTTP server. So, the number of clients that use the system

20th Large Installation System Administration Conference (LISA ’06) 241



Interactive Network Management Visualization with SVG and AJAX Douitsis & Kalogeras

does not affect the operation of the management applets,
because these two subsystems are independent from one
another. In fact, the HTTP web server could very well be
inside a different machine from the NMS server, so even
large amounts of HTTP workload would not be placed on
the latter. The fact that this architecture can handle a fairly
large number of clients, makes it also appealing for creat-
ing interfaces that are publicly available. Security is also
enhanced as the clients which generally reside on the Inter-
net need not communicate using special protocols, but
only simple HTTP operations. Additionally, there are no
server side scripting technologies (like CGI scripts, JSP,
PHP, etc.) involved, which makes operation of the web
server very secure.

Figure 5: Prototype application depicting a large switched network. User can pan or zoom using the controls on the left.

It is also expected the the user experience in terms
of client speed and responsiveness will be enjoyable.
The size of the application code is relatively small and,
as mentioned earlier, the application will download new
overlay information only when needed.

Related Work

GraphViz

The excellent GraphViz [21] package from Lucent
incorporates some very sophisticated algorithms for lay-
ing out graphs. Although the tool is in no way associ-
ated with the creation of user interfaces or network man-
agement, its ability to export its calculated layouts into
various formats, including SVG, makes it quite suitable
for creating visually impressive network presentations.

As stated before, our tool does in fact use the
GraphViz package for the calculations of layouts that
contain many nodes. As the GraphViz package does not
concern itself with interactivity, it is exceedingly diffi-
cult to make it create SVG depictions that incorporate
even the simplest forms of user interaction.

Google Maps API

An application that is mostly strange to network
management but exhibits notable conceptual similarities
with our tool is the Google Maps API [25] which was
recently released from Google. Using this API, the
Google Maps product can be used as the basis for build-
ing other applications. The programmer can create
visual artifacts such as arrows, polylines, and place-
marks of various sizes and styles and place them on par-
ticular areas inside the geographical map.

In principle, this is completely analogous to our
solution, where the vertices and edges are defined inside
the node topology and overlay description documents.
What is even more interesting is the fact that, in the
Google Maps API, the user defined elements can be
organized into different layers to produce more complex
results. Again, this is similar to our own overlays. Com-
bined with the fact that this information is described
through XML files and is retrieved with AJAX tech-
niques, the distinct similarities between the two tools
can be easily observed.

As an aside, the Google Maps API does not rely on
SVG or any other vector based drawing ability on any

242 20th Large Installation System Administration Conference (LISA ’06)



Douitsis & Kalogeras Interactive Network Management Visualization with SVG and AJAX

browser (although it can utilize VML on IE) but uses
clever techniques to supplement the lack of those abili-
ties. We believe however that when the usage of SVG
becomes more commonplace and is supported natively
by the majority of web browsers, it could very well
replace all these server aided techniques.
Carto::Net

Carto:Net, a popular web site that provides tutori-
als on SVG and its usage on cartography, has recently
released a tutorial paper entitled ‘‘Dynamic Loading of
Vector Geodata for SVG Mapping Applications Using
Postgis, PHP and getURL()/XMLHttpRequest()’’ [26].
Inside the tutorial, there is the description of a geo-
graphical map application that dynamically loads vector
data into the map each time the user zooms or pans
inside the map area.

While the main focus of the application is of
course related to cartography, the fact that data is
fetched using AJAX methods and the SVG content is
dynamically created on the client side and placed on the
map, shows that the way of operation is again here very
similar to our architecture.
HP OpenView

HP OpenView [27], one of the oldest and most
popular network management framework available,
employs the concept of an abstract visualization inter-
face API to provide other network management tools
with a platform which can be used to build native (X
Windows) or Web based (through Java Applets) user
interfaces that concern network management. This API,
dubbed ‘‘OpenView Windows,’’ allows the programmer
to organize network management information into
visual submaps that form a hierarchy. Each submap typ-
ically incorporates various nodes, unidirectional or bidi-
rectional edges of various colors and styles and other
similar constructs. As mentioned earlier, using a graph
is the most common approach to depicting a network. A
typical network management tool that plugs in to Open-
View would have to initiate a series of calls to the API
that would create the submaps, populate them with
graphs and associate certain actions, such as clicking on
a node, with opening other submaps or carrying out
other tasks. The Network Node Manager product for
instance, uses the OVW API to present its interface to
the user. Of course, today there are many more network
management tools that use the OVW API as a platform,
contributing to its major success.

Certainly, our system has similarities with the
OVW API in many regards. The provision of a visual-
ization API to which other tools can incorporate their
management information, the usage of graphs to depict
networks and the association of user actions to various
interactive features are traites that are certainly shared.
However, there are still key points that differentiate the
overall experience both from the view of the management
tool programmer and the end user. For one thing, OVW is
a regular API, which means that the programmer has to
use a suitable language binding for it, while our system

takes a somewhat more liberal approach and imposes no
restrictions on the internal architecture or implementation
of the management applets. Using the XML management
documents that where described earlier, does away with
the need to have an API at the language level. On the
other hand, the concept of submaps in OVW is superfi-
cially similar to our own overlays. It should be noted
however, that a closer look reveals that each OVW based
tool must create a different set of submaps and that each
set can share no information with other groups. This in
essence means that all the tools that plug in to an Open-
Vi e w OVW installation not only work separately but also
appear to be separate from the user perspective. In our
approach, we sacrifice some of this compartmentalization
and have all the overlays share the same node topology
(which is described by the node topology description doc-
ument) and draw on the same area.

Future Work

SOAP

Once the development of this system is finished,
an interesting area to explore will be the inclusion of
functionality that provides the ability of two way com-
munication between the client applications and the
server. Until now, the architecture clearly dictates that
information flows only from the server to the clients.
Adding the capability to let the client communicate
information back to the server would enable possibilities
such as saving various client side settings and retrieving
them at the next session, executing various management
functions on the management nodes, or even communi-
cating operation instructions to specific server applets.
The idea of using HTTP POST operations or even
SOAP [28] calls seems like the right way to go on that
regard. Modern browsers will most likely support SOAP
operations (Mozilla already does in a limited fashion),
so this is a very interesting possibility.

Management Document Hierarchy Simplification

The distinction between different types of manage-
ment applet generated XML documents is also a point
of extended discussion. It is quite possible that at least
node descriptions and overlays may merge in a common
schema which can be easily handled by a unified han-
dler on the client side. The real problem is having differ-
ent applets cooperate efficiently on the server side for
the creation of these super-documents. It could be
argued that merging those two schemata completely,
could require further cooperation between the applets
that produce them, thus making their development more
cumbersome. This is definitely undesired, so great cau-
tion must be exercised in that area.

Currently the client application uses a very simpli-
fied model to handle various user interactions as they
are declared inside the overlay description documents.
As a generalization, a full meta-language that defines
actions and events could be developed that could lead to
substantially richer and more complex presentations.

20th Large Installation System Administration Conference (LISA ’06) 243



Interactive Network Management Visualization with SVG and AJAX Douitsis & Kalogeras

The initial thoughts about this meta-language is that it
will be surely mapped to the overlay document schema
and that it will be similar in its feel to a functional pro-
gramming language.

SVG Animation Capabilities

On the graphics plane, the usage of animation
capabilities that are defined in the SVG specification
may lead to an even more impressive presentation of
network management data. Unfortunately, some SVG
implementations do not have these capabilities yet, a
fact that makes development troublesome.

Conclusion

Our experience indicates that the level of complex-
ity and diversity to which the modern network manage-
ment landscape has come to, often places a difficult task
on the network administrators. In addition, these people
often have to deal with complex management systems
and, even worse, cumbersome and non-intuitive inter-
faces. The solution that is proposed on this paper tries to
borrow ideas from the web by using the browser as a
rich client and utilizing modern techniques like SVG and
AJAX to provide attractive graphics. At the same time,
the difficulty of extending the system is exceptionally
low. Indeed, the network administrators can implement
their management applet using any method or program-
ming language they desire, and install it easily. Even bet-
ter, the Javascript application which renders the graphics
on the client side, will rarely require modifications.
Combined with the fact that the XML schemata that gov-
ern the communication between the server and the
clients were deliberately engineered with simplicity in
mind, it is easy to reach the conclusion that the barrier to
extend this system has been kept low. The application
delivery method that is presented in this paper exhibits
similarities with the classical approach of using Java
applets to implement a rich client inside the browser.
However, the protocol that is used to transport informa-
tion is simple HTTP and the content is more presentation
driven than management driven. Arguably, this strategy
can lead to more compact communication volumes. The
content is also encapsulated using XML, which does
away with the need to have a special protocol and parser.
Lastly, extensibility is benefited because of the usage of
standards and openness of the architecture.

The demonstrated method of using AJAX to pro-
duce an interactive application that downloads its parts
on demand, along with the usage of SVG to create vec-
tor based graphics that change during execution and
respond to user actions, outlines a philosophy for the
development of future web based applications. Further-
more, the method of overlay loading which has been
outlined in this paper, advertises the strategy of loading
graphics and interaction data on demand as the applica-
tion is used. So, it is our hope that with our case we
have inspired new ideas and innovative approaches on
other problem areas besides network management.

Author Biographies

Athanasios Douitsis, born in 1976, graduated from
the Department of Electrical and Computer Engineering
of the National Technical University of Athens in 2000
and is currently a Ph.D. candidate at the Network Man-
agement and Optimal Design Laboratory at NTUA. He
has been working for the NTUA Network Operations
Center since 2000, involved in the administration of the
NTUA campus network, the Greek Research Network
(GRNET), the Greek School Network and the Greek
Student Network. He has experience in Network Man-
agement, Monitoring and Measurements, Multicast,
IPv6, VPNs and system administration.

Dr. Dimitrios Kalogeras was born in Athens in
1967. He graduated from the Department of Electrical
and Computer Engineering of the National Technical
University of Athens (NTUA) in 1991 and in 1996 he
acquired the Doctoral diploma from the same depart-
ment. Dr Kalogeras has participated in numerous
research programs of the EC and the General Secretariat
of Research and Technology in Greece. He has pio-
neered in the design and development of the NTUA and
the GRNET data networks and is a member of the tech-
nical and scientific committee of the Greek School Net-
work. Dr Kalogeras is a consultant on issues on net-
working and video signal processing. He is also the
author and coauthor of publications in international
magazines and proceedings of numerous conferences.
From 2000 to 2002 he has served as a member of the
Terena Technical Committee.

References

[1] Scalable Vector Graphics specification, http://www.
w3.org/Graphics/SVG/ .

[2] Ajax: A New Approach to Web Applications, http://
adaptivpath.com/publications/essays/archives/
000385.php .

[3] The X Window System, http://www.x.org/ .
[4] VNC, http://www.realvnc.com/ .
[5] Citrix ICA protocol, http://www.citrix.com .
[6] Understanding the Remote Desktop Protocol (RDP),

http://support.microsoft.com/kb/186607 .
[7] SunRay Technology, http://sun.com/sunray .
[8] Java Applets, http://java.sun.com/applets/ .
[9] GD graphics library, http://www.boutell.com/gd/ .

[10] The Multicast Weathermap, http://netmon.grnet.gr/
multicast-map.shtml , http://www.terena.nl/events/
archive/tnc2004/programme/presentations/show.php?
pres_id=47 .

[11] Vector Markup Language, http://www.w3.org/TR/
NOTE-VML.html .

[12] Adobe Flash, http://www.adobe.com/support/docu
mentation/en/flash/ .

[13] Adobe SVG, http://www.adobe.com/svg/ .
[14] Opera Web Browser SVG implementation, http://

www.opera.com/products/desktop/svg/ .

244 20th Large Installation System Administration Conference (LISA ’06)



Douitsis & Kalogeras Interactive Network Management Visualization with SVG and AJAX

[15] Mozilla SVG project, http://www.mozilla.org/projects/
svg/ .

[16] Batik SVG toolkit, http://xmlgraphics.apache.org/
batik/ .

[17] Java Web Start, http://java.sun.com/products/java
webstart/ .

[18] The Simple Network Management Protocol, http://
www.ietf.org/rfc/rfc1157.txt .

[19] Javascript, http://www.mozilla.org/js/ .
[20] The XmlHttpRequest object, http://xulplanet.com/

references/objref/XMLHttpRequest.html .
[21] Graphviz graph visualization package, http://www.

graphviz.org/ .
[22] Protocol Independent Multicast, http://www.ietf.

org/html.charters/pim-charter.html .
[23] Cisco Discovery Protocol, http://www.cisco.com/

en/US/tech/tk648/tk362/tk100/tsd_technology_
support_sub-protocol_home.html .

[24] IPv6 IETF charter, http://www.ietf.org/html.charters/
ipv6-charter.html .

[25] The Google Maps API, http://www.google.com/
apis/maps/ .

[26] Dynamic Loading of Vector Geodata for SVG
Mapping Applications Using Postgis, PHP and
getURL()/XMLHttpRequest(), http://www.carto.net/
papers/svg/postgis_geturl_xmlhttprequest/ .

[27] HP Network Node Manager, http://www.openview.
hp.com/products/nnm/ .

[28] Simple Object Access Protocol, http://www.w3.
org/TR/2000/NOTE-SOAP-20000508/ .

20th Large Installation System Administration Conference (LISA ’06) 245




