Voluntary Cooperation in
Pervasive Computing Services

Mark Burgess and Kyrre Begnum — Oslo University College

ABSTRACT

The advent of pervasive computing is moving us towards a new paradigm for computing in
terms of ad hoc services. This carries with it a certain risk, from a security and management
viewpoint. Users become increasingly responsible for their own hosts. A form of service
transaction based on minimal trust is discussed. A proof of concept implementation of non-
demand (voluntary) services is discussed for pervasive computing environments. ‘Voluntary
Remote Procedure Call’ is a test-implementation of the proposed protocol integrated into cfengine,
to show how voluntary cooperation of nodes can allow a cautious exchange of collaborative
services, based on minimal trust. An analysis of implementation approaches followed by a
discussion of the desirability of this technology is presented.

Introduction

Pervasive or ubiquitous computing is often wed-
ded to the future vision of mobile and embedded
devices, in smart homes and workplaces; however, per-
vasive computing environments already exist today in
Web Hotels and at Internet Service Providers. A chang-
ing base of customers meets in an environment of close
proximity and precarious trust and offers services.

Pervasive mobile computing presents two inde-
pendent challenges to content services. The first con-
cerns how to secure platforms for virtual commerce.
Here the problem is that one does not possess guaran-
teeable credentials for those connecting to the ser-
vices. The second concerns how to deal safely with
anonymous, non-commercial services offered entirely
on an ad hoc, cooperative basis. Here the problem is
the risk involved in interacting at all with a client of
unknown intentions.

The former generally drives discussions about
security and public key infrastructures (though this is
of little help unless every user is independently veri-
fied and identifies cannot be forged). The latter has
made a name for itself through peer to peer file shar-
ing such as Napster, Gnutella and other services.
There is currently no technological solution that can
determine the intentions of a client attempting to con-
nect to a service.

The challenges of pervasion are not only techni-
cal, but also ‘political’. Autonomy is a noose by which
to hang everything from security to system manage-
ment in coming years. In the foreseeable future, one
can expect pervasive services to be vying for attention
on every street corner and in every building. The key
ingredient that makes such a scenario difficult is frust.
Orderly and predictable behaviour is a precondition
for technology that performs a service function, but if
one connects together humans or devices freely in
environments and communities that share common

resources, there will always be conflicting interests.
Anarchy of individual interests leads to contention and
conflict amongst the members of the community; thus,
as in the real world, an orderly policy of voluntary
cooperation with norms is required that leads to suffi-
cient concensus of cooperative behaviour.

In this paper, we shall be especially interested in
the administrative challenges of pervasion, such as
services like backup, software updates, policy updates,
directory services etc. We shall attempt to tackle a
small but nevertheless important problem, namely
how to ‘approach’ peers for whom one does not have
automatic trust.

In a pervasive setting, the the sheer multiplicity
of devices and hosts demands autonomous administra-
tion, for scalability. This means that decisions about
trust cannot be reasonably processed by a human.
Self-managing ‘smart’ devices will have to cope with
decision-making challenges normally processed by
humans, about the trustworthiness and reliability of
unknown clients and servers. Devices must make
political decisions, based on often fuzzy guidelines.
This is not a problem that can be solved by public key
infrastructures, since apparent certainty of identity is
no guarantee for trust.

Virtualization and the Multiplicity of Autonomous
Agents

In a few years, most services could well be pro-
vided by virtual machines running on consolidated
computing power [1, 2], leading to an even denser
packing of competing clients and services. There are
distinct advantages to such a scenario, both in terms of
resource sharing and management. Users can then cre-
ate and destroy virtual machines at will, in order to
provide or consume services or manage their activities.

The ability to spawn virtual clients, services and

identities, quite autonomously, makes the interactions
between entities in a pervasive environment full of

19th Large Installation System Administration Conference (LISA °05) 143

Voluntary Cooperation in Pervasive Computing Services

uncertainties. Rather than having a more or less fixed
and predictable interface to the outside world, as we
are used to today, users will become chameleons,
changing to adapt to, or to defy, their neighbours’
wishes. What users choose to do with this freedom
depends more on the attitudes of the individuals in the
virtual society than on the technologies they use.

Today, at the level of desktop computing, the
trend from manufacturers is to give each user increas-
ing autonomy of administrative control over their own
workstations, with the option to install and configure
software at whim. Thus each user can be either friend
or foe to the community of behaviours — and the uni-
formity of policy and configurations that many organi-
zations strive for today will not be a certain scenario
of the future.

We are thus descending into an age of increasing
autonomy and therefore increasing uncertainty about
who stands for what in the virtual society. The aim of
this paper is to offer a simple mechanism for host
cooperation, without opening the hosts to potential
abuses. It does this by allowing each individual agent
to retain full control of its own resources.

The plan for the paper is as follows: we begin
with a discussion of the need for cautious service pro-
vision in a pervasive environment, by using what is
known about client-server relationships between
humans. Some examples of management services are
discussed that present a risk to both parties and it is
suggested how a consentual, voluntary protocol might
be implemented to reduce the risk to an acceptable
level. A solution to negotiating voluntary cooperation
is presented, which trades the traditional model of vul-
nerable guaranteed service levels for increased secu-
rity at the expense of less predictable service rates. An
implementation of the protocol in the programming
language Maude helps to enlighten the possible
administrative obstacles which follows of the protocol.
An example implementation in the system administra-
tion agent framework cfengine is presented which
incorporates voluntarism in the existing cfengine com-
munication framework. A comparison and discussion
of the two approaches concludes the paper.

Client-server Model

In the traditional model of network services, a
client stub contacts a server on a possibly remote
machine and requests a response. Server access con-
trols determine whether the request will be honoured
and server host load increases as a function of incoming
requests. Clients wait synchronously for a reply. This is
sometimes called a Remote Procedure Call (RPC).

This model is ideal for efficiently expediting ser-
vices that are low risk and take only a short time to
complete, but it has a number of weaknesses for services
that require significant processing or have basic admin-
istrative consequences for the network: there is thus the
risk of exploitation and denial of service vulnerabilities.

Burgess and Begnum

Management services are not typical of network
services in general. By definition they are not supposed
to be high volume, time critical operations such as web
services or transaction processing services. They are
nonetheless often of great importance to system secu-
rity. In a pervasive computing environment, hosts are
of many different types; many are mobile, partially
connected systems under individual control, configured
at the whim of their owner. A more defensive posture
is therefore called for in the face of such uncertainty.

This paper presents a simple protocol that
assumes no automatic trust: a remote service model
based entirely on ‘pull’ semantics, rather than ‘push’
semantics. Thus services can be carried out, entirely at
the convenience of the answering parties: the risk, at
each stage, is shifted to the party that is requesting
communication. One interesting side-effect of this is
that services become more resilient to Denial of Ser-
vice attacks.

Pervasion and Stable Policies

The interactions between hosts can naturally lead
to changes in their behaviour, e.g., if they exchange
configurations, policy instructions or even software. In
the ad hoc encounters that emerge between politically
autonomous hosts, some stability must condense out of
the disorder if one is to maintain something analogous
to law and order in the virtual realm [3]. Law and
order can only be built on cooperative concensus — it
can only be enforced if a majority wants it to be
enforced, and conforms in a scheme to enforce it. How
such a concensus emerges is beyond the scope of the
present paper, but will be discussed elsewhere [4, 5, 6].

Tourism

In the present scenario, the model for contact
between computers is like virtual tourism: visitors roam
through an environment of changing rules and policies
as guests, some of them offering and requesting ser-
vices, like street sellers or travelling salesmen (no rela-
tion to the famed algorithmical optimizer). The commu-
nication in such encounters is de-centralized; it takes
the form of a “peer-to-peer” relationship between par-
ticipants. The snag with peer-to-peer transactions that it
requires considerable trust between the participating
hosts. Who is to declare that an arbitrary participant in
the scheme is trustworthy [7]?

It is known from game theoretical and evolution-
ary simulations that stability in groups of collaborative
agents is a precarious phenomenon, and thus caution in
accepting arbitrary policy instructions is called for. If
hosts alter their behaviour automatically in response to
ad hoc interactions, then the effective behaviour of the
group can easily be subverted by a rogue policy [8] and
the illusion of organizational control can evaporate.

The approach to collaboration which is adopted
below is to assume the scenario of lawlessness men-
tioned above, by placing the provision of administrative

144 19th Large Installation System Administration Conference (LISA °05)

Burgess and Begnum

services (e.g., backups, information or directory ser-
vices, policy distribution etc.) on an entirely voluntary
basis. This is, in a tangential way, a continuation of the
idea of the “pull contra push” debate in system admin-
istration [9, 10] (see Figure 1).

Voluntary Cooperation

There are three reasons why the traditional
model of client-server communication is risky for per-
vasive computing services (see Figure 1).

Figure 1: In a traditional client-server model, the
client drives the communication transaction
“pushing its request”. In voluntary RPC, each
party controls its own resources, using only ‘pull’
methods.

1. Contemporary network servers are assumed to
be ‘available’. Clients and servers do not expect
to wait significantly for processing of their
requests. This impatient expectation leads to
pressure on the provider to live up to the expec-
tations of its clients. Such expectation is often
formalized for long term relationships as Ser-
vice Level Agreements (SLA). For ad hoc
encounters, this can be bad both for the
provider and for the client. Both parties wait
synchronously for a service dialogue to com-
plete, during which their resources can easily
be tied up and exploited maliciously (so-called
Denial of Service attacks).

Non-malicious, random processes can also be
risky. It is known from studies of Internet traf-
fic that random arrival processes are often long
tailed distributions, i.e., include huge fluctua-
tions that can be problematical for a server [11].
Providers must therefore over-dimension ser-
vice capacity to cope with seldom events, or
accept being choked part of the time. The alter-
native is to allow asynchronous processing, by
a schedule that best serves the individuals in the
transaction.

Voluntary Cooperation in Pervasive Computing Services

2. The traditional service provider does not have
any control over the demand on its processing
resources. The client-server architecture drives
the servers resources at the behest of the client.
This opens us to risk of direct attacks like
Denial of Service attacks and load storms from
multiple hosts. In other words, ad hoc encoun-
ters do not have to trust only individuals but
also the entire swarm of clients in a milieu col-
lectively. The alternative is that hosts should be
allowed to set their own limits.

3. The traditional service provider receives requests
that are accepted trustingly from the network.
These might contain attacks such as buffer over-
flows, or data content attacks like viruses. The
alternative is for the server to agree only to check
what the client is offering and download it if and
when it can be handled safely.

Although one often aims to provide on-demand,
high-volume services where possible, it is probably
not prudent to offer any service to just any client on
demand, given how little one actually can know about
them. Nor is it necessary for many tasks of a general
administrative nature, where time is not of the
essence, and a reply within minutes rather than sec-
onds will do (e.g., backups, policy updates, software
updates etc.). Avoiding messages from a client is a
useful precaution: some clients might be infected with
worms or have parasitic behaviour.

The dilemma for a server is clearly that it must
expose itself to risk in order to provide a service to
arbitrary, short-term customers. In a long term rela-
tionship, mutual trust is built on the threat of future
reprisals, but in an opportunistic or transitory environ-
ment, no such bond exists. Clients could expect to ‘get
away’ with abusing a service knowing that they will
be leaving the virtual country soon.

In the voluntary cooperation model this risk is
significantly reduced in the opening phase of estab-
lishing relations: neither “client” nor “server”
demand any resources of each other, nor can they
force information on each other. All cooperation is
entirely at the option of the collaborator, rather than at
the behest of the client. Let us provide some examples
of how voluntary collaboration might be used,

Configuration Management in a Pervasive Setting

A natural application for voluntary cooperation is
the configuration or policy management of networked
hosts. How shall roaming devices adapt to what is local
policy [12]? A host that roves from one policy region to
another might have to adapt its behaviour to gain
acceptance in a scheme of local rules, just as a traveller
must adapt to the customs of a local country. However,
this does not imply automatic trust (see Figure 2).
Today, many users think in terms of creating a Virtual
Private Network (VPN) connection back to their home

19th Large Installation System Administration Conference (LISA ’05) 145

Voluntary Cooperation in Pervasive Computing Services

base, but to get so far, they must first be allowed to
interact with their local environment.

Configuration management is a large topic that
concerns the configuration of resources on networked
hosts. See, for instance, [14] for a review. There are
several studies examining how computing systems can
be managed using mobile agents. However, mobile
agents have not won wide acceptance amongst devel-
opers [15] and they violate the risk criteria of the
present paper. Opening one’s system to a mobile agent
is a potentially dangerous matter, unless the agent fol-
lows a methodology like the one described here.

Three examples of autonomy in computer
administration are shown in Figure 2. In (a) all
instructions for configuration and behaviour originate
from a central authority (a controller). This is like the
view of management in the SNMP model [16, 17] and
traditional telecom management models like TMN
[18]. The dotted lines indicate that nodes in the net-
work could transmit policy to one another to mitigate
the central bottleneck; however, control rests with the
central controller, in the final instance. In (b) there is a
hierarchical arrangement of control [19, 20]. A central
controller controls some clients individually, and
offers a number of lesser authorities its advice, but
these have the power to override the central controller.
This allows the delegation of control to regional
authorities; it amounts to a devolution of power. In (c)
one has a completely decentralized (peer to peer)
arrangement, in which there is no centre [21, 3].
Nodes can form cooperative coalitions with other
nodes if they wish it, but no one is under any compul-
sion to accept the advice of any other.

Burgess and Begnum

This sequence of pictures roughly traces the evo-
Iution of ideas and technologies for management. As
technology for communication improves, management
paradigms become naturally more decentralized. This
is probably more than mere coincidence: humans fall
naturally into groups of predictable sizes, according to
anthropologists [22]. There is a natural rebellion
against centralization once the necessary communica-
tion freedoms are in place. Then groupings are essen-
tially ““buddy lists”, not central authorities.

A decentralized scheme has advantages and dis-
advantages. It allows greater freedom, but less pre-
dictability of environment. Also, by not subscribing to
a collaborative authority, one becomes responsible for
one’s own safety and well-being. This could be more
responsibility than some ““libertarian” nodes bargain
on. One could end up re-inventing well-known social
structures in human-computer management.

The immunity model of system administration
describes how nodes can made to take responsibility
for their own state, in order to avoid flawed external
policies, bottle-necked resources and unnecessary
assumptions about trust [10]. The trouble with making
hosts completely independent is that they need to com-
municate and even ‘out-source’ tasks to one another.
The immunity model must therefore extend to com-
munications between hosts that allow them to main-
tain their autonomy, accepting and rejecting data as
they please. Other suggestions for an RPC paradigm in
a mobile environment include refs. [23, 24, 25].

Some examples applications for voluntary
Remote Procedure Call (RPC) are presented below.
Most of these address the impossibility of establishing
true nature of a client in an ad hoc meeting.

(a) (b)

(©

Figure 2: Three forms of management between a number of networked host nodes. The lines show a logical net-
work of communication between the nodes. Dark nodes can determine their own behaviour, i.e., they have polit-
ical freedom, while light nodes are controlled. The models display a progression from centralized control to

complete de-centralization of policy (see [13, 3]).

146 19th Large Installation System Administration Conference (LISA °05)

Burgess and Begnum

1. Mobile hosts can use voluntary collaboration to
check in to home base for services. For example,
a laptop computer that requires a regular backup
of its disk to home base, using a pull-only mech-
anism will need to check in to home base
because the server does not know its new IP
address, or whether it is even up and running.
(Using IPv6, a host could register its mobile
address with home base to set up IPv6 forward-
ing, but if a device has no home base, then this
will not work.) The laptop would like to control
when its resources are going to be used by the
backup software and vice versa, rather than
being suddenly subjected to a highly resource
intensive procedure at an arbitrary time.

With a voluntary agreement, the resulting
backup time is a compromise between the
clients wishes and the server’s wishes. It is not
exactly predictable in time for either party, but
it is predictable in its security. Hosts must
learn the expected services times rather than
assume them.

(Again, it is emphasized that encryption cannot
solve this problem. Merely opening an
encrypted tunnel back to home base does not
help the parties to manage their resources. It
only helps them to establish their respective
identities and to communicate privately.)

2. Exchanges of security alerts and patches could be
offered on a voluntary basis, e.g., warnings of
recent port-scanning activity, detected anomalies
or denial of service (including spam) attacks.
Such warning could include IP addresses so that
hosts could add the offending IP-port combina-
tions to its firewall. Using this scheme, client
hosts agree to signal one another about changes
and patches which they have received. These
could be cross referenced against trusted signa-
ture sources downloaded separately — allowing
an impromptu Trusted Third Party collaboration.
This kind of technique is now being used for
online operating system updates.

3. The ultimate autonomy in distributed services
is the free exchange of information and services
between arbitrary hosts [12]. Voluntary accep-
tance of policy or method data could be utilized
as a ‘cautious flooding’ mechanism, for ‘viral
spreading’ of data; e.g., in which each host sig-
nals its neighbours about current policy or soft-
ware updates it has received, allowing them a
controlled window of opportunity to download
the software (rather than simply opening its
ports to all hosts at the same time). It is known
that such mechanisms are often efficient at
spreading data [26, 27]

4. Neighbouring Service Providers with a stand-
ing arrangement with one another could use the
voluntary mechanism to sell each other server

Voluntary Cooperation in Pervasive Computing Services

capacity, using virtual machine technologies.
When the demand on ISP1 becomes too high, a
method SpawnVM() which is sent to the col-
laborator ISP2. If ISP2 has the capacity to help,
it spawns a virtual machine and returns the IP
address. The method call could also include a
specification of the system.

These examples underline the need for individu-
als to maintain control of the their own resources, but
at the same time allow one another the potential to
collaborate.

Protocol

There are two phases of voluntary cooperation:
agreeing to work together (forming a contract) and
fulfilling one’s obligations (if any) with minimal risk
to oneself. Then, given an autonomous framework the
implementation of a cautious service protocol is
straightforward.

The Negotiation Phase

A willingness to cooperate between individuals
must be established in any service before service pro-
vision can be considered. This is one of the crucial
phases and it brings us back to the opening remarks.
Apart from the traditional client request, there are two
ways to set up such an agreement: with or without
money. One has the following options:

1. A contract based on money: a client is willing
to pay for a service and some form of negotia-
tion and payment are processed, based on a
legal framework of rules and regulations. This
is a common model because it is rooted in
existing law and can threaten reprisals against
clients who abuse privileges by demanding a
knowledge of their identity in the real world.

2. No contract but registration: clients use the ser-
vice freely provided they register. Again, they
must surrender some personal details about
themselves. This is a declaration of trust. A
password or secret key can be used to cache the
results once a real world identity has been
established. Public key technologies are well
acquainted with the problem of linking true
identity to a secret key. We shall not discuss
this further but assume the problem to be solu-
ble.

3. Open connection: the traditional way of con-
necting to host services requires no registration
or credentials other than an IP address that may
or may not be used to limit access.

In volume services, one usually wants to know in
advance which clients to expect and what their
demands on service are: this expectation is guaranteed
by access control rules, firewall solutions and service
quality configuration. In voluntary cooperation models,
service agreements cannot be made in the same way,
since both parties have responsibilities to one another.

19th Large Installation System Administration Conference (LISA ’05) 147

Voluntary Cooperation in Pervasive Computing Services

We do not consider the details of the negotiation
process here, since it is potentially quite complicated,;
rather we shall assume, for this work, that a negotia-
tion has taken place. The result of this process is a list
of logical neighbours who are considered to be
‘method peers’, i.e., peers who will execute remotely
requested methods.

Service Provision Phase

After intentions have been established, one needs
a way of safely exchanging data between contracted
peers in such a way that neither party can subse-
quently violate the voluntary trust model. To imple-
ment this, we demand that a client cannot directly
solicit a response from a server. Rather, it must adver-
tise to trusted parties that it has a request and wait to
see if a server will accept it of its own free choice.

1. Host A: Advertises a service to be carried out,
by placing it in a public place (e.g., virtual bul-
letin board) or by broadcasting it.

2. Host B: Scout A looks to see if host A has any
jobs to do, and accepts job. Host B advertises
the result when completed by putting the result
in a public place.

3. Host A: looks to see if host B has replied.

Seen from the perspective of host A and B, this
is done entirely using ‘pull’ methods, i.e., each host
collects the data that is meant for it; no host can send
information directly to another, thereby placing
demands on the other’s resources. The algorithm is a
form of batch processing by posting to local ‘bulletin
boards’ or ‘blackboards’. There is still risk involved in
the interaction, but each host has finer control over its
own level of security. Several levels of access control
are applied:

¢ First the remote client must have permission to
signal the other of its presence

® Next the server must approves the request for
service and connect to the client.

® The client must then agree to accept the con-
nection from the server (assuming that it is not

a gratuitous request) and check whether it has

solicited the request.

The basic functionalities of this approach may be
recognized as typical broker or marketplace approaches
for agents in a multi agent system. This makes the discus-
sion particularly interesting because it addresses a rela-
tively known scenario. Before we go into into the admin-
istrative challenges of this approach, we present one con-
crete implementation as a protocol model simulation.

Protocol Specification in Maude

The programming language Maude [28] is spe-
cializes in the simulation of distributed systems. In con-
trast to typical programming approaches, this language
is used to state the allowed transitions of a configura-
tions state to another. This opens for searches in the
execution domain of the entire system. With its roots in

Burgess and Begnum

transitional logic it has been used to analyze protocol
related to mobile systems and security. The Maude
framework enables the writer to focus on the essence in
the protocol without wasting to much code on unrelated
features. The process is especially helpful if one wants
to examine prototype implementations of a protocol, for
testing. A secondary effect is that formal specifications
of a system often reveal hidden assumptions in the
design of the protocol, which lead to differences in the
protocol implementation and bugs.

Programming in Maude consists mainly of two
tasks: (1) defining the data model in terms of classes
and types of messages between objects and (2) defin-
ing the allowed transitions from one program state to
another. It is thus declarative. Thus, instead of pro-
gramming a particular path of execution, one sets the
scene for all possible steps that might occur without
assuming what happened before. Execution of a
Maude specification is like rewriting logic.

If one has a starting configuration and a number
of independent rewriting rules, one could, in principle,
use any of the possible rules. Maude creates a tree,
where the initial configuration is the root node and all
possible outcomes form the rest. For complex systems
it is clear that the human mind can imagine only few
of all the possible configurations. Maude possesses a
search mechanism to actually traverse this tree to look
for certain configurations.

Maude takes an object-oriented approach when
designing distributed systems. One usually defines
‘class objects’ or data-types for the objects that are to
communicate with each others, and a class for mes-
sages. Below is an example of the classes specified in
this implementation: A client (the node requesting ser-
vice), a server, and a blackboard.

class Client | pendingRPC RPCList,
knownServers OidList,

jobs : JobList,

completedJobs JobList,

rpcEnabled OidList,

blackBoard : 0id
class Server | rpcClients : OidList,
blackBoard : 0id
class BB | rpcRequests : RPCList,

rpcReplies RPCList

To illustrate the specification of a transitional
rule, consider the following:

crl [accept-service-request]
< S : Server | rpcClients : OL >

(msg RPCrequestService(C,S) from C to S)

< S : Server | rpcClients : OL :: C >

(msg RPCrequestReply(C,S,true) from S to C)

if (not containsElement (0L, C))

The “=>" marks the transition from the state
before to the state after. The state before says only that

148 19th Large Installation System Administration Conference (LISA ’05)

Burgess and Begnum

there is a Server object S and a message addressed to
that object. The server object (enclosed in “< >””) has a
list of object pointers called rpcClients. The client is
added to that list if it is going to be served by the server.
Note that Maude assumes that there may be many other
objects currently in the same state. The only thing that
is specified is that, if at a given point a server S sees the
message, it may react to it. Nothing is stated about time
constraints or priorities of transitions.

The displayed rule has a conditional that states
that if a server sees a message addressed for it and con-
taining a RPCrequestService(C,S) payload from client C
it will answer with a reply but only if the client is not
served by the server already. In this particular case it
will answer “yes” to the request. A similar rule exists
where the server answers “no”. Maude chooses one of
these rules randomly in its simulation.

Execution of a Maude program means supplying
an initial state (also called Configuration) and letting
Maude choose a path at random, based on the all the
possible transitions of the given state. There is also the
possibility of issuing searches in the execution tree (all
possible paths) of the initial state in order to seek out
undesirable states of the protocol. This is beneficial
for system designers who work with distributed sys-
tems too complex for unaided humans to think of, in
every possible outcome. Other fields of computer sci-
ence have used formal modelling of this kind for a
long time. We perceive this tool to be of value in the
field of theoretical system administration as well.

Every execution tree is based on an initial configu-
ration. To begin with something basic, lets take the case
of one of client and one server. We define simplelnit to
be a function that returns the following configuration:

*** A gimple initial state
eq simplelnit =

Voluntary Cooperation in Pervasive Computing Services

< "BB" BB | rpcReplies : nil,
rpcRequests nil >
All participants know about each other out-of-band, and
so they start with variables pointing to each other. The
client has two jobs it needs to be performed, “job1”” and
“job2”. It has an empty list called completedJobs and
the most basic search is to query whether this list can
contain both jobs in the end. That would be a sign that
the specification works as intended:
(search [1] simplelnit =>+
{ "client" Client |
completedJobs "jobl"™ ~ "job2",
Client:AttributeSet >
C’:Configuration

)

The search gives the desired result, which indi-
cates that the protocol can indeed be used. But the
main goal of this implementation was to review any
hidden assumptions in the design. After implementing
the protocol in Maude, several unaddressed assump-
tions became clear:

* A Job is an atomic object that is translated into

a single RPC call and does not depend on other

Jobs or on a sequential execution of other jobs.

® The service agreement request is a part of the
actual RPC service and not a standalone ser-
vice.
A client node knows the address of blackboard
and server node beforehand.
A server node knows the address of the black-
board. (The blackboard could be a local process
on one of the participants to maintain complete
autonomy, as in the cfengine implementation.)
Server and client node use the same blackboard
in the simulation, but this sacrifices complete
autonomy by introducing a third party. (This is

< "client" Client | completedJobs empty, fixed in the cfengine implementation.)
pendingRPC : nil, ® No explicit mention is made about the duration
blackBoard "BB", of the service agreement. The server will agree
rpcEnabled : none, to serve the client indefinitely.
knownServers : "server", e A client has no way of ending a relationship
jobs : "jobl job2" > with a server.
{ "server" : Server | blackBoard : "BB", * We assume a trusted transmission medium. No
rpcClients : none > lost or doubled messages can affect the result.
451213 BlackBoard 6,7,8,9
Client Server
N 1,2,3
ode » > Node

7. [bb-respond-to-pullJob]
8. [bb-drops-pullJob]
9. [server-does-job]

10. [blackboard-saves-reply]

1. [send-service-request]
2. [accept-service-request]
3. [recieve-service-agreement]
4. [send-RPC-request-to-bb]
5. [recieve-RPC-request-from-client] 12. [blackboard-returns-reply]
6. [server-send-pullJob] 13. [blackboard-drops-reply-no-finished-job]

Figure 3: The different transitions in the Maude implementation of the protocol. The numbers represent the order of

the transitions for a successful RPC call and reply.

19th Large Installation System Administration Conference (LISA °05) 149

Voluntary Cooperation in Pervasive Computing Services

Many of these assumptions are usually designed
into RPC middleware, in order to provide trans-
parency of these details.

So, after this analysis, suppose we go back to the
vision of wireless mobile devices that engage with each
other using a protocol like the one described. What are
the ramifications to the network and service level?

Administrative Costs

A RPC call will in the Maude implementation of
the protocol requires least 8 message components to
be sent if there are no redundant pull messages from
either side. The frequency of pull messages from both
client and server is not specified in the protocol itself.
A smaller interval may saturate the network, and use
more battery capacity in a mobile device, but gives
better service.

If we assume an equal transmission time ¢ for a
message between each participant and the pull-interval
of 7 and a time S for a server to process the job and
that all other processing of messages is close to instan-
taneous, we see that the smallest possible amount of
time for a RPC callis: t* 8+ S .

Also the expected number of messages can be
described as: n +8 .

The term messages is used explicitly, because it
may not correspond to the a single packet per mes-
sage. It may be so for the pull and service request
messages, since they would be small, but for the job
and the result, there are no clear limits on how small
or big they may be. One should also point out, that the
messages, which constitute the “overhead” compared
to a direct service, are also the smallest ones. The job
and the result would have to be transmitted regardless
of the protocol and should not be a measure of its effi-
ciency. What may be noted, is that they travel twice in
this protocol. So for a shared medium network, they
will occupy the medium twice as long.

Early in the text we pointed out the problem of
current client-server technologies with regard to
uncontrollable pressure on servers and the risk of bot-
tlenecks and DoS-like saturations. Voluntary coopera-
tion is proposed as a possible way of reducing this
risk, although the negotiation phase of the protocol
still contains direct traffic between the client and
server. The less discussed participant in the plot, how-
ever, is the blackboard. It will receive more traffic and
data then any of the two nodes that actually are using
the service. If one looks at the administrative ramifica-
tions of this, one has in practice created a proxy which
will get more network pressure than a typical client-
server scenario would. Also, there is no voluntary
cooperation in the blackboards part. Upon receiving a
RPCjob it will have to store the RPCreply too at a
later point.

Burgess and Begnum

A cfengine Implementation

The voluntary RPC has been implemented as a
cfengine collaborative application. Remote services
are referred to one another as “methods” or function
calls. An automated negotiation mechanism has not
been implemented as this remains an open question.
We begin by assuming that a negotiation has taken
place that determines which hosts will be clients and
which will be servers and what the nature of the ser-
vice 1s. This establishes each hosts “Method Peers,”
i.e., the hosts it is willing to provide services for. On
the server host the update.conf rules must also contain
a list of hosts to check for pending method requests.

MethodPeers =
MethodPeers

(clientl client2)
(GetPeers(*))

The client and server hosts must then have a copy of
the invitation:

methods:

client_host||server_host::

MethodExample("Service request",parameter)

action=cf.methodtest
server=server_host
returnclasses=ready
returnvars=retval

ifelapsed=120
expireafter=720

alerts:

MethodExample_ready::

"Service returned: $(MethodExample.retval)"

The predicate classes in the line ending in double
colons tells the software that this method stanza will
be read both by the client and the server host. On the
client it is a request, and on the server it is the invita-
tion. The action and server attributes determine where
the methods are defined and who should execute them.
Return values and classes are declared serving as
access control lists for returned parameters. Since a
remote method is not under out local control, we want
to have reasonable checks about the information being
returned. Methods could easily be asked to return cer-
tificates, for instance, to judge their authenticity. The
ifelapsed and expireafter attributes apply additional
scheduling policy constraints, as mentioned above.

On server host a copy of the and invitation is
needed to counter-sign the agreement. The module
itself must then be coded on the server. The invitation
is based on the naming of the hosts; this has caused
some practical problems due to the trust model. The
use of IP addresses and ties to domain names has
proven somewhat unreliable due to the variety of
implementations of Domain Name Service resolution
software. A name might be resolved into an IPv6
address on one end of a connection, but as an IPv4
address on the other side. This leads to mismatches

150 19th Large Installation System Administration Conference (LISA °05)

Burgess and Begnum

that are somewhat annoying in the current changeover
period, but which are not a weakness of the method in
principle. See Display 1.

A notable point regarding this implementation is
that the protocol is incorporated into an existing ser-
vice. This limits the range of possible applications, but
reduces extra overhead since the RPC calls and results
are bundled with the already scheduled communication.

Incorporation of Voluntary RPC in cfengine

The challenge of voluntary cooperation is to bal-
ance a regularity of service (constraints on time) with
the need for security against misuse attacks. The relia-
bility of services becomes a matter for a host’s reputa-
tion, rather than a matter of contract. Hosts must learn
each others’ probable behaviour over time rather than
demand a certain level of service. Clearly this is not
acceptable in every situation, but it is a desirable way
of opening relations with a host that one has never
seen before.

Given that all service execution is based on vol-
untary cooperation, there are no guarantees about ser-
vice levels. This is a feature of the protocol. However,
this does not mean that arbitrary bounds on service
levels are not implementable. Cooperative hosts can
easily arrange for a rapid level of service by agreeing
on a schedule for contacting their peers. This can be as
often as each party feels is appropriate.

If we assume that all host agents run diagnostics
and administrative services with the same regular

Voluntary Cooperation in Pervasive Computing Services

period P, and that all servers are willing to process the
request without delay, then we can say that the
expected time to service T is:

(PY <D L2 4P).
This may be verified empirically. Limits can also be
placed on the maximum number of times that a
method can be evaluated in a certain interval of time.

Note that the scheduling period P can be arbitrar-
ily small, but for administrative activities one is usually
talking about minutes rather than milliseconds. The
efficiency of the method for small P is not impressive,
due to the overheads of processing the additional steps.
Thus the voluntary RPC is not suggested as a replace-
ment for conventional service provision.

In the cfengine software implementation, the
locking parameters ‘ifelapsed’ and ‘expireafter’ deter-
mine additional controls that bind the evaluation of
remote methods tightly to policy. The ‘ifelapsed’ time
says that a method will be ignored until the specified
time has elapsed since the last execution. The
‘expireafter’ option says that a still-executing method
will not be allowed to continue for longer than the
expiry time.

Discussion and Comments

The implementation in cfengine does not contain
a negotiation phase as a part of the RPC protocol. As
implemented, cfengine assumes that type of service and
its parameters is established out-of-band. Also, there is
no direct reference to any blackboard that caches the
RPC interaction and thus there is complete autonomy.

control:

MethodName = (MethodExample)
MethodParameters = (valuel value2)
MethodAccess = (patterns)

valuel is passed to this program, so lets
add to it and send the result back for fun

varl = ("${valuel}...and get it back"

actionsequence = (editfiles)

)

THHHHHHHHHHHHHHHHHHHHHHHHHHHHEERRRRA A

classes:

moduleresult = (any)
ready = (any)

THHHHHHHHHHHHHHHHHHHHHHHHHHHHEERRRRA A

editfiles:
{ /tmp/filel

AutoCreate
AppendIfNoSuchLine "Important data..
}

.S (value2)"

THHHHHHHHHHHHHHHHHHHHHHHHHHHHEERRRRAA A

alerts:
moduleresult::

ReturnVariables ("S${varl}")
ReturnClasses (ready)

Display 1: Extended invitation example.

19th Large Installation System Administration Conference (LISA ’05)

151

Voluntary Cooperation in Pervasive Computing Services

A more finely grained response regulation and
access control is implemented in cfengine as com-
pared to the more translucent concept of a “job” in
the Maude implementation. There is little leeway for
the nodes to change any of these parameters itself in
any of the implementations and may therefore seem as
not very dynamic or adaptable. It is also left to the
implementation to sort out special cases, such as if the
server would not want to serve the client but the RPC
call is on the blackboard. Cfengine simply ignores
such cases and clears them up as garbage. What coor-
dination and messages would be necessary in order to
remedy this situation?

The implementation in cfengine raises an impor-
tant question: if this were a truly pervasive environment
and the nodes just got to know each other, how would
they agree on the parameters and correct return type of
the RPC? Why is this important? Because if the negoti-
ation takes more computing power than the actual ser-
vice in question then what is the gain for a mobile node
to participate? Seen as a game, what is the cost-benefit
relationship for the client and server? One has to think
of the wider context. We must try to keep in mind
future services that nodes may offer to each other,
where such a negotiation is worth the delays.

Based on our observations, it is natural to think
of a realistic future scenario as being partially mobile,
perhaps with some fixed infrastructure. that may serve
as a cache for blackboard messages. For example, in a
virtual shopping mall, a blackboard service might be
provided, taking its own share of the risk from cus-
tomers. Nodes have greater freedom through this pro-
tocol: they may actually be away from the network
while the contents are cached by the blackboard. A
global ID, like the MIPv6 protocols home address,
will make sure that the nodes can gather the data
belonging to it from anywhere. It must be noted also,
that the blackboard does not have to be a single hop
away. It can be several, making this service more
global and not just limited to a single network.

So, is there really any need for this type of vol-
untary cooperation?

One model of pervasive services is commercial
and based on the Internet café. Here roaming tourists
pay for a ticket that grants them access to an otherwise
closed local service. In regular commerce, it is
assumed that this monetary relationship is sufficient to
guarantee a decent form of behaviour, in which parties
behave predictably and responsibly. But is this neces-
sarily true? There are several faults in this assumption
for network services.

First of all, the commerce model assumes that
virtual customers will behave much as they have done
in human to human commerce. There is no compelling
reason to suppose that this will be the case. A genera-
tion of users has now grown up taking lawless online
technologies for granted. Technologies such as mobile

Burgess and Begnum

phones, peer to peer sharing and Internet chat rooms
are changing societal attitudes and the rules of interac-
tion between young people [29].

Secondly, the model assumes that clients will
exhibit predictable behaviour. Studies show that such a
predictable relationship must be built up over time,
and only applies if customers are regular patrons of a
service provider [30]. Customer trust is based on the
idea that customers and providers form relatively long
lasting relationships and that one can therefore punish
misdeeds by some kind of tit-for-tat interaction [8],
because they will almost certainly meet again in the
future. However, in a future where everything is on the
move, distance has no meaning, and both children and
adults are very much on-line, there is reason to sup-
pose that clients will not ‘hit and run’ servers for prank
or for malice. Hiding or changing identity on the Inter-
net is trivial, so customers can visit providers repeat-
edly with a new identity and there avoid reprisals.

Finally, the use of of immediate payment as a
barrier to deter frivolous usage assumes users will
behave rationally in an adult fashion. This assumption
is also flawed, since users might expect their uncoop-
erative actions to have greater payoffs down the line.
All of this points to the need for greater initial caution,
and a reward scheme for cooperative behaviour.

A simple protocol for voluntary cooperation has
shown that with a slightly higher load on a network one
can reduce the risks of connecting with untrusted
clients. If these types of services arrive, using indepen-
dent blackboards (e.g., Grid Computing), the system
administrators may see the dawn of a new type of
servers which act only as caches and proxies for volun-
tary interaction. They will in turn be the ones that need
protection from saturation and abuse. If fully
autonomous behaviour is preserved, these problems can
be avoided. We are currently working on a theory of
fully autonomous interaction called promise theory [31].

Is voluntary cooperation a technical challenge or
a human challenge then? The answer must be that it is
both. A device that is misappropriated for malicious
purposes by a human behaves simply as a hostile
device to other computers. Computers perform a use-
ful service to maintain the integrity of the networked
community if they try to protect themselves, regard-
less of the source of the mischief.

Conclusions

This paper discusses the issue of voluntary coop-
eration in peer networks, and analyses a proposed
trade-off which might help to lower the risks of client-
server interactions in unpredictable environments.

The mechanism proposed is one of minimal
acceptable trust. Through the mechanism, hosts in a
collective environment can maintain maximal adminis-
trative control of their own resources, and hence reduce
the risk of abuses and security breaches. Voluntary

152 19th Large Installation System Administration Conference (LISA ’05)

Burgess and Begnum

cooperation (or pull-based service provision) is fully
implementable and offers flexibility of asynchronous
timing, as well as some additional security.

The motivation for this work was initially to sup-
port an administrative peer to peer algorithm that
respects the autonomy of individual peers (inspired by
model 6 of refs. [13, 3]), but the result is of more gen-
eral interest. Its application domain is mainly tasks
that are the traditional domain of the system admin-
istrator, but which have to operate in an uncertain and
far from controlled environment.

A simulation in the analysis framework Maude,
and an test implementation in the configuration tool
cfengine [32, 33], show that the protocol functions
properly, as advertised, and reveals the nature of the
tradeoffs. The protocol overhead can be reduced, if
voluntary cooperation is incorporated into an existing
service, as in cfengine.

We have tested the voluntary cooperation
approach on mundane tasks like the backup of remote
machines, distributed monitoring (exchange of usage
data, confirmation of uptime etc.), load balancing and
other tasks. Although this mechanism currently has a
limited number of desirable applications, this is proba-
bly due, in part, to the lack of truly mobile administra-
tive approaches to hosts, in contemporary organiza-
tions. As pervasive services mature, one could expect
that a voluntary cooperation mechanism would actu-
ally become invaluable for high risk transfers, e.g., in
distributed software updating.

For demand services, the minimal trust model
seems both cynical and inappropriate: perhaps even a
hindrance to cooperative behaviour and commerce. At
some point, the actors of the virtual community online
must learn the human rules of trusting engagement,
and new generations of children will have to be edu-
cated to accept that virtual communities are just as
important as real ones. Human relations are based on
rules of voluntary etiquette, but such social niceties
have taken thousands of years to evolve.

We present this work in the framework of system
administration because system administrators are the
virtual custodians of the hosts and devices in the per-
vasive computing scenario. If administrators do not
discuss the issues of scalable and management, and
devise a workable scenario in the face of all its uncer-
tainties, no one will.

Acknowledgement

We are remotely grateful to Siri Fagernes and
John Sechrest for voluntary discussions on coopera-
tive services.

Bibliography

[1] Sapuntzakis, C. and M. S. Lam, “Virtual appli-
ances in the collective: A road to hassle-free
computing,” Proceedings of the Ninth Workshop

Voluntary Cooperation in Pervasive Computing Services

on Hot Topics in Operating Systems (HOTOS
1X), 2003.

[2] Begnum, K., M. Burgess, and J. Sechrest, “Infra-
structure in a virtual grid landscape from abstract
roles,” Journal of Network and Systems Man-
agement, (submitted).

[3] Burgess, M., and G. Canright, “Scaling behav-
iour of peer configuration in logically ad hoc net-
works,” IEEE eTransactions on Network and
Service Management, Vol. 1, Num. 1, 2004.

[4] Burgess, M., and S. Fagernes, “Pervasive com-
puting management: A model of network policy
with local autonomy,” IEEE eTransactions on
Network and Service Management, submitted.

[5] Burgess, M., and S. Fagernes, “Pervasive Com-
puting Management II: Voluntary Cooperation,”
IEEE eTransactions on Network and Service
Management, submitted.

[6] Burgess, M., and S. Fagernes, “Pervasive com-
puting management III: Management Analysis,”
IEEE eTransactions on Network and Service
Management, submitted.

[7] Undercofter, J., F. Perich, A. Cedilnik, L. Kagal,
and A. Joshi, “A secure infrastructure for service
discovery and access in pervasive mputing,”
Mobile Networks and Applications, Vol. 8, Num.
2, pp. 113-125, 2003.

[8] Axelrod, R., The Evolution of Co-operation,
Penguin Books, 1984.

[9] Martin-Flatin, J. P, “Push vs. pull in web-based
network management,” Proceedings of the VI
IFIP/IEEE IM conference on network manage-
ment, p. 3, 1999.

[10] Burgess, M., “Computer Immunology,” Pro-
ceedings of the Twelth Systems Administration
Conference (LISA XII), p. 283, USENIX Associ-
ation, Berkeley, CA, 1998.

[11] Paxson, V. and S. Floyd, “Wide area traffic: the
failure of poisson modelling,” IEEE/ACM Trans-
actions on networking, Vol. 3, Num. 3, p. 226,
1995.

[12] Bellavista, P., A. Corradi, R.Montanari, and C.
Stefanelli, ““Policy-driven binding to information
resources in mobility-enabled scenarios,” Mobile
Data Management, Lecture Notes in Computer
Science, Num. 2574, pp. 212-229, 2003.

[13] Burgess, M., and G. Canright, “Scalability of
peer configuration management in partially reli-
able networks,” Proceedings of the VIII
IFIP/IEEE IM conference on network manage-
ment, p. 293, 2003.

[14] Anderson, E., M. Burgess, and A. Couch,
Selected Papers in Network and System Adminis-
tration, J. Wiley & Sons, Chichester, 2001.

[15] Fradet, P., V. Issarny, and S. Rouvrais, ““Analyz-
ing non-functional properties of mobile agents,”

19th Large Installation System Administration Conference (LISA °05) 153

Voluntary Cooperation in Pervasive Computing Services

Fundamental Approaches to Software Engineer-
ing, Lecture Notes on Computer Science, Num.
1783, pp. 319-333, 2000.

[16] Case, J., M. Fedor, M. Schoffstall, and J. Davin,
“The simple network management protocol,”
RFCI1155,STD 16, 1990.

[17] Zapf, M., K. Herrmann, K. Geihs, and J. Wol-
fang, ‘“Decentralized snmp management with
mobile agents,” Proceedings of the VI
IFIP/IEEE IM conference on network manage-
ment, p. 623, 1999.

[18] Matsushita, M., “Telecommunication manage-
ment network,” NTT Review, Num. 3, pp.
117-122, 1991.

[19] Sloman, M. S. and J. Moffet, ““Policy hierarchies
for distributed systems management,” Journal of
Network and System Management, Vol. 11, Num.
9, p. 1404, 1993.

[20] Lignau, Anselm, Jiirgen Berghoff, Oswald Drob-
nik, and Christian Mdnch, “Agent-based config-
uration management of distributed applications,”
Proceedings of the 3rd International Conference
on Configurable Distributed Systems, pages
52-59, 1996.

[21] Oram, Andy, editor, Peer-to-peer: Harnessing
the Power of Disruptive Technologies, O’Reilly,
Sebastopol, California, 2001.

[22] Dunbar, R., Grooming, Gossip and the Evolution
of Language, Faber and Faber, London, 1996.

[23] Lee, M. K., and X. H. Jia, “A reliable asynchro-
nous rpc architecture for wireless networks,”
Computer Commmunications, Vol. 25, Num. 17,
pp. 1631-1639, 2002.

[24] Kottmann, D., R. Wittmann, and M. Posur, “Del-
egating remote operation execution in a mobile
computing environment,” Mobile Networks and
Applications, Vol. 1, Num. 4, pp. 387-397,
December, 1996.

[25] Bakre, Ajay V., and B. R. Badrinath, “Rework-
ing the RPC paradigm for mobile clients,”
Mobile Networks and Applications, Vol. 4, pp.
371-385, 1997.

[26] Burgess, M., G. Canright, and K. Enge, “A
graph theoretical model of computer security:
from file access to social engineering,” Interna-
tional Journal of Information Security, Vol. 3,
pp. 70-85, 2004.

[27] Watts, D. J., Small Worlds, Princeton University
Press, Princeton, 1999.

[28] Maude, The maude homepage, http://maude.cs.
uiuc.edu.

[29] Rheingold, Howard, Smart Mobs: The Next
Social Revolution, Perseus Books, 2002.

[30] Axelrod, R., The Complexity of Cooperation:
Agent-based Models of Competition and Collab-
oration, Princeton Studies in Complexity, Prince-
ton, 1997.

Burgess and Begnum

[31] Burgess, Mark, “An approach to understanding
policy based on autonomy and voluntary cooper-
ation,” IFIP/IEEE 16th international workshop
on distributed systems operations and manage-
ment (DSOM), in LNCS 3775, pages 97-108.

[32] Burgess, M., “A site configuration engine,”
Computing systems, Vol. 8, p. 309, MIT Press,
Cambridge, MA, 1995.

[33] Burgess, M., Cfengine www site, http://www.iu.
hio.no/cfengine, 1993.

154 19th Large Installation System Administration Conference (LISA °05)

