Toward a Cost Model for
System Administration

Alva L. Couch, Ning Wu, and Hengky Susanto — Tufts University

ABSTRACT

The core of system administration is to utilize a set of ““best practices” that minimize cost
and result in maximum value, but very little is known about the true cost of system administration.
In this paper, we define the problem of determining the cost of system administration. For support
organizations with fixed budgets, the dominant variant cost is the work and value lost due to time
spent waiting for services. We study how to measure and analyze this cost through a variety of
methods, including white-box and black-box analysis and discrete event simulation. Simple
models of cost provide insight into why some practices cost more than expected, and why
transitioning from one kind of practice to another is costly.

Introduction

What is a set of ““best practices”? Ideally, it is a
set of practices that cost the least while having the
most value, i.e., a model of practice for which the ratio
value/cost is maximal over the lifecycle of the equip-
ment being managed. We have not succeeded in evalu-
ating practices according to this yardstick, however,
because there is no usable model of cost for any par-
ticular set of practices. We would like a model that
predicts, based upon particular management decisions,
the total cost of operations that results from those
decisions over the lifecycle of the network being man-
aged. This is one goal of ““analytical or theoretical sys-
tem administration” [5, 6].

Many system administrators and managers con-
sider a complete cost model to be an impossible goal
for several reasons. First, the actual cost of system
administration is a relatively constant and monolithic
line item in many IT budgets; it is commonly techni-
cally infeasible to break the lump sum cost into com-
ponent costs for the purpose of evaluating strategy.
Mechanisms for recording day-to-day costs (e.g.,
detailed time sheets) are often more expensive to man-
age than the money they might potentially save. And
for the organizations whose audit requirements force
them to maintain detailed costing data, these records
are usually confidential and unavailable to researchers
outside the organization. Thus any really usable cost
model has to be practical in not consuming resources,
tunable for specific situations by the end-user, and
must allow that user to incorporate confidential data
into the model without divulging it to outsiders.

Currently, instead of considering costs, we jus-
tify best practices by what might best be called a
“micro-economic” model. We say that certain prac-
tices “make the job easier”, or other weak justifica-
tions. Is “simpler” really “cheaper”? We have yet to
prove this assertion and — in many cases — the micro-
cosmic reasoning we use today seems to be incorrect

at a macrocosmic (lifecycle) scale. A case in point is
the use of automation, which is “better than manual
changes” except that — at a macrocosmic scale — scal-
ing increases costs in ways that are inconceivable
when working on a small number of machines. The
reasons for this apparent contradiction are deep and
will be discussed later in the paper.

Current Ideas About Cost

The first step toward a cost model was made by
Patterson [18], who points out that while “administra-
tive costs” may be fixed and non-varying, the cost of
downtime varies with scale of outage and disrupts
more than computer use. Patterson’s formula for the
cost of downtime is based upon calculation of two fac-
tors we previously ignored as system administrators:
revenue lost and work lost. Even if our system admin-
istration group has a fixed size and operating budget,
the cost of downtime varies with the severity and
scope of outage, and lifecycle cost of operations thus
varies with risk of outage. Patterson also points out
that there are more subtle costs to downtime, including
morale and staff attrition. But how do we quantify
these components in a cost model?

Cost modeling also depends upon risk and cost
of potential catastrophes. Apthorpe [1] describes the
mathematics of risk modeling for system administra-
tors. By understanding risk, we can better make cost
decisions; the lifecycle cost of an administrative strat-
egy is the expected value of cost based upon a risk
model, i.e., the sum of ‘“cost of outcome” times
“probability of outcome” over all possible outcomes.

Cost modeling of risks is not simple; Cowan, et
al. [8] point out that simply and blindly mitigating
risks does not lead to a lowest-cost model. It is often
better to wait to apply a security patch rather than
applying it when it is posted, because of the likelihood
of downtime resulting from the patch itself. Thus the
global minimum of lifecycle cost is not achieved by
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simply minimizing perceived risks; other risks enter
the system as a result of mitigating the perceived ones.

Further, Alva Couch made the bold claim at the
last LISA [7] that the essential barrier to deployment
of better configuration management is “cost of adop-
tion”. The reason that configuration management
strategies such as automation are not applied more
widely is that it costs too much to change from unau-
tomated to automated management. But he stopped
short of truly quantifying cost of adoption in that pre-
sentation, due to inadequate models. Meanwhile, many
people pressured him in one way or another to formal-
ize the model and demonstrate his claims rigorously.
This paper is the first small result of that pressure.

In this paper, we make the first step toward a cost
model for system administration, based upon related
work in other disciplines. We begin by defining the
components of an overall lifecycle cost model. We look
at real data from a trouble-ticketing system to under-
stand the qualities of load upon a support organization,
and discuss the problems inherent in collecting data
from real systems. We explore the relationship between
system administration and capacity planning, and show
that we must determine specific rates in order to deter-
mine costs. We borrow mechanisms for determining
those rates from white-box and black-box cost models
in software engineering. Finally, we turn to discrete
event simulation in order to understand the relation-
ships between rates and cost. As a result, we can begin
to quantify the cost of some decisions about practice,
including deployment schedules for new software.
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A Simple Model Of System Administration

First, system administration can be modeled as a
queueing system (Figure 1) in which incoming
requests arrive, are queued for later processing, and
eventually dequeued and acted upon, and completed.
Each kind of request arrives at the queue with an
“arrival rate” and is completed in a length of time
whose reciprocal represents a ‘‘service rate.” We
embody all changes made to the network as requests; a
request may indicate a problem or ask for a change in
the nature of services offered. Requests arise from
many sources, including users, management, and even
the system administrator herself may make a note to
change something. Likewise, requests are granted via
many mechanisms, including work by system admin-
istrators and work by others.

Note that this is a more complex model than rep-
resented by the typical helpdesk. In a typical ticket
system, tickets represent external requests, while
internal requests (e.g., actions generated by a security
incident report) are not given ticket numbers. In our
request queue, all change actions are entered into the
queue, serviced, and closed when done.

System administration has complex goals, so the
request queue has a complex structure; it is (in the lan-
guage of capacity planning [17]) a multi-class queue-
ing system consisting of a mixed set of several
“classes” of requests (Figure 2). Many kinds of
requests, with different average arrival rates, are com-
bined into one request stream. Each kind of request K
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Figure 1: System administration as a queueing system.

gueue

administrator
population

junior

staff

*Cg completed requests

client

population

- ml
simple
tasks T client

O requests
complex J
tasks
m2

internal requests

senior
staff

Figure 2: Multiple classes of requests and administrators.
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has a distinct average service rate [x (and perhaps, a
distinct statistical distribution of service times). As
well, a realistic system administration organization is a
non-product system: system administrators do not
function independently like a set of cloned web-
servers; they communicate and interact with one
another, affecting throughput. A product system (as in
Cartesian product) consists of a number of compo-
nents that function independently (so that the state-
space of the whole system is a Cartesian product of
the state-spaces of its parts).

Request Arrivals

While the overall structure of the request queue
is complex, we observe that the structure of some
classes of requests is easy to understand. Many classes
of requests arrive with a “Poisson distribution” of
inter-arrival times. In a Poisson distribution with
arrival rate of A requests per unit time,

1. The mean inter-arrival time is 1/A.

2. The standard deviation of the inter-arrival time
is 1/\.

3. The arrival process is memoryless; the probabil-
ity that a request will arrive in the next ¢ sec-
onds is independent of whether one arrived
recently.

Many kinds of requests naturally obey this distri-
bution. For example, any kind of request in which a
large population operates independently of one another
has a Poisson distribution, e.g., forgotten passwords.

As well, many non-Poisson classes of requests
(e.g., virus attacks) arrive with a Poisson distribution
if viewed at the proper scale. While requests for virus
cleaning of individual hosts arrive in bursts and are
not memoryless, the arrival of the virus at one’s site is
an independent, memoryless event. If we treat the
virus arrival at one’s site as one event, rather than the
thousands of requests it may generate, then new
viruses arrive with a roughly Poisson distribution
(because they originate from independent sources at
relatively constant rates). Likewise, while an outage of
a particularly busy server may generate thousands of
tickets, the outage itself obeys a Poisson distribution
even though the tickets resulting from the outage do
not. Many other kinds of requests have this character;
although actual tickets arrive in bursts, the real prob-
lem occurs in a memoryless way that is independent of
all other problem occurrences. Examples include hard-
ware failures, power outages, denial-of-service attacks,
spam, etc.

Request Processing

The second part of our model is how requests are
processed. Like request arrivals, request processing is
complex but there are parts of it that are understand-
able. For example, many kinds of requests are com-
pleted via an “‘exponential distribution” of service
time. The properties of an exponential service time are
similar to those for a Poisson arrival; if a class of
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requests is serviced with an exponential rate of p
requests per unit time, then:

1. The mean time for servicing a request is 1/JL.

2. The standard deviation of service time is /L.

3. The service process is memoryless; the proba-
bility that a request will be finished in the next ¢
seconds is independent of whether we know it
has been in progress for s seconds already.

The last assumption might be paraphrased “A
watched pot never boils.”

Examples of requests that exhibit an exponential
service time include password resets, routine account
problems, server crashes, etc. For each of these, there
is a rate of response that is independent of the nature
of the specific request (i.e., which user) and seldom
varies from a given average rate L. Requests that can-
not be serviced via an exponential distribution include
complex troubleshooting tasks, and any request where
the exact method of solution is unknown at the time of
request. In general, a request for which the answer is
well documented and scripted exhibits an exponential
distribution of service times; requests with no docu-
mented response do not.

Lessons From Capacity Planning

Real data discussed below shows that inter-
arrival times may not exhibit a Poisson distribution,
and that service times may not be exponentially dis-
tributed. However, much is known about the perfor-
mance of idealized queues governed by Poisson and
exponential distributions, and there are many system
administration tasks for which these performance esti-
mates are reasonable.

A queue that exhibits Poisson arrivals with rate A
and has ¢ independent system administrators working
with service rates U is called an “M/M/c” queue. The
first M stands for ‘memoryless’ (Poisson) arrivals, the
second M stands for ‘memoryless’ (exponential) ser-
vice times, and c is a count of servers (administrators)
all of whom complete requests with rate .. The behav-
ior of an M/M/c queue is well understood and is com-
monly used for capacity planning of server farms and
IT infrastructure.

For an M/M/c queue, whenever A/cp <1, the
probability that the queue is empty is
1
So = 1
DS ey 1 ey .
= n! ¢! 1—=M(cw)
and the “mean time in system” (average wait) for a
request [15] is

LS 1
" (- Mewy? 1 @)

The mean time spent waiting for n requests to be
serviced is n times the mean wait for one. More
important, this equation allows us to predict whether
adding more system administrators will not solve a
response-time problem. As ¢ grows, the first term of
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the above equation goes to 0 and the response time
converges toward the theoretical minimum 1/Q.

Many other equations and relationships exist for
more general queues. In this paper, we will consider
only M/M/c models; for an excellent guide to other
models and how to predict performance from them
(including excel spreadsheets for decision support),
see [17].

Learning From Real Data

From above, it is easy to analyze systems that
behave according to Poisson arrivals and exponential
service. How realistic are these assumptions about
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system administration? To explore this, we examined a
ticket queue from a live site (Tufts ECE/CS). Note that
no one knew, until very recently, that anyone was
going to analyze this ticket data. It is thus free of
many sampling biases. It is, however, difficult to
determine exactly when many tickets were closed.
This is because there is no site requirement to close
tickets promptly, and many tickets are closed by stu-
dent staff who monitor the ticket queue, sometimes
long after the problem has been addressed.

Plotting ticket numbers (an increasing sequence)
against time (Figure 3) shows little or no evocative
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Figure 3: Ticket durations in ECE/CS from 7/2004 to 7/2005.
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Figure 4: Ticket durations less than 30 days.
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patterns. Each ticket is plotted as a horizontal line,
with beginning and end representing creation and
completion time. The Y axis represents ticket number;
tickets due to spam have been deleted and the result-
ing queue renumbered as increasing integers with no
gaps. Note particularly that several tickets are still
open after several months.

We discovered very quickly that there were two
classes of service: one for short-duration requests and
another for long-duration requests. Viewed alone, the
requests that took less than a month exhibit relatively
consistent response times (Figure 4).

Request arrivals are not Poisson. For arrivals to
exhibit a Poisson distribution, the mean of inter-arrival
times must be equal to their standard deviation. In this
case, the overall standard deviation of inter-arrival
times (9580 seconds or = 2.65 hours) is about 1.37
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times the mean (6971 seconds or = 1.94 hours), indi-
cating that there are periods of inactivity. Looking
deeper, Figure 5 shows one problem: arrival rates are
not constant, but instead sinusoidal over a 24-hour
period. In this graph, ticket arrivals are shown by hour,
summed over the lifetime of the Request Tracker (RT)
database. The times are corrected for daylight savings
time, and show more intense traffic 9 am to 5 pm with
a small dip in traffic at lunch. Ticket closures show a
different pattern (Figure 6) with a hotspot at 3 pm that
defies explanation, until one realizes that a student
administrator charged with monitoring and closing
tickets starts work at that time!

Measured “time in system” does not seem to be
exponential, either. If, however, one omits requests
with time in system greater than one month, the
remaining requests exhibit a distribution that looks
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Figure 5: Ticket arrivals exhibit sinusoidal rate variation over 24 hours.
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similar to exponential (Figure 7). The figure contains a
histogram of the number of requests processed in each
number of days. Note, however, that this figure repre-
sents service time plus time spent waiting in queue, so
it cannot be used to compute an accurate service rate.

From the data, we see that requests are multiclass
with at least two distinct classes of requests:

1. A vast majority of requests are resolved quickly
(in less than one month, with a mean time in
system of about 3.6 days). Arrival times for
these requests seem to be governed by a sinu-
soidal non-stationary Poisson process, 1i.e.,
arrival rates seem to vary between a daily high
and low on a sine-wave pattern.

2. A small number of requests have an indetermi-
nate and long time in system. Arrival times for
these requests show no discernible structure
(perhaps due to lack of enough examples).

3. The average rate of ticket arrival is gradually
increasing over time. In our case, this seems to
be partly due to new faculty hires.

This data also exhibits, however, the main diffi-
culties of extracting performance statistics from ticket
queues:

1. Service times are recorded inaccurately because
there is no particular advantage to recording
them accurately. Most tickets are closed late,
because it is not the job of the administrator
answering the ticket to close it, but just to solve
the problem. In our case, many tickets are
closed by student staff some time after the
problem has been solved.

2. The class of a particular request is not always
easily discernible. It is easier to group requests
by time of service rather than class of problem.
In our case, there is a clear distinction between
requests for which an appropriate response is
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documented, and those for which an appropri-
ate response is unknown. The former take on
average the same time to resolve, while the lat-
ter vary widely.

3. Emergent patterns in the data are only obvious
if one is very careful about correcting for envi-
ronmental issues. For example, data did not
exhibit a sinusoidal arrival rate until it was cor-
rected for daylight savings time (DST)!

4. Ticket data does not indicate the severity of a
problem. There are no discernible “flurries” or
“bursts” of data for severe problems; often
only one or two people bother to report a major
outage.

Other practitioners have mentioned that there are
several ways that request queue data can be biased by
operating policy.

1. If people are rewarded for closing tickets
quickly, they tend to close them early, before an
actual resolution.

2. If people are rewarded for only the tickets they
choose to resolve, obviously difficult tickets
will be avoided.

The final issue plaguing the use of real request
queue data is privacy. Real request data contains flaws
in practice. For example, some requests for which
there should be documented scripts remain undocu-
mented, some requests are forgotten, and some
requests can take an embarrassing amount of time to
resolve. For this reason, it is difficult for researchers to
get real data on the nature of requests and their service
times, for sites other than their own.

One lesson learned from our data is the power of
good documentation. If an appropriate response to a
problem is documented or otherwise well known,
there seems to be no significant difference in response
time invariant of the nature of the problem. It is
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Figure 7: A histogram of the frequency of tickets resolved in each number of days has a near-exponential shape.
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surprising that to a first approximation, differences in
service times for subclasses of requests do not emerge
from the data. One possible reason for this effect is
that in these cases, communication time with clients
may dominate the time needed to solve the problem
once it is clearly defined.

Conversely, problems with no documented
response wait longer and may never be solved. At our
helpdesk, student staff solve routine problems and
defer only problems with no documented solution to
second-level triage staff. Since the second-level staff
are often planning or deploying new architectures,
requests without documented solutions await their
attention and compete with deployment tasks. Of
course, once solved and documented, such a request
becomes quickly solvable.

In our data, a simple pattern emerges. System
administration is composed of a combination of rou-
tine tasks and complex troubleshooting and discovery
that borders upon science. Our site’s practice is per-
haps best described as a two-class queueing system,
with a large number of routine requests with docu-
mented and/or known solutions, and a smaller number
of requests requiring real research and perhaps devel-
opment. For the most part, the routine requests are
accomplished by system administrators acting inde-
pendently, while more complex requests may require
collaboration between system administrators and take
a longer, relatively unpredictable time to complete.

A Simple Model Of Cost

Given the above model of system administration
as a queueing system, we construct a coarse overall
model of cost, based upon the work of Patterson [18]
with some clarifications.

First, cost can be expressed as a sum of two com-
ponents: the “cost of operations” and the “cost of
waiting for changes.” The “cost of operations” con-
tains all of the typical components of what we nor-
mally consider to be cost: salaries, benefits, contracts,
and capital expenditures such as equipment acquisi-
tion. For most sites, this is a relatively predictable cost
that remains constant over relatively long time peri-
ods, e.g., a quarter or a year. The “cost of waiting” is
a generalization of Patterson’s “‘cost of downtime”,
that includes the cost of waiting for changes as well as
the cost of waiting for outages to be corrected.

While the cost of downtime can be directly cal-
culated in terms of work lost and revenue lost, the cost
of waiting for a change cannot be quantified so easily.
First we assume that R represents the set of requests to
be satisfied. Each request 7 € R has a cost C, and the
total cost of waiting is

C, = ZR C, . 3)
re
We assume that for a request » (corresponding to either

an outage or a desired change in operations), there is a
cost function c¢.(f) that determines the instantaneous
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cost of not accomplishing the change, and times ¢.; and
t, at which the change was requested and accom-
plished. Then the tangible cost of waiting is the integral
(running sum) of c,(f) over the waiting period:
)
C = '[c,,(t)dt . @)
I
If as well ¢,.() is a constant
Cr = (tr2 — 1 )Cr =t.c, (5)
as in Patterson’s paper. In general, this may not be
true, e.g., if the change reflects a competitive advan-
tage and the effects of competition become more
severe over time. For example, in the case of security
vulnerabilities, vulnerability is known to increase over
time as hackers gain access to exploits.

System administrators control very little of the
process that leads to lifecycle cost, but the part they
control — how they work and accomplish tasks — can
partly determine the cost of waiting. In this paper, we
consider the effects of practice upon the cost of wait-
ing in a situation in which the budget of operations is
held constant over some period, e.g., a quarter or a
year. Situations in which cost of operations can vary
(e.g., by hiring, layoffs, or outsourcing) are left for
later work.

The cost function ¢,.(f) must model both tangible
(work lost) and intangible (contingency) factors. For
requests concerning downtime, the cost of waiting
may be directly proportional to work and revenue lost,
while for requests involving enhancements rather than
downtime, work lost and revenue lost can be more dif-
ficult to quantify. Also, the costs of waiting for
enhancements vary greatly from site to site. For busi-
ness sites, delays often incur real revenue loss, while
for academic sites, the effects of delays are more
intangible, resulting in missed grant deadlines, student
attrition, and other “opportunities lost”. In the latter
case, it is better to model cost as risk of potential loss
rather than as tangible loss.

We can best cope with uncertainty and risk by
computing the expected value of each potential risk.
Contingencies are like requests; they arrive during a
period of vulnerability with a specific rate depending
upon the severity of the vulnerability; these arrivals
are often Poisson. The total expected value of an out-
age or wait is the sum of expected incident costs,
taken over the various kinds of incidents. If incidents
arrive with a constant Poisson rate A, the expected
incident cost is the number of expected incidents times
the cost of an incident. This is in turn a product of the
rate of arrival for the incident, the elapsed time, and
the average cost per incident. Note that the word
“incident” applies not only to security problems, but
also to lost opportunities such as students dropping out
of school, employees quitting, etc.

Thus we can think of the cost function c,(f) for a
particular request 7 as
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Cr(t) = Crm(t) + Cri(t) (6)
where c,,,,(¢) represents tangible losses and c,,(f) repre-
sents intangible losses. While c,,,(f) represents work
and revenue losses and is proportional to the scale of
the outage, c,; represents possible losses due to ran-
dom events. If contingencies are elements d of a set D,
of all possible contingencies that can occur during
request », and contingencies in D, are statistically
independent, then the cost c,; for all of them is the sum
of their individual costs

i) = X cra(d) (7

deD,
where c¢,; is the contingency cost for deD, while
waiting for r. If contingencies deD, have Poisson
inter-arrival times A4, then

Cria = MaCq (®)
where Cj is the average cost per incident for d. Thus
Cr(t) = crm(t) + dz xdcd~ (9)
eD,
If ¢,,,, Ay, and C, are constants, then
o =cm+ (X ACy) (10)
deD,
is also a constant, and
ts
C = j e, (t)dt = ot . (11)

1y

Note that there are a lot of if’s in the above justi-
fication and the reader should be warned that assump-
tions abound here. The formula for cost of waiting
simplifies easily only if particular assumptions hold.
As we make these assumptions, our model loses accu-
racy and expressiveness. With all assumptions in
place, we have Patterson’s model; as he states, it is an
oversimplification.

If requests can be divided into classes k€K, each
with a different proportionality constant o, then the
total cost of processing a set of requests is the total
time spent waiting for each class, times the propor-
tionality constant for that class. Thus, in the simplest
case, the total cost of waiting is

Cw = E 2 Oty (12)
keK rek
or
Cw = 2 O 2 L. (13)
keK rek

Thus the contribution of each class k is proportional to
the total time spent waiting for events of that class.

In this approximation we make many simplifying
assumptions:
1. Contingencies arrive with Poisson rates.
2. Contingencies are statistically independent of
one another.
3. The effect of a contingency does not change
over time.

These are limits on how we formulate a problem;
we must not allow dependencies to creep into our clas-
sifications. Part of this formulation is to think of bursts
of events as single events with longer service times.
For example, it is incorrect to characterize “bursty”
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contingencies such as virus attacks as host events;
these events are not independent of one another. How-
ever, the event in which the virus entered the system is
not bursty, independent of all other like events, and
thus can be treated as one contingency. Likewise, spam
from a particular site is not an independent event for
each recipient, though spam from a particular source is
often independent of spam from other sources.

The main conclusion that we make from these
observations is that

The intangible cost of waiting for a request is, to
a first approximation, proportional to time spent
waiting (though the proportionality constant may
vary by request or request class).

While some constants remain unknown, the values for
some proportionality constants are relatively obvious.
If n users are affected by an outage, then the tangible
cost of downtime is usually approximately propor-
tional to n. Likewise the rate of incidents that involve
one member of the population (such as attrition) is
usually approximately proportional to the number of
people involved (due to independence of people as
free agents).

Estimating Service Rates

In the above sections, we show a linear relation-
ship between the cost of waiting and amount of time
spent waiting, and show that the amount of time spent
waiting depends upon arrival rate and service rate for
tasks. In our observation of real systems, arrival rate
was relatively easy to determine. To determine the
cost, however, we must also know the service rate
with which requests are completed. We cannot mea-
sure this parameter directly; we can only measure the
waiting time that results from it. How do we estimate
the service rate itself? To answer this question, we
borrow from a broad body of work on complexity esti-
mation in software engineering [19].

Cost modeling in software engineering concerns
the cost of maintaining a large piece of software (such
as a program or configuration script). The basic strat-
egy is to measure the complexity of the final product in
some way, and then predict from that complexity how
much it will cost to craft and maintain the program.

Complexity metrics that can aid in determining
cost of a software engineering project include both
“white-box” and ‘“black-box” methods. A “black-
box’’ method looks at the complexity of requirements,
while a “white-box” method looks at the complexity
of a potential finished product. The goal of either kind
of analysis is to produce a service rate that can be uti-
lized for later analysis. To map this to system adminis-
tration, a “white box” method would base cost esti-
mates on the structure of practice, while a “black
box” approach would base cost estimates upon the
structure of the problem.
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White-box Methods

In software engineering, white-box software
metrics include:

1. Lines of code (LOC): the complexity of a soft-
ware product is proportional to its length in
lines of code.

2. cyclomatic complexity [16]: the complexity of
a piece of software is proportional to the num-
ber of ““if”’ statements in the code.

It is generally agreed that cyclomatic complexity
is a much better measure of complexity than LOC, for
a variety of reasons, including variations in the expres-
siveness of programming languages; long programs in
one language can be short in another. The key is to
find something about the program that is more closely
related to its cost than its length. For programs, the
number of branches contributes to the difficulty of
debugging or maintaining the program. The key to
white-box analysis of system administration is to find
an analogue to the branches for programs.

Toward a Cost Model for System Administration

Whitebox analysis of programs inspires a similar
form of analysis for system administration procedures.
While white-box analysis of programs starts with
pseudo-code, white-box analysis of practice starts with
a recipe or instructions to service a particular kind of
request. If we treat each recipe as a “program”, with
“branches” at particular steps, then we can compute
the average time taken for the recipe by keeping statis-
tics on the number of times that individual steps are
utilized in practice. This provides a way to come up
with estimated rates for a procedure, given estimates
for subparts of the procedure.

Note that white-box analysis of a recipe for sys-
tem administration is quite different than white-box
analysis of a program. In the case of the program, the
white-box measurement of complexity does not
depend upon the input to the program. In system
administration, the performance of a procedure
depends upon the nature of the environment. A white-
box estimate of the time needed to service a request is

Procedure A

Procedure C

?

Procedure B

<Lon>

Procedure E

Procedure D

Procedure F

|

Figure 8: An example troubleshooting flowchart.

Figure 9: The flow graph corresponding to Figure 8.
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a measure of both the complexity of the procedure and
the complexity of the environment.

Figure 10: The flow tree corresponding to Figure 9.

mF1 mF2 mF3
Figure 11: An annotated flow tree tracks statistics
that can be used to compute average completion
rate.

One way of performing white-box analysis starts
with an (acyclic) troubleshooting chart for a proce-
dure. We start with a a troubleshooting chart (Figure
8) that describes procedures to perform and branches
to take after each procedure. We convert this to a flow
graph (Figure 9) by representing only decision nodes.
Since a typical troubleshooting chart has no loops, we
convert this graph into a flow tree by duplicating
nodes with two or more incoming edges (Figure 10).
We then annotate branches in that tree with statistics
to be collected or estimated about the branch (Figure
11). These statistics allow us to compute the mean ser-
vice rate for the whole tree.

The key to the computation is that given that we
know a service rate for the subtrees of a node in the
tree, we can compute the service rate for the node
itself. The nature of the computation is illustrated in
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Figure 12. Suppose we know the service rate mB for
subtree B and mC for subtree C. Suppose that we want
to compute the service rate mA for A, and know for
each branch out of A, the service rate for A given that
it takes the branch (mA1l,mA2) and the probability
with which that branch is taken (pAl,pA2). If we take
the branch from A to B, and A has service rate mAl,
then the average service time for the branch is
1/mA1 + 1/mB. If we take the branch from A to C, the
average service time for the branch is 1/mA2 + 1/mC.
If we take the branch to B with probability pAl, and
the branch to C with probability pA2, then the average
service time for both is the expected value

1 1 1 1
Al(—— + ——) + pA2—— + —) | 14
PAICAT Y ) TPA%Az T i) (14

Thus the average rate is the reciprocal of this.

Figure 12: Computing average completion rate for a
flow tree.

To enable this computation, each edge in the pro-
gram graph is labeled with two quantities: the mean
service rate for the predecessor of the edge, given that
this branch is chosen, as well as the probability that
this branch is chosen. We can either measure these
directly or estimate them by some method. One obvi-
ous way to measure both rates and probabilities is to
perform the procedure many times and record the
number of times each node is visited, the average ser-
vice time before taking each branch, and the number
of times each branch is taken. Then the ratio of the
times the branch is taken, divided by the times its par-
ent is visited, is the sample probability that the branch
will be taken.

In this abstraction there hides an astonishing fact:
the order in which decisions are made strongly affects
the time-in-system for such a graph. While the rates
are properties of the administrative process, the proba-
bilities of branching are properties of the environment.
Further, these probabilities are not conditional in the
Bayesian sense; they are temporo-conditional in that
they depend upon the previous occurrence of a spe-
cific procedure. In Figure 11, the probability of going
to B from A is not the conditional probability P(B|4),
but the probability of B after A: the probability that we

134 19th Large Installation System Administration Conference (LISA °05)



Couch, Wu, and Susanto

choose B given that A has already been completed.
Bayesian identities do not hold; any change in a proce-
dure affects the sample probabilities of all branches
after it in the script.

One way to estimate branch probabilities in this
model is that certain subtasks depend upon hetero-
geneity that is routinely tracked. For example, one
step might be to determine whether the affected host
runs Solaris or Linux. In this case, the sample proba-
bilities for the branches are both known in advance
from inventory data. In the same way, one can esti-
mate some branch probabilities from overall statistics
on the sources of trouble within the network.

Black-box Methods

White-box methods depend upon the fact that the
nature of practice is already known, i.e., we know the
steps that people will take to accomplish tasks. In sys-
tem administration, as in software, we are often asked
to estimate the cost of a process without knowing the
steps in advance. To do this, we must use a method
that estimates cost based upon the complexity of the
outcome rather than the complexity of the process.

Black-box methods for measuring software com-
plexity include COCOMO |2, 3, 4]: the complexity of
software depends upon an overall characterization of
the software’s character and mission. COCOMO
depends upon use of one of two estimations of code
complexity:

1. “object points” [3, 4]: the complexity of a
piece of software is proportional to the com-
plexity of the objects it must manipulate.

2. “function points”’: the complexity of a piece of
software is proportional to the number of func-
tions that it must perform.

The key idea in COCOMO is that there is a rela-
tionship between the cost of maintaining a program
and the complexity of its interactions with the outside
world, though we may not know the exact nature of
that relationship in advance. COCOMO is “‘tuned”
for a specific site by correlating object or function
points with actual costs of prior projects. COCOMO is
site-specific; the relationship between complexity and
cost varies from site to site. By computing a ratio esti-
mating the relationship between requirements and
capabilities, one estimates the time that will be taken
to complete requirements.

We can apply the idea of COCOMO to system
administration in a very direct way. While the software
model for function points considers open files, the anal-
ogous concept of function points for a network service
would describe that service’s dependencies and interre-
lationships with others. We know that the number of
dependencies within a service influences the cost of
maintaining it; we do not know the exact relationship.

For example, we might compute the function
points for an apache web server by assigning a number
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of points to its relationship with each of the following
subsystems: the network (DHCP, DNS, Routing), the
filesystem (protections, mounts), and the operating sys-
tem (users and groups). In a function point model, each
of these attributes is assigned a “weight” estimating
how difficult it is for a system administrator to deal
with that aspect of configuration and management. The
sum of the weights is then an estimator of “how com-
plex” the service will be to manage.

The main difficulty with this approach is the num-
ber of potential weights one must estimate; virtually
every subsystem mentioned in the system administra-
tor’s book of knowledge [11, 13] has to be assigned a
weight. Further, these weights are not universal; they
vary from site to site, though it is possible that similar
sites can use similar weights. For example, weights
assigned to subsystems vary greatly with the level of
automation with which the subsystem is managed.

The cost of providing any service depends not
only upon the complexity of the service, but also upon
the capabilities of the staff. Our next step in defining a
function point estimate of the complexity of system
administration is to derive a capability summary of the
administrative staff and site in terms of service rate.
Obviously, a more experienced staff deals with tasks
more effectively than a less experienced one. Capabili-
ties in the model might include end-user support, ser-
vice support, architecture, etc. If each staff member is
assessed and the appropriate attributes checked, and a
sum is made of the results, one has a (rough) estimate
of capabilities of one’s staff. This has similarities to
the SAGE levels of system administrator expertise
defined in the SAGE booklet on job descriptions [9].

The last step in defining a function point esti-
mate of the complexity of system administration is to
assess the capabilities maturity of the site itself. One
might categorize the site into one of the following
maturity categories [14]:

1. ad-hoc: everything is done by hand.

2. documented: everything is documented, no au-
tomation.

3. automated: one can rebuild clients instantly.

4. federated: optimal use is made of network ser-
vices.

Again, each one of these has a weight in deter-
mining the overall capabilities. The sum of admin-
istrator capabilities and site capabilities is an estimate
of overall “capability points” for the site.

It can then be argued that the complexity of
administering a specific subsystem can be estimated

by a fraction

. estimated service points
service rate =

estimated capability points (15)
where service points and capability points are sums of
weighted data as described above. If the weights for
capability points are rates in terms of (e.g.) service-
points per hour, then the complexity is the average
response time in hours to a request.
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The overwhelming problem in tuning COCOMO
for system administration is that tuning the model
requires detailed data on actual measured rates. The tun-
ing process requires regression to determine weights for
each of the complexity and quality factors. This is accom-
plished by studying a training set of projects with known
outcomes and properties. To use COCOMO-like systems,
we must be able to gather more accurate data on the rela-
tive weights of subsystems than is available at present.

Some Experiments

So far, we have seen that we can estimate the
cost of system administration via one of two models.
“Black box” methods require that we assess the time
impact of the complexities of the problem being
solved, while “white box” methods require that we
estimate the time taken for a detailed set of tasks. Of
these methods, “black box” methods give us informa-
tion more quickly, but these methods require that we
“score” facets of the problem being solved as harder
or easier than others. These scores must be developed
via practice, but we can learn something about the rel-
ative complexity of black-box attributes via simula-
tion. By simulating practice, we can account for realis-
tic human behaviors that cannot be analyzed via
known queueing theory. We can also observe how real
systems can potentially react to changes in a less ideal
way than ideal queueing models suggest. Particularly,
we can study behavior of queueing systems “on the
edge”; almost out of control but still achieving a
steady state. In our view, this situation describes more
IT organizations than it should.

The Simulator

The simulator, written in C++, is basically an
M/M/c queue simulator with the ability to simulate
non-ideal (“‘non-product”) behaviors. It assumes that
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we have ¢ identical system administrators working
24x7 and generates a variety of requests to which
these ideal administrators must respond. One can vary
the behavior of the system administrator and the
request queue and measure the results. The input to
the simulator is a set of classes of tasks, along with
arrival and service rates for each task. The output is
the time spent waiting for requests (by all users), both
per time-unit of the simulation and overall. We assume
for this simulator that the cost of waiting is a constant;
a unit wait by a single individual results in some con-
stant intangible cost. These simulator assumptions are
very much less complex than real practice, but one can
make some interesting conclusions from even so sim-
ple a model.

Diminishing Returns

Our first simulation exercise is to study the
effects of adding system administrators to a group ser-
vicing simple requests. We set up a simple multi-class
system with a varying number of system administra-
tors all of whom have identical average response rates.
There are four request classes, corresponding to
requests whose service time is an average of 1, 3, §,
and 24 hours, respectively. The service rate of each
request class is twice its arrival rate, creating a balance
between arrivals and service. We ran the exact same
simulation for two, three, and four system administra-
tors. The cumulative time spent waiting for service is
shown in Figure 13. There is clearly a law of dimin-
ishing returns; the change in wait time from three to
four system administrators does not significantly
change the time spent waiting for service.

Saturation

Realistic system administration organizations can
be faced with request volume that is impossible to
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Figure 13: Diminishing returns when adding administrators to a queue.
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resolve in the time available. We know from classical
queueing theory that an M/M/c queuing system
exhibits predictable response time only if A/cp <1,
where A is the arrival rate, ¢ is the number of adminis-
trators, and L is the service rate per administrator. In
other words, there has to be enough labor to go
around; otherwise tickets come in faster than they can
be resolved, the queue grows, and delays become
longer and longer as time passes.

Figure 14 shows the same simulation as before,
but adds the case of one administrator. This seems like
an unbalanced situation in which request rate is
greater than service rate, but looking at waiting time
per unit time (Figure 15) we see that waiting time is
not always increasing with time. So although one
administrator is very much slower than two or three,
the situation is not completely out of control. Note,
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however, that the situation of the single administrator
is very sensitive to load; he is “on the brink of
destruction.” Small changes in load can cause large
variations in response time, and the cost of administra-
tion due to waiting is ‘“‘chaotic”, especially when a
request when a long service time enters the queue.
Nevertheless, on average, the time spent waiting
varies directly with elapsed time of the simulation.

Figure 16 shows incremental waiting time for a
truly “saturated” system in which there is no way for
administrators to ever catch up. We saturate the queue
in the previous example by multiplying the arrival
rates for all requests by four. In this case, one and two
administrators are in trouble; queue length is growing
linearly with time along with wait time. Figure 17
shows the cumulative time for this example. In a satu-
rated queueing system, since time spent waiting
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Figure 14: One administrator performs very poorly compared to two, three, and four.
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increases linearly with elapsed time, the cumulative
time spent waiting varies as the square of elapsed time.

Brinksmanship

We consider it a fair statement that many IT
organizations run with A/cyl quite close to 1. It is thus
no surprise that it is very difficult for these organiza-
tions to cope with changes that might increase load
upon system administrators, even for a short time.
There is a solution, but it is counter-intuitive. Figure
18 shows the effect of a “catastrophic” flurry of
requests arriving in a near-saturated system. For a
short while, wait times go way up, because the system
is already almost saturated and the new requests push
it over the limit. The key is to distribute the same
requests over a long time period (Figure 19), to avoid
pushing the system over the limit and save waiting
time. Note that in both figures, one administrator
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alone simply cannot handle the load and chaotic waits
occur in both cases.

Lessons Learned

Human systems self-organize around maximum
efficiency for the task at hand, but not necessarily for
future tasks. As such, we as system administrators are
often near the “saturation point” in our practice. As in
Figure 18, small increases in load can lead to cata-
strophic delays. But the strategies in Figure 19 can help.

One part of coping with being understaffed is to
utilize automation to lessen workload, but that can lead
to queue saturation in an unexpected way. The quandary
of automation is that when something goes wrong, it is
not one host that is affected, but potentially hundreds. If
an automation mistake affects hundreds of nodes, we
often have the situation in Figure 18; there are hundreds
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Figure 16: Multiplying the arrival rate by four overloads one or two system administrators.
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of questions to answer and the queue is already satu-
rated. These questions can be as simple as educating
users about a different command for invoking software;
it takes little perturbation to saturate a queue that is
already nearly saturated. The worst possible case is that
automation uncovers latent pre-existing conditions that
cause failures. In this case, troubleshooting may take a
large amount of time while the queue fills.

The main lesson of this paper is that staged
deployment is often better than large-scale automated
deployment, when system administrators are near satu-
ration. It is often far better to control the request queue
by upgrading a small number of users at a time, rather
than risk a flood of potentially unmanageable requests
due to a massive upgrade. If a massive upgrade is
required, extra staff are needed to handle the load
through the upgrade period. It is no shame to ask for
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help when the alternative is that your organization loses
much more money than it would spend as a result of
hiring help.

Open Questions

Obviously, this paper is a very small step toward
understanding the effects of practice upon cost. Simu-
lations are no replacement for real measurements, and
real measurements remain impractical. We end this
study with more questions than when we started.

First, there are at least a hundred factors affecting
the practice that we are not simulating. Some have
peripheral effects, such as human learning; we were sur-
prised at how little an effect it has when running simple
simulations. Others have major effects, such as peer
mentoring, user conditioning, and error propagation.
Models of user behavior (such as those described in
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[12]) have not been incorporated here, nor have we
incorporated behavioral aspects such as conditioning to
pre-existing circumstances. For example, it is common,
in the presence of poor response time, for users to stop
making requests and go elsewhere for help. Likewise,
events and incidents are often not independent of one
another; requests can be bursty or sparse. Like Patter-
son’s paper, this one also oversimplifies a complex
problem, giving slightly more sophisticated methods
than the “back of an envelope” to estimate the results of
very complex processes.

Second, we should not forget the wealth of work
on queueing systems upon which we can draw. Refer-
ence [10] analyzes the properties of sinusoidal arrivals
— like the ones we observed — and gives a method for
computing the number of servers that are needed to
achieve best-case performance. Can these methods be
used to analyze system administration? The burning
question is what can we afford to idealize and for what
must we account by simulating realistic practice. Sim-
ulations are particularly difficult to use for asking
“what-if”” questions because realistic answers require
the results of thousands of runs to be averaged.

Integrating Measurement with Practice

One of the largest blockades against understand-
ing the cost of practice is that the activity of cost mea-
surement is separate from that of practice. Can we
integrate this with practice? Could we develop tools
that — by their use — provided input data to a cost
model? This approach seems to have some promise.

Imagine a tool that — when you utilize it — keeps
records on how long the task takes. Imagine this data-
base being used to populate a function point model, so
that the complexity of specific tasks can be accurately
predicted. If done correctly, this would make the cost
analysis intrinsic, transparent, and completely invisi-
ble to the practitioner. It should neither limit nor delay
the practitioner, but should keep track of realistic time
estimates for specific tasks.

One idea is that of a “smart troubleshooting
guide” that keeps records on how long was spent on
each procedure. While the administrator was follow-
ing a procedure, this guide would record time spent on
each page and in each procedure, for the purpose of
recording how long, on average, each procedure takes.

Of course, the large question here is not that of
efficiency or transparency but that of privacy. Any
mechanism that measures our practice also keeps data
that we might not want to be stored, such as individual
performance records. As well, the potential exists for
this data to be misused in ways that damage the pro-
fession; e.g., punishing administrators who are
“slower” but consistently make fewer errors.

Conclusions

No simulator or model is a perfect substitute for
reality. In this paper, we have studied some of the
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casiest ways to obtain predictions about the cost of
system administration, when it is considered to be a
sum of infrastructure cost and an indirect cost propor-
tional to time spent waiting. They are of course not
particularly accurate, but are they accurate enough to
use in making intelligent decisions?

One lesson to take from software engineering is
that often an educated guess is better than no informa-
tion at all. Even if we get within an order of magni-
tude of estimating the cost of managing a particular
service, we know more than when we started, and can
tune that figure by observing practice. The first step is
to get real data.

And this process cannot wait. At this time, the
profession is “under siege” from those who would
eliminate system administration as a profession. The
grand promise of autonomic computing, however, is
not easy to obtain, and the cost justifications of the
technology often do not include an analysis of the cost
of troubleshooting when things go wrong. By under-
standing the cost of our practice, we can better
respond to arguments claiming superiority of auto-
nomic computing methods, and be able to realistically
compare human-centered and machine-centered styles
of system administration.

This is a very small step in a new direction. If it
has sensitized practitioners to the idea that waiting
time matters, it has accomplished its goal. The best
models and measurements for analyzing indirect costs
are yet to be discovered. But if the reader is — like
many of us — near saturation, one can modify one’s
practice to ease the pain, not by applying automation
blindly, but by strategically planning changes so that
requests do not become overwhelming. This is the first
step toward a practice in which queues never saturate
and IT managers understand the difference between
under-utilization and required capacity in system
administration organizations. System administrators
are like insurance; a properly functioning organization
does not have them all busy all of the time, except dur-
ing contingency periods.
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