
Secure Automation: Achieving Least
Privilege with SSH, Sudo and Setuid

Robert A. Napier – Cisco Systems

ABSTRACT

Automation tools commonly require some level of escalated privilege in order to perform
their functions, often including escalated privileges on remote machines. To achieve this,
developers may choose to provide their tools with wide-ranging privileges on many machines
rather than providing just the privileges required. For example, tools may be made setuid root,
granting them full root privileges for their entire run. Administrators may also be tempted to create
unrestricted, null-password, root-access SSH keys for their tools, creating trust relationships that
can be abused by attackers. Most of all, with the complexity of today’s environments, it becomes
harder for administrators to understand the far-reaching security implications of the privileges they
grant their tools.

In this paper we will discuss the principle of least privilege and its importance to the
overall security of an environment. We will cover simple attacks against SSH, sudo and setuid
and how to reduce the need for root-setuid using other techniques such as non-root setuid,
setgid scripts and directories, sudo and sticky bits. We will demonstrate how to properly limit
sudo access both for administrators and tools. Finally we will introduce several SSH techniques
to greatly limit the risk of abuse including non-root keys, command keys and other key
restrictions.

Introduction

Since its introduction in 1995 by Tatu Ylonen,
SSH has quickly spread as a secure way to login and
run commands on remote hosts. Replacing the previ-
ous r-commands (rsh, rexec, rlogin), SSH provides
much needed encryption and strong authentication
features. Relying on public/private key techniques,
SSH is very resistant to man-in-the-middle, IP spoof-
ing and traffic sniffing attacks, all of which were sig-
nificant problems with the r-commands. SSH was ini-
tially released under a free license, but has since split
into commercial1 and free versions. In this paper we
will focus on the most popular free version, OpenSSH.

Sudo was developed in1980 to allow users to
execute commands as root without using the root pass-
word. Today it provides per-host and per-command
access control features and powerful logging facilities
to track what is done by whom.

Setuid (also called ‘‘suid’’ or ‘‘Set UID’’) allows
a UNIX program to run as a particular user. If the exe-
cutable is owned by root for example, the program
will run as the root user, giving it privileges that may
be needed for its function. The passwd password-
changing program is a good example of this, since it
requires root privileges to write to /etc/shadow which
holds user passwords. Setgid provides the same func-
tionality for UNIX groups, giving the program access

1The commercial version of SSH is owned by SSH Commu-
nications Security. The parts of this paper which refer to
‘‘ c o m m e r c i a l SSH’’ are based on SSH Secure Shell 3.2. Start-
ing with version 4.0, this product is known as SSH Tectia.

to files writable only by a particular group. For exam-
ple, in FreeBSD programs that read system memory
are setgid to a special kmem group.

These tools and features are available for all
modern versions of UNIX, and are installed by default
on most of them. All of them can be used to help
enhance the principle of least privilege, which we will
discuss at length here.

The Situation

Consider the following system administration
environment and compare it with your own experience:

• SSH has universally replaced rsh, but null-pass-
word keys have been deployed to provide unre-
stricted root access to automation tools;

• Sudo has replaced the root password for most
administration functions, but admins generally
only use it to obtain root shells and almost
never employ it in automation tools;

• Custom setuid scripts almost exclusively run as
root and setgid is seldom used;

• Automation tools that require any root access, no
matter how little, run as unrestricted root through
root cron, root ssh and similar mechanisms;

• Automation tools receive little security review,
even when granted wide-ranging privileges.

Such environments have been the norm in the
author ’s experience. If you have a similar environ-
ment, this paper will introduce the ideas behind least
privilege and how these tools can be used to enhance
least privilege in your environment.

2004 LISA XVIII – November 14-19, 2004 – Atlanta, GA 203

Secure Automation: Achieving Least Privilege with SSH, Sudo and Setuid Napier

The Risks

Some of the risks in the environment described
above include:

• Null-password root SSH keys.2 If an attacker
can get to that key, she will have complete con-
trol over all machines that accept it. Even if your
application is secure, any mechanism that an
attacker can use to get to that file is fair game.

• Sudo passwords. Every account that has unre-
stricted root sudo access is another root-equiva-
lent password for an attacker to guess or steal.

• Sudo hijacking. In sudo’s default configuration,
an attacker who can run commands as a sudo-
enabled user can hijack that user’s sudo privi-
leges even without access to the user’s password.

• Sudo escalation. It can be extremely challeng-
ing to limit sudo access to a few commands.
Without great care, limited sudo can be trivially
translated into full sudo access. While you may
trust the user you granted access to, do you also
trust the attacker who has stolen his identity?

• Script exploitation. Scripts that run as privileged
users are obvious targets for attackers. Errors in
the scripts are subject to exploitation. Setuid
scripts are particularly susceptible because they
are often written in scripting languages like Perl
or Bourne Shell and can be read by an attacker
searching for vulnerabilities.

We’ll discuss how to mitigate all of these.

The Causes

It’s tempting to simply blame ‘‘coder laziness’’
for this situation, but this isn’t the case. There are sev-
eral factors that we will need to address:

• Trust in ‘‘instant security.’’ Neither SSH nor
sudo can be simply ‘‘dropped in place’’ and
deliver an ideal security environment. While
SSH is far better out of the box than rsh, it has
its own security issues that have to be consid-
ered, and converting automation tools to use it
can be difficult without tearing down some of
its benefit. Similarly, sudo introduces several
security concerns, some of which are worse
than what it replaces (such as a greater number
of root-equivalent username/password combi-
nations). This is not to discourage the use of
these tools, but they do not magically instill
security on their own.

• Lack of best practices guides. There are limited
resources available explaining the best way to
set up SSH and sudo. Out of the box, sudo does
not even have all of its security features turned
on and is subject to hijacking (as we’ll discuss
below). SSH command keys are mentioned in
the man pages, but there are few resources
really explaining their use or the use of other
SSH key restrictions.

2Throughout this paper, the term ‘‘SSH key’’ will be used
to refer to both RSA and DSA keys.

• Added complexity. Many of the techniques in
this paper increase the complexity of develop-
ing and deploying automation scripts. Automa-
tion is hard enough to just get working, let
alone get working securely. If developers are
only rewarded for functionality, then there is
little incentive to take on the added support
headaches of a more secure solution.

This paper will address the first two causes.
Addressing the third is often a cultural and infrastruc-
ture challenge that can only be solved on a case-by-
case basis.

The Goal: Least Privilege

Now that we’ve discussed what may be wrong
with our environment, what do we want our environ-
ment to look like? In this paper we will mostly focus
on least privilege, which is one piece of the bigger
goal of layered security.

Layered security means that safeguards overlap
such that if one fails, an attacker will still not have
damaging access. Least privilege helps ensure that if a
particular user’s account is compromised, for whatever
reason, the damage the attacker can do with it is limited
as much as possible. This is why ‘‘don’t you trust me?’’
should never be the argument for excessive privileges.
Wherever possible, trust should be compartmentalized.

UNIX-like systems provide numerous ways to
restrict privileged access. In this paper we will discuss
the following techniques:

• Restricting SSH connections in what they can
execute and where they can originate;

• Limiting privileged access through sudo by
coupling it with non-root setuid;

• Replacing root-setuid with non-root setuid and
setgid;

• Reducing the number of privileged processes
with sticky bits and setgid directories.

Whenever a process or user needs elevated privi-
leges, it should be second nature to ask precisely what
privileges the process or user needs, and how to best
limit the process or user to exactly those privileges.

When discussing the principle of least privilege,
one might ask ‘‘why would we have hired these people
if we didn’t trust them?’’ Least privilege has little to
do with the trust we have for our employees. Instead,
it deals much more with the number of avenues an
attacker has for exploiting the system. Of course an
administrator should have every access she needs, but
conversely she should have no access that she has no
need for. How strictly ‘‘need’’ is defined is a serious
trade-off to consider, but just requiring that an admin-
istrator explicitly request specific access, even if it is
always granted, can go a long way towards controlling
the number of avenues an attacker can use. If an
attacker is successful, being able to enumerate the
accounts with access is also a major benefit to investi-
gators in determining possible further compromises.

204 2004 LISA XVIII – November 14-19, 2004 – Atlanta, GA

Napier Secure Automation: Achieving Least Privilege with SSH, Sudo and Setuid

When granting privileges to automation tools,
one might assume that the security of a particular tool
isn’t very important if the data it deals with is non-sen-
sitive. It is critical to always consider how a tool could
be exploited to attack other parts of the network, not
just the parts it’s intended to control.

Moving towards least privilege, especially for au-
tomation tools, has other benefits. Establishing least
privilege requires developers to understand the privi-
leges actually used by their tools, which in turn forces
them to understand what their tools are doing. Under-
standing software is a key step towards maintaining it.
Moreover, simply enumerating the privileges that a tool
requires can help a developer see how to reduce the
number of privileges required. Does the tool really need
the ability to ‘‘run an arbitrary command on any host in
the system’’ or did it really just need the ability to ‘‘get a
directory listing for a specific directory on three hosts?’’

Least privilege is a philosophy, not a technology.
By consistently employing it, an organization can bet-
ter understand and control the security of the environ-
ment while still maintaining a strong culture of trust
for the administrators.

Hardening the Environment
This paper focuses on automation techniques, but

some basic environment hardening will set the stage
for a secure automation environment.

Understanding the Environment

In a complex environment with many users and
administrators, it is easy for trust relationships to grow
throughout the system with little documentation or
understanding. To combat this, it is helpful to create a
directed trust graph of your network, indicating partic-
ularly how root can move through the system using
SSH, rsh and other mechanisms (such as custom
administration daemons and web scripts that are some-
times developed in large environments). There are few
tools to automate this today, but even manually devel-
oping such a graph with tools like Microsoft’s Visio or
AT&T’s Graphviz can provide significant insight into
your environment.

Understanding what users and hosts are trusted
with wide-ranging root access provides a road-map for
improving enforcement of least privilege. There will
always be a few places in any large system that require
broad trust; understanding these will give a roadmap
for hardening.

Similarly, administrators should maintain a cata-
log of known setuid and setgid programs and audit
systems regularly for the creation of new ones.

Hardening and Managing SSH

Authorized Keys
By default, SSH relies on files in the user’s home

directory for certain authentication options. Chief among

these is the authorized_keys3 file. This file defines
what keys will be accepted without a password and
under what conditions, and will be the subject of sev-
eral SSH techniques in this paper. Anyone who can
write to this file for a particular user can log in as that
user. This means that user home directories, particu-
larly the ˜/.ssh directory, are highly sensitive. Unfortu-
nately if home directories are NFS mounted, there are
a number of ways that attackers may be able to write
to arbitrary user directories, and thereby update autho-
rized_keys with keys the attacker controls.4 The solu-
tion is to move authorized_keys out of the users’ NFS-
mounted home directories and onto local storage, gen-
erally under /var. For example, the following setting in
sshd_config will read authorized_keys from /var/ssh/
user/authorized_keys:
AuthorizedKeysFile /var/ssh/%u

Of course you will need to create directories for
the users under /var/ssh which only they can write to.
Users will also need to create separate autho-
rized_keys files for every server. This differs from
many users’ behavior of setting up a single autho-
rized_keys file for all servers (since it is mounted by
NFS). While this has some overhead, it once again
encourages the principle of least privilege in that only
machines for which the user explicitly requests pass-
wordless connections will accept them.

Root Keys
Unrestricted SSH keys accepted by root are

extremely powerful and should be avoided. Adminis-
trative users should generally use their own credentials
to log into a server and then use sudo to gain root
access there. Automation scripts that require remote
root should use command-keys, which will be dis-
cussed further in ‘‘Command Keys.’’ To enforce this,
the PermitRootLogin option in sshd_config should be
set to forced-commands-only.

Known Hosts
SSH provides powerful features to prevent server

spoofing and man-in-the-middle attacks. Most notable
is the use of public keys to strongly identify servers.
This technique is not fool-proof however. SSH keys
cannot be signed as X.509 certificates are, so unless
you’ve received the server key from a trusted source,
you have no way to know that the key is legitimate.
There are three primary ways to get server keys:
LDAP, centrally managed ssh_known_hosts and user-
managed known_hosts. We will also briefly discuss
using X.509 server certificates with commercial SSH.

Commercial SSH allows server keys to be cen-
trally stored in LDAP, which is generally easiest to

3This paper uses the OpenSSH filenames and formats for
configuration files. Commercial SSH uses slightly different
file names and in some cases formats.

4Computer Incident Advisory Capability, CIAC Notes
95-07, ‘‘NFS export to unprivileged programs.’’ See http://
ciac.llnl.gov/ciac/notes/Notes07.shtml .

2004 LISA XVIII – November 14-19, 2004 – Atlanta, GA 205

Secure Automation: Achieving Least Privilege with SSH, Sudo and Setuid Napier

manage. OpenSSH and most free Microsoft Windows
clients (such as Putty) cannot retrieve server keys
from a central LDAP server, but for installations using
commercial SSH, managing the server keys centrally
is highly recommended. Whenever a server key is
generated, it should be added to LDAP. For environ-
ments with multiple networks supported by different
organizations, or for dealing with servers outside of
your environment, commercial SSH supports multiple
LDAP servers.

All UNIX SSH clients support a file called
ssh_known_hosts, generally stored in /etc or /etc/ssh,
which contains the official list of server keys. This file
must somehow be distributed to all clients.5 This file
could also be NFS mounted, but this reintroduces the
NFS security problems discussed above. Even so, NFS
mounting this file may be better than not managing
ssh_known_hosts at all. Centrally managing ssh_known_
hosts is generally only effective within an organiza-
tion. Since there can be only one file and it needs to be
read from disk, there is no good way to include other
organizations’ host keys. Furthermore, since the users
must trust the provider of the central ssh_known_hosts
file to provide legitimate keys, this file can only be
accepted as far as trust extends within the environment
(generally as far as the central support organization).

If a server is not listed in the central ssh_
known_hosts, SSH will by default prompt the user to
add the key to the user’s known_hosts, stored in ˜/.ssh.
This is the least secure option, since the user has no
good way to determine the authenticity of the key.
Once a key has been added to the user’s known_hosts,
however, SSH will warn the user if a server ever
responds with a different key. This could indicate that
a machine is being spoofed. Unfortunately it could
also mean that the machine has been legitimately
replaced. In environments where this is common,
users have no good way to determine whether the
warning is legitimate. To avoid these problems, it is
highly recommended that ssh_known_hosts be cen-
trally managed rather than rely on users’ known_hosts.

Failing to centrally manage ssh_known_hosts
creates special problems for automation scripts. Since
scripts have no way to respond to the new key, they
will fail if the key changes. This is a good thing in that
it protects scripts from machine-spoofing, but it does
create administrative headaches when scripts start fail-
ing due to a key change. Once again, the best solution
to this problem is central management of ssh_known_
hosts.

Commercial SSH improves this situation by allow-
ing servers to use signed X.509 certificates rather than
SSH keys. Since these keys are signed by a Certificate
Authority, clients can rely on their authenticity without
having all the keys in advance, greatly simplifying the

5This works for managed UNIX clients, but has no good
parallel for Windows clients.

administrative overhead of key management. Since
most free clients (including OpenSSH) do not support
these certificates, they are most useful in a completely
commercial SSH environment, but in such an environ-
ment they are highly recommended as an alternative to
ssh_known_hosts or LDAP.
Hardening Sudo

Unrestricted sudo effectively creates additional
root-equivalent passwords for an attacker to guess or
steal. Each administrator’s password must now be pro-
tected with the same care as the root password. There
are two approaches to mitigating this risk. Sudo-
enabled administrative accounts can be separated from
the administrator’s regular account. Doing so will
greatly reduce the opportunities for an attacker to steal
the sensitive password. Alternately, sudo can be com-
piled to work with several one-time password systems
such as OPIE, S/Key and SecurID. Deploying such
systems is non-trivial, can be expensive and is beyond
the scope of this paper.

Sudo has a significant security flaw in its default
configuration that permits hijacking in which an attacker
can make use of the victim’s sudo privileges without the
victim’s password. Sudo uses tickets, files that are cre-
ated to only require a user to enter her password at cer-
tain intervals. By default these tickets are created on a
per-user basis, so if the user is logged on multiple TTYs
on the same host, her ticket is valid for all of them.
While modestly convenient, this is a significant security
hole. If an attacker is able to run an arbitrary process as
the victim user, then the attacker can piggyback on the
victim’s sudo privileges even without the victim’s pass-
word. When the victim uses sudo, the attacker then has
a five minute (by default) window to use sudo without a
password. Coupled with the NFS authorized_keys
attack discussed above, this is a very significant attack
against administrative users.6

There is a complete but inconvenient solution to
this, and an incomplete but fairly easy solution. The
complete solution is to turn off password caching
entirely, either by compiling with --with-timeout=0 or
by setting passwd_timeout to 0 in the central sudo con-
figuration file, /etc/sudoers . Doing so completely
closes this particular attack, but strongly encourages
system administrators to use a root shell to avoid retyp-
ing their passwords repeatedly. Since root shells cannot
be easily logged, this is a significant auditing trade-off.

The less drastic solution is to compile sudo with
--with-tty-tickets or set tty_tickets to ‘‘on’’ in sudoers.
This will create a separate ticket to each user/TTY
combination, stopping an attacker from piggybacking
on the ticket in many cases. This is not a complete
solution, however. The attacker can still attack the vic-
tim’s login scripts to have the attack happen within the

6ssh-agent [OSSH] can be similarly attacked in order to
make use of another user’s SSH key. This seldom impacts
automation tools because they are less likely to use ssh-
agent, but it is worth keeping in mind for administrators.

206 2004 LISA XVIII – November 14-19, 2004 – Atlanta, GA

Napier Secure Automation: Achieving Least Privilege with SSH, Sudo and Setuid

victim’s TTY. The attacker can also attempt to login to
the server immediately after the victim logs off. On
many operating systems (including Solaris, *BSD, and
Linux) the attacker will often be allocated the same
TTY as the victim had, and the ticket may still be
valid. This latter attack can be mitigated with logout
scripts that run ‘‘sudo -k’’ to destroy tickets, but it can
be challenging to ensure that all administrators run
this logout script. So turning on TTY tickets is better,
but to completely close this hole, password caching
has to be turned off.

It is very difficult to manage sudo such that users
cannot escalate their privileges. This will be discussed
further in ‘‘Controlling Sudo.’’

#!/bin/sh
PATH=/bin:/usr/bin:/usr/sbin
date=‘date +%F‘
Rewrite httpd.conf
perl -eip "s!ˆErrorLog(.*)!ErrorLog /var/log/error_log.$date!" \

/etc/httpd/conf/httpd.conf
Restart Apache
apachectl graceful

Figure 1: update_errorlog.

Limiting Privilege with SSH Command Keys
The most significant way to limit the power of an

SSH key is to apply a command restriction. When a
user connects using an SSH key with a command
restriction, or a command key, a pre-defined command
runs rather than providing the user with a shell.
Applying this to root access, along with setting Per-
mitRootLogin to forced-commands-only,7 provides a
powerful way to control automation tools. If the auto-
mation tool runs as a non-privileged user and only has
access to a particular root command key, then that tool
can get the root access it needs while reducing the
ability to subvert it into performing arbitrary actions
as root.

For most of the examples in this paper, we will
consider the same simple task. We will change
Apache’s ErrorLog entry on a remote host to include
the current month and restart Apache. This is a some-
what contrived example, since this would generally be
done in simpler ways, but it demonstrates some of the
main issues. The script we wish to run, update_error-
log, is shown in Figure 1.

To create a command key that runs update_error-
log, first create a keypair on the source machine:
$ ssh-keygen -t dsa -f errorlog_key

You now have a public key called errorlog_key.pub
and a private key called errorlog_key. Prepend this
with your command restriction and append it to
˜root/.ssh/authorized_keys on the target machine. The
format is as follows:
command="/usr/bin/update_errorlog"

[public_key]

7This only allows root to accept command keys, so there
cannot be root-level SSH login keys.

Now login using the new key and the script will run:
$ ssh -i errorlog_key \

root@target.example.com

Non-root Keys
Many remote functions do not require root

access at all. By creating special users for these func-
tions and providing them distinct SSH command keys,
attackers who are able to steal the key will have
extremely limited access.

This can be combined with sudo to provide func-
tionality very similar to root command keys. By grant-
ing the special user specific sudo privileges, it is pos-
sible to create scripts that use root precisely when they
need it and no more. As an example, we’ll run
update_errorlog (Figure 1) using a non-root SSH key.

On the target machine, create a new group
apacheconf that can write to httpd.conf. We don’t want
to use the apache group itself, because httpd should
not be allowed to write to its own configuration files
(otherwise a security flaw in Apache could be used to
reconfigure Apache). Use a low-numbered GID to
help distinguish it from user accounts. Put httpd.conf
into the apacheconf group so that our new group can
manage it without root access.

Now create a new user, updatelog, to run
update_errorlog. Put it into the apacheconf group and
give it a low-numbered UID to help distinguish it from
user accounts.

Our update_errorlog (Figure 1) script now needs
a small modification, adding ‘‘sudo’’:
[...]
sudo /usr/sbin/apachectl graceful

Edit sudoers to grant the errorlog account permission
to run ‘‘/usr/sbin/apachectl graceful’’.

Finally, set up a command key as we did in the
‘‘Command Keys’’ section, but instead of making it a
root SSH key, make it an SSH key for errorlog.

We can now restart update httpd.conf from
source. example.com:
source$ ssh -i errorlog_key \

errorlog@target.example.com

Originator Restrictions
Keys (both regular keys and command keys) can

be further restricted to specific originating hosts using
the ‘‘from’’ option in authorized_keys. For example:
from="*.example.com,*.example.net"

ssh-rsa AAA.oeTp0=rnapier@adminhost

2004 LISA XVIII – November 14-19, 2004 – Atlanta, GA 207

Secure Automation: Achieving Least Privilege with SSH, Sudo and Setuid Napier

This key will only permit connections from
machines within the example.com or example.net
domains. The ‘‘from’’ option accepts a comma sepa-
rated list of canonical names or IP address including
wildcards. Note that rnapier@adminhost is only a
comment to give a hint where this key was created and
has no impact.

Originator restrictions based on DNS names are
reliant on trustworthy name services, but this still
greatly increases the complexity of attack. The
attacker must already have stolen and possibly cracked
the private key, and then will still have to poison or
compromise DNS in order to make use of that key.8

Other Restrictions

Most extended SSH features can be turned off on
a per-key basis. This includes X-forwarding, port-for-
warding, PTY-generation9 and similar features. It is
generally a good idea to turn off any features you
don’t need. For example:
no-port-forwarding, no-X11-forwarding,

no-agent-forwarding,no-pty ssh-rsa
AAA...oeTp0=rnapier@adminhost

Controlling Sudo

The Pitfalls of Limited Sudo

Using sudo to give limited access to root is a
very tricky proposition, since the most obvious sudo
configurations can be easily escalated to unlimited
root access. As we discussed in the Introduction, even
if you trust the user not to do this, you also have to
trust the attacker who gains access to the user’s pass-
word (or subverts sudo in some other way).

Some exploitable situations include:
• Permission to run commands in a user-writable

directory.
• Access to chmod (even more easily exploitable

with access to chown or cp)
• Access to any command with shell-outs (vi,

emacs, ed, edit, more, less, find), though ver-
sion 1.6.8 promises to help here

• Access to any command that can write (espe-
cially append) to an arbitrary file (vi, emacs, ed,
edit, tee, less)

• Access to root’s crontab or atjobs (crontab,
batch, at)

• Any command that honors PAGER, EDITOR,
or VISUAL (man, less, more)

• In some cases, any command that can read an
arbitrary file (cat, less, more, tail). These can be

8SSH protects clients from connecting to the wrong server
through host keys, but it doesn’t protect servers from hostile
clients. If a user shows up with the correct user key, no
client host key checking is done. Even with the ‘‘from’’ re-
striction, only the DNS name is checked, not a host key,
since there often will be no host key for a client.

9Many UNIX commands, most notably ls, have different
newline handling if there isn’t a PTY. If your tool can’t han-
dle this, you may need to allow PTY creation.

used to get /etc/shadow for offline cracking, or
can be used to read other protected files

• Access to sudo itself as root. This allows
attacks like ‘‘sudo sudo /bin/sh’’. There are
options to prevent this (--disable-root-sudo at
compile time, or unsetting root_sudo in sudo-
ers), but these are fairly weak protections meant
to stop administrators from circumventing a
!SHELLS entry. If you need these options, then
you’re probably allowing so many other com-
mands (like those above) that an attacker can
easily gain a root shell anyway.

Wi t h the release of sudo 1.6.8, two new features
have been added that make limited sudo somewhat
easier to implement. A common sudo need is to allow
the editing of a protected file. This has historically
been very difficult to provide in a controlled way with-
out writing wrapper scripts. A user who is allowed to
run an editor as root can almost certainly modify arbi-
trary files and trivially gain shell access. The new
‘‘ - e ’’ option to sudo, also accessible by running
sudoedit, fixes this. It makes a temporary copy of the
target file that is owned by the user. The user is then
provided the editor of their choice, but since they are
still running under their own userid there is no security
issue. When the editor exits, sudo will replace the
original file with the temporary copy. In the past, some
administrators have written scripts to do just this, but
moving this functionality into sudo itself should make
things much easier. To allow a user to use sudoedit,
treat it like any other command, but don’t give a full
path to it. The alias ‘‘sudoedit’’ represents either
sudoedit, or ‘‘sudo -e’’. By appending a filename, you
can restrict the user to editing particular files. For
example:
rnapier host=(root) sudoedit /etc/httpd.conf

Another major improvement in 1.6.8 is the addi-
tion of a NOEXEC option.10 On operating systems
that support it,11 the NOEXEC option will prevent a
command run under sudo from calling exec() itself.
This will prevent the shell-outs that provide trivial
root shells from so many commands from editors to
pagers. Given the newness of this technique, only time
will tell how effective it is in practice.

The solution to providing limited sudo is single-
purpose wrappers, small scripts written to do exactly
what is required. By providing sudo access to just these
wrappers, least privilege can be much better achieved.

For example, let’s consider a script mysqllog,
which prompts the user for her password, validates it
against /etc/shadow, and if successful, displays
/var/log/mysqld.log. This log file is owned by the
mysql user and group-owned by the mysql group. It is
only readable by user and group.

10[SUDO], sudoers man page, ‘‘NOEXEC and EXEC.’’
11This includes at least SunOS, Solaris, *BSD, Linux, IR-

IX, Tru64 UNIX, MacOS X, and HP-UX 11.x. It does not
work on AIX and UnixWare. [SUDO]

208 2004 LISA XVIII – November 14-19, 2004 – Atlanta, GA

Napier Secure Automation: Achieving Least Privilege with SSH, Sudo and Setuid

#!/usr/bin/perl -w
use strict;

sub error { print @_; exit 2 };

if($> != 0) { error "Must run as root\n"; }

my $good_pwd = (getpwuid($<))[1] or error($!);
chomp(my $test_pwd = <>);
if (crypt($test_pwd, $good_pwd) ne $good_pwd) {

exit 1;
} else {

exit 0;
}

Figure 2: checkpass.

#!/usr/bin/perl -w
use strict;
my $user = getpwuid($<);
print "Password: ";
system(’/bin/stty’, ’-echo’); # Don’t echo
my $password = <>;
system(’/bin/stty’, ’echo’); # Do echo
print "\n";

open(CHECKPASS, ’|-’, ’/usr/bin/sudo’,
’/home/rnapier/checkpass’)

or die $!;
print CHECKPASS $password;
close CHECKPASS;
if ($? == 0) {

system(’/usr/bin/sudo /bin/cat’.
’ /var/log/mysqld.log’);

}
else {

print "Bad password.\n"
}

Figure 3: mysqllog.

Since mysqld.log is group-owned by mysql, the
script will need to have access to that group. It also
seems to need root privileges in order to access
/etc/shadow. The obvious solution is to simply make it
a setuid root script, but this would give it far more
access than it needs. In fact, this script doesn’t actually
need to be able to read /etc/shadow; it only needs to be
able to verify that a given username/password combi-
nation is valid. Carefully stating your privilege require-
ments is the first step towards achieving least-privilege.

As before, we’ll create a user, mysqllog, to run
this script and edit sudoers to give it permission to run
‘‘checkpass’’ and ‘‘/bin/cat /var/log/mysqld.log’’.

The checkpass script is listed in Figure 2. It reads
a password for the current user from STDIN. It then
exits with a 0 to indicate a good password, a 1 to indi-
cate a bad password, or a 2 to indicate an error. We
pass the password in on STDIN because command
line parameters can be seen in the process table by all
users. Note that this script can only validate the cur-
rent user, not an arbitrary user. Once again we keep to
least privilege.

The code to perform our task is shown in Figure
3. We make it setuid to the mysqllog user we created
earlier. Now arbitrary users can run this script, enter
their password, and get the contents of mysqld.log .
Even if an attacker can find a bug in the script, the
privileges that can be exploited are very limited.

Setuid/setgid vs. Sudo

Setuid scripts can check the calling user to deter-
mine whether they have rights to run this script (gen-
erally by checking group membership). This is conve-
nient for the authorized user, because she is saved the
trouble of typing ‘‘sudo.’’ An example of such a check
in Perl is given in Figure 4.

#!/usr/bin/perl -w

my $group_wheel = getgrnam(’wheel’)
or die;

if($(!˜ /\b$group_wheel\b/) {
die("Must be part of wheel".
" group to run this script.\n");

}

Figure 4: Checking group membership in Perl.

Alternately, privilege-requiring scripts can be
executed using sudo. This has the advantage of pro-
viding centralized accounting of all privileged users
and reducing the complexity of the scripts.

Non-root Sudo

One should always consider when using sudo
whether the user needs root access or whether access
to a non-privileged user like apache or jabber might be
sufficient. Sometimes changing the ownership or
group of configuration or log files is enough to allow
less-privileged accounts to manage them. Be careful
with this, however. Many services like Apache should
not be run under a UID that can write to their configu-
ration files. Doing so could allow a minor compromise
to be escalated into a larger compromise by allowing
the server to be reconfigured by an attacker. That said,
there is no reason that Apache’s configuration files
can’t be owned by an apacheconf user and administra-
tors given appropriate sudoedit privileges to that user.

Setuid/setgid with Sudo

Setuid/setgid can be combined very effectively
with sudo. For example, the script can be setgid to a
special group. This group can then be given root sudo
privileges to run specific single-purpose wrappers.
The script can then use sudo to execute these wrappers
to escalate to root privileges precisely when needed,
and only for precisely what is needed. Furthermore,
since the single-purpose wrappers are not themselves
setuid, they can only be called indirectly, by already-
privileged processes. This helps prevent an attacker
from passing them unusual parameters, making them
less susceptible to security coding flaws.

As an example, we can achieve the same func-
tionality as in update_errorlog (Figure 1) on our local
machine using a setuid script (Figure 5). As in the
‘‘Non-root keys’’ section, we’ll set up an errorlog user,
including its sudo privileges, and make the script
setuid to errorlog. When you run update_errorlog it
will then update httpd.conf and restart Apache as long
as you are in the wheel group.

2004 LISA XVIII – November 14-19, 2004 – Atlanta, GA 209

Secure Automation: Achieving Least Privilege with SSH, Sudo and Setuid Napier

Similar techniques can be used with SSH com-
mand-keys or CGI scripts that are run under specific
user IDs.

#!/usr/bin/perl -w
use POSIX qw(strftime);
my $group_wheel = getgrnam(’wheel’) or die;
if($(!˜ /\b$group_wheel\b/) {

die("Must be part of wheel group to run this script.");
}
my $file = ’/etc/httpd/conf/httpd.conf’;
my $date=strftime("%F", localtime);
if(-e "${file}.bak") { unlink("${file}.bak") or die "$!" }
rename($file, "$file.bak") or die "$!";
open(INFILE, "$file.bak") or die "$!";
open(OUTFILE, ">$file") or die "$!";
while(<INFILE>) {

s!ˆErrorLog(.*)!ErrorLog /var/log/error_log.$date!;
print OUTFILE;

}
close INFILE or die $!;
close OUTFILE or die $!;
system(qw(/usr/bin/sudo /usr/sbin/apachectl restart)) == 0 or die;

Figure 5: update_errorlog in Perl.

Setuid/Setgid Best Practices
Non-root Setuid

‘‘Setuid’’ is sometimes confused with ‘‘run as
root,’’ but this need not be the case. Setuid can be used
to run a command as any particular user by chowning
the file to that user.

As with sudo, always consider whether your
setuid script really needs root access or just access to a
special user. For example, if a script needs access to a
file containing a password, there’s no reason that file
needs to be owned by root. It could be owned by any
non-user account.

Reducing the number of setuid-root scripts
reduces the number of ways attackers can exploit cod-
ing errors to obtain root.
Setgid

In some cases, setgid can be even more useful
than non-root setuid. As we saw in the ‘‘Non-root
keys’’ section, creating a group to manage configura-
tion files such as for Apache can help isolate access to
these files from root access. Setgid scripts can grant
users access to these protected files, while still pre-
serving the user’s own privileges (such as access to
their home directory) without any special handling of
effective UID.
Setuid Script Obfuscation

Setuid scripts in languages like Perl and Python
present a special problem. They have to be readable
by the user, giving an attacker an opportunity to study
them looking for security flaws to exploit. The
attacker may even be able to copy the script to another
machine to test possible exploits offline.

Compiled programs do not generally have to be
readable by the user; they only require that the

executable bit be set. So when writing setuid and set-
gid scripts in interpreted languages such as perl or
python, there is some value to creating a small wrap-
per in C, as shown in Figure 6.

#include <stdio.h>
#define CMD "/usr/local/protected/myscript"
main(ac, av)

char **av;
{

char error[80];
execv(CMD, av);
snprintf(error, sizeof(error),

"Unable to run %s",CMD);
perror(error);
exit(1);

}

Figure 6: myscript.c setuid wrapper.

In the above example, /usr/local/protected should
only be readable by the setuid user (often root), and
myscript should be replaced with script filename.

Keep in mind that this is an obfuscation tech-
nique, not a security technique. If your script had no
security flaws in it, then this technique wouldn’t be
needed and using this technique doesn’t prevent an
attacker from exploiting your script’s security flaws. It
just makes finding the flaws harder.

While languages like Perl and Python have spe-
cial handling to make setuid scripts ‘‘safe’’ (though
readable by the user), it is not trivial (or even possible
on some older platforms) to make Bourne and similar
shell scripts setuid safely. Most operating systems
don’t even allow this anymore.12 These will absolutely
require a wrapper script, though it would be wise to

12Shell scripts are subject to environment attacks including
manipulation of PATH or IFS, and timing-based attacks
based on moving links around between the time that the
script is started and the script is read. Some of these have
been addressed in modern versions of UNIX-based operat-
ing systems, but because of Bourne shell’s reliance on exter-

210 2004 LISA XVIII – November 14-19, 2004 – Atlanta, GA

Napier Secure Automation: Achieving Least Privilege with SSH, Sudo and Setuid

write setuid scripts in a language like Perl or Python in
any case. Bourne shell and its cousins rely very heav-
ily on the operating environment and external pro-
grams and so are much harder to adequately secure in
a setuid context.

Perl in particular provides taint checking, which
helps programmers keep track of what data could have
been influenced by the user. Setuid Perl scripts auto-
matically turn on taint checking. If you use a C-wrap-
per as above, Perl will no longer automatically turn on
taint checking, so you should do so by passing ‘‘-T’’
in the perl invocation.

Finally, whenever possible, make setuid and set-
gid programs unreadable by anyone but the owner.
Best Practices in Handling Privileged UID/GIDs

Ideally all ‘‘special’’ UIDs and GIDs should
have a consistent numbering convention. Generally,
numbers under 100 (or 1000 for larger systems)
should be reserved for these special IDs.

Special UIDs should not generally permit direct
login. They should not have a valid password or shell.

It is often convenient for administrative staff to
belong to special GIDs so that they can manage con-
figuration or data files directly without needing further
access (such as sudo). This is particularly useful for
allowing non-root users to administer particular parts
of the system.
Odds and Ends
Sticky Bits

Setting the sticky bit on a directory allows users
to write files that other users cannot remove, even
though the directory is world writable. In some cases
this can get rid of the need for setuid user scripts to
write protected files. /tmp is a good example of where
this is used. Setting the sticky bit is done as follows:
chmod o+t directory

Setgid Directories
Setting a directory setgid will cause files created

there to belong to the same group as the directory
rather than the user’s primary group. In some cases
this can get rid of the need for privileged daemons that
need to read things created by users.

Combining this with the sticky bit is an effective
way to create a drop-box location for a non-privileged
daemon. Users can put things into this directory, but
they can’t list the entries in the directory (since we
won’t add the directory read privilege), and they can
only remove their own files (because we’ll set the
sticky bit).

Create a directory ‘‘drop’’ and set the sticky and
setgid bits:

nal programs for most handling, it is very difficult to protect
yourself from all of them. Most modern UNIX-based operat-
ing systems do not permit setuid shell scripts. See the UNIX
FAQ Question 4.7 at http://www.faqs.org/faqs/unix-faq/faq/
part4 for more information.

chown myservice:myservice drop
chmod u=rwx,g=rwxs,o=wxt drop

This means that anyone can drop files into the drop
directory, users can’t modify each other’s files and the
myservice user doesn’t need any special privileges to
manage files dropped into this directory.

Web Applications
By default, web applications run as the web user.

On a system with multiple web applications, each
application will have access to the others’ data in this
configuration. By creating separate accounts for each
application, they can then be separated using suexec,
an Apache feature that causes CGI programs to run
under user accounts rather than as the web server. This
can protect application data from exploits against
other CGI programs as well as the web server itself.

Recommendations for the Future
There are several features that would help large

installations manage sudo and SSH better. Some of
these are currently possible with custom work, but
they should be integrated better into the products.

• SSH should be able to get its authorized_keys
information easily from LDAP or Active Direc-
tory rather than the user’s .ssh directory. This
would allow the list of authorized keys to be
protected from NFS attacks without resorting to
local configuration files on each host (as
described in ‘‘Hardening and Managing SSH’’).
To maintain least-privilege, LDAP keys should
be assignable to specific servers (rather than
being globally accepted), and would need to
allow restrictions such as ‘‘from’’ and ‘‘com-
mand’’. The existing SSH LDAP solutions13

allow X.509 certificate authentication of users,
but do not fully replace the authorized_keys file.

• SSH needs better integration with one time pass-
words (OTP). In particular, it should be possible
to configure keys that allow an interactive shell
to require one-time passwords while not requir-
ing this for command keys. Interactive shells are
extremely powerful and should always have a
human available to enter the OTP. Command-
keys are very restricted and generally won’t
have a human available to enter the OTP. This is
difficult to implement with the current SSH
tools, which generally requires all-or-nothing
use of OTP.

• Sudo needs to be able to get sudoers configura-
tion from LDAP. This would make it much eas-
ier to integrate with a Role Based Access Con-
trol (RBAC) system or other centralized account
and authorization systems. It is currently possi-
ble to generate a sudoers file out of LDAP with
custom tools, but this is cumbersome and creates

13LDAP is managed by the ‘‘Certificate Authentication’’
feature of commercial SSH and the ‘‘OpenSSH LDAP
Public Key Patch’’ (http://ldappubkey.gcu-squad.org/) for
OpenSSH.

2004 LISA XVIII – November 14-19, 2004 – Atlanta, GA 211

Secure Automation: Achieving Least Privilege with SSH, Sudo and Setuid Napier

a delay between when LDAP is updated and
when the change takes effect.

• A tool that would automatically determine trust
relationships created by sudo and SSH and dis-
play this in a consolidated format (such as a
directed graph) would be extremely valuable.

• Sudo should use TTY tickets by default and
optionally clean up old tickets automatically
whenever sudo is run.

Availability

OpenSSH is freely available under the BSD
license from the OpenBSD project. Their website is
available at http://www.openssh.org . At the time of
this writing, the currently available version is 3.8.

SSH Secure Shell, discussed in this paper, has
been replaced by SSH Tectia. Both are commercial
products available from SSH Communications Secu-
rity (http://www.ssh.com). Where this paper refers to
the commercial product, it is written to SSH Secure
Shell version 3.2.9. At the time of this writing, the
most recent version is SSH Tectia 4.1.

Sudo is freely available and maintained by Todd
Miller (Todd.Miller@courtesan.com) at http://www.
courtesan.com/sudo. At the time of this writing, the
most recent version is Sudo 1.6.7p5, though some fea-
tures of the upcoming 1.6.8 are discussed in this paper.

Conclusion

In this paper we have established the importance
of the principle of least privilege to the overall security
of an environment, by reducing the avenues of attack
and the extent that any particular attack can compro-
mise the system as a whole. We have discussed prob-
lems with the techniques that may currently be used in
many environments including unrestricted SSH keys
for automation tools and setuid tools with excessive
privileges. Finally we have provided techniques and
examples of how to apply least privilege to real-world
automation problems, including restrictions on sudo
and SSH, wrapper scripts, setgid and sticky directories.
While these techniques are useful and important, even
more important is the philosophy behind least privilege.
By constantly asking ourselves what the minimum set
of privileges a particular operation needs, and challeng-
ing ourselves to reduce and compartmentalize those
privileges, the security of our environments will not
only improve, but become pervasive.

Author Information

Robert A. Napier is a founding member of the
Corporate Information Asset Protection team for
Cisco Systems where he trains internal groups on clas-
sifying and protecting sensitive information with spe-
cial focus on technical safeguards. He is a member of
the GCUX board and also holds IAM and CISSP certi-
fications. He is a co-author of Special Edition: Using

Linux 6e and a contributing author to Special Edition:
Using KDE and Red Hat Linux Installation & Config-
uration Handbook. He can be reached electronically at
rnapier@employees.org .

References

[SUDO] Miller, Todd, Sudo Main Page, http://
www.courtesan.com/sudo , 2003.

[OSSH] OpenBSD, OpenSSH Manual, http://www.
openssh.org/manual.html , 2004.

[SSH] SSH Communications Security, SSH Secure
Shell for Servers Version 3.2.9 Administrator’s
Guide, http://ssh.com/support/documentation/
online/ssh/adminguide/32 , 2003.

212 2004 LISA XVIII – November 14-19, 2004 – Atlanta, GA

