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Abstract

Data collection is not a big issue anymore with
available honeypot software and setups. However
malware collections gathered from these honeypot sys-
tems often suffer from massive sample counts, data
analysis systems like sandboxes cannot cope with. So-
phisticated self-modifying malware is able to generate
new polymorphic instances of itself with different mes-
sage digest sums for each infection attempt, thus re-
sulting in many different samples stored for the same
specimen. Scaling analysis systems that are fed by
databases that rely on sample uniqueness based on
message digests is only feasible to a certain extent.

In this paper we introduce a non cryptographic, fast
to calculate hash function for binaries in the Portable
Executable format that transforms structural informa-
tion about a sample into a hash value. Grouping bi-
naries by hash values calculated with the new function
allows for detection of multiple instances of the same
polymorphic specimen as well as samples that are bro-
ken e.g. due to transfer errors.

Practical evaluation on different malware sets
shows that the new function allows for a significant
reduction of sample counts.

1. Introduction

Data collection and therefore honeypot devel-
opment has been a big challenge in the past. As
of today various differnt approaches to malware
collection with the help of honeypots exist [1]. In
addtion, there are effective tools to automate mal-

ware analysis [2]. However, current honeypot se-
tups suffer from gathering multiple binaries with
distinct message digest sums that belong to the
exact same specimen and therefore pollute mal-
ware databases as well as automated analysing
systems.

Current Anti-Virus solutions are too slow and
inaccurate to scan each incoming sample and to
blacklist based on this data, as shown later. Addi-
tionally, polymorphic malware is likely to hit the
database again in the future, so a reactive black-
listing approach seems inferior to automated clus-
tering of malware. To achieve fast clustering, a
hash function that generates the same hash value
for any two instances of the same specimen has
been developed, thus a same hash metric can be
used for clustering.

To tackle these problems, we developed a
generic hash function for Portable Executable
[10] files that generates a per-binary specific hash
value based on structural data found in the file
headers and structural information about the ex-
ecutable’s section data. This allows clustering of
binaries based on a same hash metric, resulting in
clusters that group instances of the same polymor-
phic malware specimen.

We tested this approach on the database of the
mwcollect Alliance [7] database, which at that
time was heavily polluted by a huge amount of
Allaple [3] instances. peHash was able to sig-
nificantly reduce the pollution from an constantly
increasing amount of Allaple samples to a static
number of specimens.
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1.1. Related Work

Hashing by itself is not a new approach to
cluster malware. Experiments with the spamsum
and mrshash hashes have shown promising re-
sults towards clustering of unpacked malware [4].
Both hashes can be computed in O(n) complex-
ity, however for proper clustering they rely on
an edit distance comparison that has to fall be-
low a certain threshold for a cluster to be formed.
Edit distance requires dynamic programming and
each hash needs to be compared with each other
hash. Under the assumption that the hashes be-
ing compared have a constant length, this still
leads to a complexity of O(n2). Realistic assump-
tions about performance, however, have to con-
sider a significant linear factor c due to the edit
distance calculations. Using binary space par-
titioning, clustering can however be achieved in
Θ(n log n) for most real-world input sets [12].

Another approach to malware clustering is the
use of n-grams Signatures [5] as known from nat-
ural language processing. Calculating these sig-
natures is linear in the sample size with a feasible
linear factor c, but since n-grams do not define a
distance metric, this approach cannot be solved in
better than Θ(n2).

Compared to the above mentioned approaches,
the worst-case performance of peHash’s hash-
equality clustering using simple binary search is
O(n log n). Additionally, these approaches con-
sider the given input samples to be raw binary
data without any domain specific assumptions.
Polymorphic or packed samples are not clustered
correctly, as compression and encryption modify
the section contents significally. Opposed to this,
peHash is tailored to the specific properties of
windows malware and thus allows for the proper
clustering of aforementioned hard cases.

A totally different approach is taken by Vx-
Class that first needs to unpack the sample if it
was packed with an executable packer and then
statically examines the inter-procedural callgraph
and the intra-procedural flow graphs [6]. Us-

ing annotated graph matching, similiarities in the
code flow can be determined and a similiarity
metric for malware specimens derived. How-
ever, the average runtime per sample is declared
to be about five minutes, making this very accu-
rate clustering approach unfeasible for any real-
time filtering of polymorphic specimens.

In general, the above mentioned approaches are
all either not suited for usage in the application
area where peHash was designed for: near real-
time clustering of specimens in high-volume mal-
ware collections.

2. peHash Function Design

Since malware is often packed [8] and specif-
ically polymorphic malware uses changing de-
cryptor stubs, no assumptions about the actual
code but the stub can be statically made. Ad-
ditionally, polymorphic malware or packers of-
ten insert random instructions in the stubs, which
would again result in a unique hash value for each
instance of a specimen. As even data sections
could be encrypted or contain code that is exe-
cuted at runtime, looking at the contents of the
sections in a Portable Executable and deriving in-
formation from it is not feasible in this context.

As this hash function should be of low compu-
tational complexity for the average malware bi-
nary, only a limited set of quickly gathered or
calculated information can be used. Specifically,
even only partially emulating the malware’s code
is not an option as even in small decryption stubs
loops can occur, of which the runtime length can-
not be easily predicted. Even if emulation is
bounded by a time or instruction count limit, it
would be easy to prepend a relatively long idle
time to any meaningful actions, thus that emula-
tion results are not useful for clustering.

However, every space linear, information pre-
serving function used to modify section contents
by definition results in approximately the same
Kolmogorov Complexity [9] of this section. This
is specifically true for static key encryption rou-



tines like a simple XOR and metamorphic code
rewrites. Compression of data results in a max-
imal Kolmogorov Complexity, but multiple in-
stances of the same specimen are likely to use
the same compression algorithm which should
then result in the same complexity for distinct in-
stances. Since Kolmogorov Complexity is a con-
struct of theoretical informatics and cannot gener-
ically be calculated, bzip2 compression ratio is
used as an approximation [9]:

Length(bzip2(Data))

Length(Data)
∈ (0..1] ⊂ R

Because this value is directly included in the
hash value for each section in the Portable Ex-
ecutable and we want to simply group by exact
hash matches, this value needs to be trimmed.
Our experiments with different ranges using dif-
ferent malware sets (see below) have shown that
scaling the result the bzip2 compression ratio to
[0..7] ⊂ N leads to the best matches. Smaller
ranges result in too big clusters that contain dif-
ferent specimens and bigger ranges do not im-
prove accuracy of clusters but sometimes resulted
in valid clusters being further broken up.

2.1. Structural Properties

Apart from this data specific information, addi-
tional data needs to be taken into account to have
sufficient distinction between binaries. Today’s
polymorphic malware specimens share the same
structural Portable Executable properties, as the
code that generates new instances does not per-
form any re-linking but only generation of a new
decryptor stub and re-encryption with a new key.
Thus, the following Portable Executable proper-
ties [10] are taken into account as well:

• Image Characteristics: General flags for the
Portable Executable, e.g. whether the given
file is a DLL or can only be run on a single
processor machine.

• Subsystem: Indicates the Windows Subsys-
tem this binary is to be run in, such as GUI,
CLI or device driver.

• Stack Commit Size: The initial size of pro-
gram stack to be allocated in bytes. This
value is rounded up to a value divisible by
4096, Windows’ page boundary, before in-
clusion in the hash as the Windows Portable
Executable Loader does the same.

• Heap Commit Size: Initial size of program
heap to be allocated, also rounded up to page
boundary size.

For each section in the Portable Executable, the
following structural information is included:

• Virtual Address: The address, the section’s
content is going to be loaded to or memory
is to be allocated at for a .bss section.

• Raw Size: Size of the section in the Portable
Executable file itself; can be smaller than the
actual size occupied in memory after loading
due to rounding to page boundaries.

• Section Characteristics: Section flags de-
scribing initial privileges for the allocated
memory, such as reading, writing and ex-
ecution of code. Also contains informa-
tion about alignment and whether the section
contains unitialized data as a .bss section.

Since not all bits of all values are actually used
or contain useful information, only selected parts
of the values are included in the hash. Modifica-
tions of these significant bit locations indicate sig-
nificant changes in the malware binary, reducing
the risk that the usefullness of this hash function
for a same hash metric is destroyed by single bits
easily changing. The upper 8 bit for the 32 bit
stack and heap commit sizes are almost always
zero. Furthermore, some values might differ in
the lower bits due to small size changes in poly-
morphic malware and must be discarded to allow



for exact matching of hash values. The follow-
ing pseudocode describes the exact generation for
the hash value from the global properties, where
v[8..24] means bits 8 to 24 of value v and⊕means
XOR:

hash[0] := characteristics[0..7]

⊕ characteristics[8..15]

hash[1] := subsystem[0..7]

⊕ subsystem[8..15]

hash[2] := stackcommit[8..15]

⊕ stackcommit[16..23]

⊕ stackcommit[24..31]

hash[3] := heapcommit[8..15]

⊕ heapcommit[16..23]

⊕ heapcommit[24..31]

Additionally, for each section, the following sub-
hash is appended to the hash:

shash[0] := virtaddress[9..31]

shash[2] := rawsize[8..31]

shash[4] := characteristics[16..23]

⊕ characteristics[24..31]

shash[5] := kolmogorov ∈ [0..7] ⊂ N

The part of the hash that relies on the properties
of the Portable Executable can be calculated in
O(1) as only a fixed amount of data is fetched
(there is a constant upper limit of sixteen sections)
and the Kolmogorov Complexity approximation
can be done in bzip2 runtime.

Obviously, given only the hash value it is trivial
to manually craft collisions for this hash function.
To prevent this from happening for a published
hash value, the last step is to calculate the SHA1
value of the above hash buffer and use this as the
final hash value. Thus, a peHash value can be
safely published without anyone being able to cre-
ate collissions unless a bruteforce approach over
the peHash value space is chosen. This would in-

volve trying about 240 possibilities 1 for a two sec-
tion binary, resulting in a search time of 680 years
if one SHA1 calculation takes 20ms. However,
given a Portable Executalbe, it is still trivial to
craft a collission. Additionally, running SHA1 on
the resulting hash value provides constant length
hashes, no matter how many sections are con-
tained in the executables, which is desirable for
storage in database and faster comparisons.

2.2. Entry Point and Imports

Both Entry Point information and imports are
intentionally not included in the hash function.
As most executables use 40000h as Image Base 2,
only the lower 16 bit of the entry point are likely
to differ for any two given executables. However,
most polymorphic or packed malware uses po-
sition independent decryptor stubs that can eas-
ily be relocated by changing the virtual address
of a section without any noteworthy linking ef-
forts. Thus, this value can too easily be changed
for each instance of a polymorphic specimen and
hence should not be included in the hash function.

Additionally, most packers specify a mislead-
ing Import Address Table (IAT) with random im-
ports to confuse malware analysis software. The
APIs really used are then manually located from
the export tables of manually loaded libraries and
a new IAT is generated for the unpacked part of
the malware in memory. Thus, this information
can also be easily changed without any notewor-
thy efforts and should also not be included in the
hash function.

3. Evaluation

To validate the performance and usefulness of
this hash function, we implemented it in C and

1Not the whole space of 264 possibilities for the 8 bytes
needs to be searched since some bits for the global header
are reserved and thus constant.

2Memory address all other virtual addresses are relative
to.



Cluster Size mwcollect Arbor Networks
1 7109 16543

2-9 3165 4104
10-99 549 611

100-499 70 71
500-999 19 4

1000-4999 18 8
5000+ 7 2

Table 1. Cluster Sizes for different Datasets

tested it on three private malware sets that only
contained samples known to be malicious:

1. The mwcollect Alliance Database, which at
the time of testing contained 184538 unique
samples by SHA512 for which a peHash
could be calculated. The malware in this data
set is collected by Nepenthes [1] sensors and
therefore only autonomously spreading mal-
ware that exploits network vulnerabilities or
file infector malware that infected such mal-
ware.

2. A selection of 90105 unique samples by
MD5 from the Arbor Networks malware
database. This set included all kinds of mal-
ware found on the internet, including mal-
ware that spread through spam and also man-
ual submissions.

For these given data sets, the samples fall into
10937 and 21343 clusters respectively. For veri-
fication, all samples were scanned with the Cla-
mAV antivirus software and a cluster was con-
sidered a possibly broken cluster if at least two
different signatures where triggered by malware
in a cluster. For the mwcollect Alliance dataset,
2.58% of the clusters were possibly broken; for
the Arbor Networks dataset 1.51% of the clus-
ters were possibly broken. However manually
investigating all these 282 and 322 possibly bro-
ken clusters revealed that signatures for the same
malware which had different names, such as
’W32.Virut.Gen.C’ and ’W32.Virut.Gen.D’ were

File MD5 Size
diantz.exe 48734e9b45dca36e8a. . . 85504
makecab.exe 2740dc2fbefaddb891f. . . 85504
find.exe 09b4e22c86f7e9f1e5. . . 9216
print.exe 76b96ed5304319f208. . . 9216
subst.exe 77847ef3cec784b137. . . 9216
bootvrfy.exe c2ab77d9dc66447dc1. . . 5120
comrereg.exe 908f0eda6a49625f98. . . 5120
dcomcnfg.exe 1178cd20b90936837d. . . 5120

Table 2. Broken Clusters for Known Good
System Binaries

triggered. Thus, none of the candidates for bro-
ken clusters was infact broken and the false pos-
itive rate after manual correction of the ClamAV
analysis is 0.

Apparently, only minimal modifications to a
malware binary can cause a different A/V signa-
ture to be triggered, further underlining that clus-
tering by A/V names is not an option. Addition-
ally, A/V names seem to use arbitary suffixes that
do not seem to be related to the actual malware
generation itself. Specficially, clusters of malware
that were additionally infected with the Virut file
infector malware [11], seemed to trigger the orig-
inal malware’s signature and Virut signatures at
random (although deterministically per file). As
such a file is both infected with Virut and still the
original malware, both signatures are correct and
the cluster is intact. Clearly, just triggering is a
much more important goal for A/V software than
providing specific information about the prelevant
threat. peHash is a solution that can help by re-
vealing relations between new samples and al-
ready known threats.

Although twice the binary count, the mwcol-
lect Alliance database has only about half of the
Arbor Network’s cluster count. This meets our
expectations as the mwcollect Alliance database
was heavily polluted with Allaple instances, be-
ing responsible for the seven 5000+ samples clus-
ters in the mwcollect Alliance dataset.



Interestingly, there is also a big amount of 2-
9 samples clusters as depicted in Table 1. The
2-9 samples cluster’s for the mwcollect Alliance
dataset holds 3.49 samples on average. This is
due to the fact that sometimes transfer errors oc-
cur during infection that result in some missing or
changed bytes which have direct impact on a bi-
nary’s message digest sum but do not change the
peHash of a binary. Therefore, peHash does not
only help in clustering polymorphic malware but
also in detecting broken copies of already known
threats and therefore further reduce analysis over-
head.

To measure the clustering on known good bina-
ries as well, we also hashed 322 executables from
a vanilla Windows XP installation. The hashing
resulted in 311 different clusters most of them
holding a single binary and seven false positive
clusters holding two to three binaries, each. Some
exemplary clusters are shown in Table 2. Files in
broken clusters all share the same size and man-
ual analysis revealed that they also have identical
global and per section characteristics. Differen-
tiating between them is only possbile by looking
at the actual code or the imports, which is gen-
erally not possible for peHash. This implies that
it is best to use peHash only for supposedly bad
executables, as it is the case with the test datasets.
Promising approaches to tackle these problems by
identifying safe to use imports are described un-
der Future Work.

3.1. Performance

Since for the mwcollect Alliance, most au-
tomatic sample analysis is only carried out for
one sample per peHash cluster, only 5.92% of
the samples had to be analyzed saving 83.1%
of analysis time. The average time to calcu-
late a peHash for any binary from the mwcol-
lect Alliance dataset was 511.56640625 ms with
the bzip2 compression taking the majority of the
time, which is a considereable improvement to the

 1
 2

 3
 4

 5
 6

 7
 8

 9
 10  0

 200000
 400000

 600000
 800000

 1e+06
 1.2e+06

 0
 1000
 2000
 3000
 4000
 5000
 6000
 7000
 8000
 9000

 10000

Time

Sections Size

Time

Figure 1. peHash performance in ms

saved 120-180 seconds, a sandbox run for each
sample would usually have taken.

As can be seen in Figure 1, performance is not
related to binary size or section count. Instead,
most of the time, the peHash calculation just takes
about 33-35 ms. There are some outliers however,
where the bzip2 compression of a single section
took up to 10 s which raise the average compu-
tation time significantly. The fact that there is no
computation times between 2 s and 9 s is due to
the implementation of bzip2 used.

These measurements were taken on a single
Xeon CPU 2.80GHz core with a branch predic-
tion optimized implementation compiled using
GNU g++ 4.1 with the -O2 compiler flag. The
time to fetch the samples from the database was
not taken into account.

4. Conclusions

The vast amount of new seemingly unique mal-
ware samples each day is a huge problem even
to automatic analysis systems. However, with
peHash there is a performant solution to tackle
this problem for polymorphic and slightly bro-
ken samples. We have shown that peHash can
accomplish correct clustering for large test sets



even though only using very basic information
from Portable Executables and making almost no
assumptions about the sections’ contents them-
selves but only about their information richness.
A posteriori analysis with A/V signatures shows
that peHash provides similar precision without
static signatures and could succesfully be used for
monitoring new threats.

It is, however, obvious that peHash cannot be
used to cluster variants of malware families as for
that the code structure itself would have to be an-
alyzed which due to usage of packers is totally
invisible to peHash. Time to unpack or even em-
ulate binaries is however saved.

Surprisingly, we could not find any clusters that
contained samples packed with the same packer
but containing different payload. Some additional
evaluation based on sandbox analysis for all sam-
ples in a cluster should be done in the future to
verify that such clusters really do not exist.

4.1. Future Work

peHash can already successfully cluster the
current in-the-wild set of malware. However, with
more awareness about this research on the black-
hat side, collisions might occur. Packers might for
example be modified to always result in the same
peHash due to usage of the same executable struc-
ture and a strong compression algorithm in com-
bination with filling the gaps with random data,
resulting in the maximum Kolmogorov Complex-
ity for every binary.

One way to cope with this might be to actu-
ally integrate disassembly analysis around the en-
try point in the hash. However, randomly inserted
instructions might cause problems here. As these
instructions often only operate on registers, do-
ing statistics on instructions working on memory
operands or just the memory operands relative to
the image base themselves could be a step in the
right direction. Memory operands that reference
data in the import section of a binary can indi-
cate valid imports that are actually used, which

can then also be used in the hash, whereas they
would have been left out to avoid misclustering
due to misleading imports as described above.

Another way to cluster samples based on the
characteristics above would be to interpret these
features as a vector, multiply this vector with a
weighting vector and then measure distance be-
tween all vectors. If the distance goes below a
certain threshold, two samples belong to the same
cluster. However, this requires a comparison of all
vectors with each other, resulting in O(n2) run-
time for n samples whereas a direct match com-
parison can be done in amortized O(n) runtime
using a hashtable. Nebula [12] is such a tool that
allows for easy clustering based on weighted vec-
tors as a metric, extending it to work on Portable
Executables should be an easy task. Similiar vec-
tor based approaches on disassembly of unpacked
malware have already been discussed by Walen-
stein [13].
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