
An Empirical Study of Real-world Polymorphic Code Injection Attacks

Michalis Polychronakis∗ Kostas G. Anagnostakis† Evangelos P. Markatos∗

Abstract
Remote code injection attacks against network services
remain one of the most effective and widely used ex-
ploitation methods for malware propagation. In this pa-
per, we present a study of more than 1.2 million poly-
morphic code injection attacks targeting production sys-
tems, captured using network-level emulation. We focus
on the analysis of the structure and operation of the at-
tack code, as well as the overall attack activity in relation
to the targeted services. The observed attacks employ a
highly diverse set of exploits, often against less widely
used vulnerable services, while our results indicate lim-
ited use of sophisticated obfuscation schemes and exten-
sive code reuse among different malware families.

1 Introduction

Despite considerable advances in host-level security
hardening and network-level defenses, remote code in-
jection attacks against network services persist as one
of the most common methods for system compromise.
Along with the more recently popularized client-side at-
tacks that exploit vulnerabilities in users’ software such
as browsers and media players [15], remote code exe-
cution vulnerabilities continue to plague even the latest
versions of popular OSes and server applications [2] and
are effectively being exploited by malware, resulting in
millions of infected hosts [3].

Motivated by the illicit financial gain against their vic-
tims, cyber-criminals constantly try to improve the effec-
tiveness and evasiveness of their attacks, with the aim to
compromise as many systems as possible and keep them
under control for as long as possible. Code obfuscation
and polymorphism [20] are among the most widely used
evasion techniques employed by attackers to circumvent
virus scanners and intrusion detection systems.

∗FORTH-ICS, Greece,{mikepo,markatos }@ics.forth.gr
†I2R, Singapore:kostas@i2r.a-star.edu.sg

When polymorphism is applied to remote code injec-
tion attacks, the initial attack code is mutated so that
every attack instance acquires a unique pattern, thereby
making fingerprinting of the whole breed a challenge.
The injected code—often dubbedshellcode—is the first
piece of code that is executed after the instruction pointer
of the vulnerable process has been hijacked, and car-
ries out the first stage of the attack, which usually in-
volves the download and execution of a malware binary
on the compromised host. Polymorphic shellcode en-
gines [1,4,7,10,16,21] create different mutations of the
same initial shellcode by encrypting it with a different
random key, and prepending to it a decryption routine
that makes the code self-decrypting. Since the decryp-
tion code itself cannot be encrypted, advanced polymor-
phic encoders also mutate the exposed part of the shell-
code using metamorphism [20].

Although the design and implementation of polymor-
phic shellcode has been covered extensively in the litera-
ture [6–8,13,14,16,18], and several research works have
focused on the detection of polymorphic attacks [11, 13,
14, 23], the actual prevalence and characteristics of real-
world polymorphic attacks have not been studied to the
same extent [12]. In this work, we present an analy-
sis of more than 1.2 million polymorphic code injec-
tion attacks against real Internet hosts—not honeypots—
detected over the course of more than 20 months. The
attacks were captured by monitoring the traffic of thou-
sands of production systems in research and education
networks using network-level emulation [13,14].Nemu,
our prototype implementation, uses a CPU emulator to
dynamically analyze every potential instruction sequence
in the inspected traffic and identify the execution behav-
ior of self-decrypting shellcode.

Our study focuses on the attack activity in relation to
the targeted network services, the structure of the poly-
morphic shellcode used, and the different operations per-
formed by its actual payload. Besides common exploits
against popular OS services associated with well known

Self-modifications

Decryptor Encrypted Payload

Shellcode

Virtual Address Space

GetPC Code

Figure 1: A typical execution of a polymorphic shellcode
using network-level emulation.

vulnerabilities, we witnessed sporadic attacks against a
large number of less widely used services and third-party
applications. At the same time, although the bulk of the
attacks use naive encryption or polymorphism, and ex-
tensive sharing of code components is prevalent among
different shellcode types, we observed a few attacks em-
ploying more sophisticated obfuscation schemes.

2 Network-level Emulation

We briefly describe the design and operation ofnemu,
the detector used for capturing the attacks. The interested
reader is referred to our previous work [13,14] for a more
thorough description and implementation details.

The principle behind network-level emulation is that
the machine code interpretation of arbitrary data results
to random code, which, when it is attempted to run on
an actual CPU, usually crashes soon, e.g., due to an ille-
gal instruction. In contrast, if a network request actually
contains polymorphic shellcode, then the shellcode runs
normally, exhibiting a certain detectable behavior.

Nemu inspects the client-initiated data of each net-
work flow, which may contain malicious requests to-
wards vulnerable services. Each input is mapped to a
random memory location in the virtual address space of
an IA-32 emulator, as shown in Fig. 1. The execution
of self-decrypting shellcode is identified by two key run-
time behavioral characteristics: the execution of some
form of GetPC code, and the occurrence of severalself
references, i.e., read operations from the memory ad-
dresses of the input stream itself, as illustrated in Fig 1.
The GetPC code is used by the shellcode for finding the
absolute address of the injected code, which is manda-
tory for subsequently decrypting the encrypted payload,
and involves the execution of an instruction from the
call or fstenv instruction groups [13].

We should note that for all captured attacks,nemuwas
able to successfully decrypt the original shellcode, while
so far has resulted to zero false positives.

3 Data Set

Our analysis is based on the attacks captured bynemu in
three deployments in European National Research Net-

works (referred to as NRN1-3) and one deployment in
a public Educational Network in Greece (referred to as
EDU). In each installation,nemu runs on a passive mon-
itoring sensor that inspects all the traffic of the access
link that connects the organization to the Internet.

The sensors were continuously operational for more
than a year, except some occasional downtimes. The ex-
act duration of each deployment, along with the number
of detected attacks and other details, is shown in Table 1.
In these four deployments,nemu collectively captured
more than 1.2 million attacks targeting real production
systems in the monitored networks.

We differentiate betweenexternal attacks, which orig-
inate from external IP addresses and target hosts within
the monitored network, andinternal attacks, which orig-
inate from hosts within the monitored networks. Internal
attacks usually come from infected PCs that massively
attempt to propagate malware in the local network and
the Internet. We should note that due to NAT, DHCP,
and the long duration of the data collection, a single IP
may correspond to more than one physical computer.

4 Attack Analysis

4.1 Overall Attack Activity

As shown in Table 1, from the 1.240.716 attacks de-
tected in NRN1, about one third of them were launched
from 10.014 external IP addresses and targeted 769 hosts
within the organization. The bulk of the attacks origi-
nated from 143 different internal hosts, targeting 331.572
different active hosts across the Internet. Interestingly,
116 of the 143 internal hosts that launched attacks are
also among the 769 victim hosts, indicating that possibly
some of the detected attacks were successful.

The overall attack statistics for NRN2 and NRN3 are
similar to NRN1, but the number of detected attacks
is orders of magnitude smaller, due to the smaller at-
tack surface of infected or potentially vulnerable internal
hosts that launched or received attacks. In contrast to the
three NRNs, about two thirds of the attacks captured in
the EDU deployment originated from external hosts.

An overall view of the external and internal attack ac-
tivity for all deployments is presented in Fig. 2 and Fig. 3,
respectively. In both figures, the upper part shows the
attack activity according to the targeted port, while the
bottom part shows the number of attacks per hour. For
the targeted ports, the darker the color of the dot, the
larger the number of attacks targeting this port in that
hour. There are occasions with hundreds of attacks in
one hour, mostly due to attack bursts from a single source
that target all active hosts in neighboring subnets.

Network Time Period Total External Internal
attacks # attacks # srcIP # dstIP # attacks # srcIP # dstIP

NRN1 1/4/07 – 21/10/08 1240716 396899 (32.0%) 10014 769 843817 (68.0%) 143 331572
NRN2 1/4/07 – 15/2/08 12390 2617 (21.1%) 1043 82 9773 (78.9%) 66 4070
NRN3 1/4/07 – 15/2/08 1961 441 (22.5%) 113 49 1520 (77.5%) 8 1518
EDU 7/3/07 – 21/10/08 20516 13579 (66.2%) 3275 410 6937 (33.8%) 351 2253

Table 1: Number of captured attacks from four deployments ofnemu.

Mar’07 Apr’07 May’07 Jun’07 Jul’07 Aug’07 Sep’07 Oct’07 Nov’07 Dec’07 Jan’08 Feb’08Mar’08 Apr’08 May’08 Jun’08 Jul’08 Aug’08 Sep’08 Oct’08

at
ta

ck
s

pe
r

ho
ur

0

200

400

600

800

1000

1200

1400

ta
rg

et
 p

or
t

21
25
42
80

110
135
139
143
445

1023
1025
1029
1082
1433
2000
2100
2103
2967
2968
3050
5554

30708
41523

1 + 16 + 32 + 64 + 128 + 256 + 512 +

Figure 2: Overall external attack activity. Although the bulk of the attacks target well known vulnerable services, there
are also sporadic attacks against less widely used services.

4.2 Targeted Services

As expected, the most highly attacked ports for both in-
ternal and external attacks include ports 135, 139, and
445, which correspond to Windows services that have
been associated with multiple vulnerabilities and are still
being highly exploited in the wild. Actually, the sec-
ond most attacked port is port 2967, which is related
to an exploit against a popular corporate virus scanner
that happened to be installed in many hosts of the moni-
tored networks. As shown in Fig. 3 several of these hosts
got infected before the patch was released and were con-
stantly propagating the attack for a long period. Other
commonly attacked services include web servers (port
80) and mail servers (port 25).

It is interesting to note that there also exist sporadic
attacks to many less commonly attacked ports like 3050,
5000, and 41523. With firewalls and OS-level protec-
tions now being widely deployed, attackers have started
turning their attention to third-party services and appli-
cations, such as virus scanners, mail servers, backup
servers, and DBMSes. Although such services are not

very popular among typical home users, they are often
found in corporate environments, and most importantly,
they usually do not get the proper attention regarding
patching, maintenance, and security hardening. Thus,
these services have become attackers’ next target option
for remote system compromise, and as the above results
show, many such exploits have been actively used in the
wild. Nemuscans the traffic towards any port and does
not rely on exploit or vulnerability specific signatures,
thus it is capable to detect polymorphic attacks destined
to even less widely used or “forgotten” services.

Overall, the captured attacks targeted 26 different
ports. The number of attacks per port is shown in
Fig. 4 (blue bars). A large number of attacks targeted
port 1025, attempting to exploit the Microsoft Win-
dows RPC malformed message buffer overflow vulner-
ability. Less commonly attacked services include POP3
and IMAP servers (ports 110 and 143), Oracle XDB
FTP servers (port 2100), the Windows Internet Nam-
ing Service (WINS) (port 42), Microsoft SQL servers
(port 1433), and the CA BrightStor Agent for Microsoft
SQL Server (port 41523). The attack against port 5000

Mar’07 Apr’07 May’07 Jun’07 Jul’07 Aug’07 Sep’07 Oct’07 Nov’07 Dec’07 Jan’08 Feb’08Mar’08 Apr’08 May’08 Jun’08 Jul’08 Aug’08 Sep’08 Oct’08

at
ta

ck
s

pe
r

ho
ur

0
200
400
600
800

1000
1200
1400
1600
1800

ta
rg

et
 p

or
t

80
135
139
445
453

1025
2967
2968
5000
6881

1 + 16 + 32 + 64 + 128 + 256 + 512 +

Figure 3: Overall internal attack activity.

was related to a vulnerability in the Windows XP Uni-
versal Plug and Play implementation, while the attack
against port 6881 attempted to exploit a vulnerable P2P
file sharing program. The single attack against port 5554
was launched by W32.dabber, a worm that propagates
by exploiting a vulnerability in the FTP server started by
W32.Sasser and its variants.

4.3 Shellcode Analysis

We analyzed the shellcode of the captured attacks with
the aim to gain further insight on the diversity and char-
acteristics of the attack code used by the different ex-
ploitation tools, worms, or bots in the wild.Nemuidenti-
fies only self-modifying shellcodes, so for each attack we
can examine both the initialshellcode, as well as the de-
cryptedpayload that actually carries out the attack, and
which is exposed only after successful execution of the
shellcode on the emulator.

4.3.1 Shellcode Diversity

For each attack, we computed the MD5 hash of the initial
shellcode as seen on the wire and plotted the number of
unique shellcodes per port in Fig. 4 (purple bars). Com-
paring the purple and blue bars, we see that in some cases
the number of unique shellcodes is quite smaller than the
number of attacks. If truly polymorphic shellcode were
used, we would expect the number of shellcodes to be
equal to the number of attacks, since each instance of
a polymorphic shellcode is different than any other in-
stance. However, in most attacks the encryption scheme
is very simple, and for the same malware family, the gen-
erated shellcodes usually have been encrypted using the
same key and carry the same decryption routine. Besides
code obfuscation, even such naively applied encryption
is convenient for the avoidance ofNULL, CR, LF, and de-
pending on the exploit, other restricted bytes that should

not be present in the attack vector, since this can be taken
care of by the encryption engine [1].

The generated shellcodes though still look different
because the encrypted body of different instances differs
due to slight variations in the encrypted payload. Com-
puting the MD5 hash of the decrypted payloads results
in a number of unique payloads comparable to the num-
ber of unique shellcodes, as shown by the yellow bars
in Fig. 4 when compared to the purple bars. Although
the actual code of the payload used by a given malware
may remain the same, variable fields like IP addresses,
port numbers, URLs, and filenames result in different
encrypted payloads. We discuss in detail the types of
payload found and their characteristics in Section 4.3.3.

4.3.2 Decryption Routines

To gain a better understanding of whether the captured
attacks are truly polymorphic or not, we analyzed further
the decryption routines of the captured shellcodes. De-
cent polymorphic encoders generate shellcode with con-
siderable variation in the structure of the decryption rou-
tine, and use different decryption keys (and sometimes
algorithms), so that no sufficiently long common instruc-
tion sequence can be found among different shellcode in-
stances. On the other hand, naive shellcode encoders use
the same decryption routine in every instance. Even if
the same decryption code and key is used, the encrypted
body usually differs due to payload variations, as dis-
cussed in the previous section, so here we focus only on
the variation found in the different decryption routines.

For each attack, we extracted the decryption code from
the execution trace produced bynemu. The beginning
of the decryption routine is identified by the seeding
instruction of the GetPC code that stores the program
counter in a memory location [13]. The end of the de-
cryption code is identified by the branch instruction of
the loop that iterates through the encrypted payload. In

0

10

10 2

10 3

10 4

10 5

Target Port

21 25 42 80 11
0

13
5

13
9

14
3

44
5

45
3

10
23

10
25

10
29

10
82

14
33

20
00

21
00

21
03

29
67

29
68

30
50

50
00

55
54

68
81

30
70

8

41
52

3

attacks
shellcodes
payloads
payload types

Figure 4: Number of attacks, unique shellcodes, unique decrypted payloads, and payload classes for different ports.

the execution trace of Fig. 5, this heuristic identifies the
highlighted instructions as the decryption routine.

The different types of decryption routines are catego-
rized based on the sequence of instruction opcodes in the
decryption code, ignoring the actual operand values. For
each inspected input,nemumaps the code into a random
memory location, so memory offset operands will differ
even for instances of the same decryptor. The decryption
key, the length of the encrypted payload, and other pa-
rameters may also vary among different instances, result-
ing to different operand values. Routines with the identi-
cal instruction sequences but different register mappings
are also considered the same.

After processing all captured attacks, the above pro-
cess resulted in 41 unique decryption routines. This
surprisingly small number of decryptors indicates that
none of the malware variants that launched the attacks
employs a sophisticated shellcode encoder. Despite the
availability of quite advanced polymorphic shellcode en-
cryption engines [4], none of the captured shellcodes
seems to have been produced by such an engine. In con-
trast, most of the decryption routines are variations of
simple and widely used encoders.

A larger number of shellcodes share the same decryp-
tion routine but use different decryption keys. We spec-
ulate that key variation is the result of the brute force
way of operation of some encoders, which try different
encryption keys until all the bad character constraints in
the generated shellcode are satisfied, rather than an in-
tentional attempt to obfuscate the shellcode.

Three of the decryptors match the code generated
by the call4 dword xor , jmp call additive ,
and fnstenv mov encoders of the Metasploit Frame-
work [1], while the decryptor shown in Fig. 5 is a variant
of the decryptor used by thecountdown encoder of the
same toolkit. The GetPC code in 37 of the routines uses
the fstenv instruction for retrieving the current value

0 40000000 EB15 jmp 0x40000017
1 40000017 E8E6FFFFFF w call 0x40000002
2 40000002 B98BE61341 mov ecx,0x4113e68b
3 40000007 81F14DE61341 xor ecx,0x4113e64d
4 4000000d 5E r pop esi
5 4000000e 807431FF85 xor byte [ecx+esi-0x1],0x85
6 40000013 E2F9 S loop 0x4000000e
7 4000000e 807431FF85 xor byte [ecx+esi-0x1],0x85
8 40000013 E2F9 1 loop 0x4000000e
9 4000000e 807431FF85 xor byte [ecx+esi-0x1],0x85

10 40000013 E2F9 2 loop 0x4000000e
...

Figure 5: The execution trace of a captured shellcode.

of the instruction pointer, while the rest 14 use thecall
instruction. The average length of the loop body code is
2.92 instructions (excluding the branch instruction)—the
largest decryption loop uses ten instructions.

The decryption code with the largest loop body is a
variant of the code used by thealpha mixed encoder
from Metasploit, which produces alphanumeric mixed-
case shellcode, with some differences in the GetPC code
(the decryption loops are identical). This type of shell-
code was found in three of the attacks against port 3050,
attempting to exploit an integer overflow vulnerability in
the Borland Interbase 2007 database server.

The interesting aspect of these particular attacks is
that the decrypted payload produced by the alphanu-
meric shellcode is again an instance of a self-decrypting
shellcode, this time generated by yet another variant
of the popularcountdown encoder. That is, the ini-
tial payload was first encoded using acountdown -like
encoder, and the resulting shellcode was then encoded
using aalpha mixed -like encoder. The overall de-
cryption process of the shellcode is illustrated in Fig. 6.
Although such layered encryption using multiple exe-
cutable packers is commonly found in malware binaries,
we are not aware of any previous report of in-the-wild
attacks employing doubly encrypted shellcode.

0

10

10 2

10 3

10 4

10 5

Payload type

C H B F B H B C T B C B B C C C A C A H H C C BS C BS H F C BS C B A BS B C C B C C C

attacks
unique payloads

Figure 7: Number of attacks and unique payloads for the 41 payload types.

Payload # Payload
Class Types

ConnectExec 17
BindExec 9
HTTPExec 5
BindShell 4
AddUser 3
FTPExec 2
TFTPExec 1

Table 2: Payload classes.

Encrypted Payload 1decr_alpha

Encrypted Payload 2decr_alpha decr_cntdwn

Decrypted Payloaddecr_alpha decr_cntdwn

Decryption

Code execution

Figure 6: An illustration of the execution of the doubly
encrypted shellcode found in three of the attacks.

4.3.3 Payload Categorization

The captured attacks per targeted port may come from
one or more malware families, especially for ports with
a high number of attacks. At the same time, the propaga-
tion mechanism of a single malware may include exploits
for several different vulnerable services. Identifying the
different types of payload used in the attacks can give us
some insight about the diversity and functionality of the
shellcode used by malware.

It is reasonable to expect that a given malware uses the
same payload code in all exploitation attempts, e.g., for
downloading and executing the malware binary after suc-
cessful exploitation. Although a malware could choose
randomly between different payloads or even use a meta-
morphic payload different in each attack, such second-
level polymorphism is not typically seen in the wild. On
the other hand, different malware may use exactly the
same payload code, since in most cases the shellcode
serves the same purpose, i.e., carrying out the delivery
and execution of the malware binary to the victim host.

We have used a binary code clustering method to
group the unique payloads with similar code from all
captured attacks into corresponding payload types. As
mentioned before, even exactly the same payload code

may differ among different instances due to variable pa-
rameters. For example, a payload that connects back to
the previous victim will contain a different IP address in
each attack instance. Such differences can be manifested
either as variations in instruction operands, or directly as
different embedded data in the code.

To cluster the payloads, we first extract any obvious
embedded strings using regular expressions, and disas-
semble the remaining code to derive a corresponding in-
struction sequence. We then group the payloads using
agglomerative hierarchical clustering, with the relative
edit distance over the compared instruction sequences as
the distance metric. After experimenting with different
thresholds and manually examining the resulting payload
groups, we empirically chose a high distance criterion
such that only almost identical instruction sequences are
clustered together.

We also experimented with computing the edit dis-
tance over the sequence of instruction opcodes—
excluding operands—instead of the complete instruc-
tions. However, due to the increased component reuse
among payloads types, this approach tends to yield fewer
groups that in some cases included different payload im-
plementations. Sharing of identical code blocks is very
common between different payload types due to the com-
partmentalized structure of modern shellcode [17].

We further analyzed each payload type to understand
its behavior and intended purpose. The typical structure
of Windows payloads consists of a series of steps to re-
solve the base address ofkernel32.dll , potentially
load other required DLLs, resolve the addresses of the
API calls to be used, and finally carry out the intended
task [17]. The type and sequence of library calls used
by the payload provides a precise view of the payload
functionality. We statically analyzed the code of each
payload group, looking for patterns of known library call
prologues, library function strings (used as arguments to
GetProcAddress), library function hashes (used by

custom symbol resolution code), and shell commands,
and classified each payload type according to its generic
functionality.

Payload clustering and categorization resulted in 41
payload types, categorized in seven payload classes. We
manually verified that only similarly implemented pay-
loads are categorized in the same payload type. We can
think of each payload type as a different implementation
of the functionality corresponding to its payload class.
The number of attacks and different unique payloads per
payload type is shown in Fig. 7. The letter of each pay-
load type in thex axis corresponds to its payload class,
according to the class names listed in Table 2. We used a
naming scheme similar to the one proposed by Borders et
al. [5] based on the method of communication, the type
of action performed, or both.

As shown in Fig. 7, for most payload types, the num-
ber of unique payloads is smaller than the number of at-
tacks that used this type of payload. This means that ex-
actly the same payload was used in more than one attack
instance. Multiple attacks launched by the same malware
running on the same host typically have identical pay-
loads because even variable parameters, such as the IP
address of the attacker, remain the same. Depending on
the malware, the payload may fetch the malware binary
from a predefined location, which also results in identical
payloads even for attacks launched from different hosts.

On the other hand, some payload types, such as those
that wait for a connection from the attacker (e.g., pay-
loads of theBindShell andBindExec classes), may not
have any variable fields at all. However, if such a payload
is used by different malware families, then each malware
may use it with slight modifications. For example, differ-
ent malware families may bind the listening socket to a
different port number, or choose a different file name for
payloads that write the downloaded binary to a file before
executing it. Going back to Fig. 4, the number of differ-
ent payload types per attacked port is represented by the
green bars. The diversity of the used payloads increases
with the number of attacks for each port, indicating that
highly attacked ports were attacked by several different
malware families.

The most commonly used type of payload (the first
pair of bars in Fig. 7), used by a little less than half of the
captured attacks, is a typical “connect back, download,
and execute” payload. As shown in Table 2, this pay-
load class (ConnectExec) has the largest number of dif-
ferent implementations. Implementations may differ in
many parts, including the code used to locate the base ad-
dress ofkernel32.dll , the routine and name hashing
scheme for API call address resolution, (locating only
GetProcAddress and using it for resolving the rest
of the symbols is another common option), library ini-
tialization, process creation and termination, differentli-

braries or library calls with similar functionality, as well
as in the overall assembly code.

The five payloads of theHTTPExec class use
the convenientURLDownloadToFileA function of
urlmon.dll to download and execute a malicious file
from a predefined URL. Other payloads first spawn a
cmd.exe process, which is then used either for receiv-
ing commands from the attacker (BindShell), or for di-
rectly executing other programs as specified in the pay-
load. For example, one of the twoFTPExec payload
types uses a command similar to the following as an ar-
gument to theWinExec function ofkernel32.dll :

cmd /c echo open 208.111.5.228 2755 > i &
echo user 1 1 >> i &echo get 2k3.exe >> i &
echo quit >> i &ftp -n -s:i &2k3.exe&del i

while theAddUser payloads use a command like the fol-
lowing to create a user with administrative privileges:

cmd.exe /c net user Backupadmin corrie38 /ADD &&
net localgroup Administrators Backupadmin /ADD

WinExec is also used to directly execute programs
without involving cmd.exe , such asftp.exe and
tftp.exe , in the secondFTPExec and theTFTPExec
payload types.

5 Related Work

Ma et al. [12] studied the variations found in shellcodes
of the same exploit family, in probably the most clos-
est work to ours. The analysis is based on attacks col-
lected by active responders and honeypots using four
well-known vulnerabilities. Our study is based on at-
tacks against production systems that employ some form
of self-modifying code, and our findings are in accor-
dance with the results of that work. Goebel et al. [9] stud-
ied malware propagation in a university environment, fo-
cusing on the collection and analysis of the malware bi-
naries and their post-infection activities. Yegneswaran et
al. [22] studied the prevalence of scanning and intrusion
attempts based on a large corpus of firewall logs.

Song et al. [19] studied the possibility of deriving a
model for representing the general class of code that cor-
responds to all possible decryption routines, and con-
cluded that it is infeasible.

Spector [5] is a shellcode analysis system that uses
symbolic execution to extract the sequence of library
calls, along with their arguments, made by the shellcode,
as well as a low-level execution trace. We used a simpler
technique based on static code analysis to extract the li-
brary calls used, which though was adequate since the
decryption process had already been handled bynemu’s
CPU emulator, and static analysis was performed only
on the resulting decrypted payload.

6 Conclusion

In this paper, we presented a study of the polymorphic
code injection attacks captured using network-level em-
ulation in four deployments in research and education
networks. We focused on the analysis of the different de-
cryption routines and payload types used, as well as the
overall attack activity and the targeted network services.

The attack activity observed in these deployments
clearly shows that polymorphic attacks are extensively
used in the wild, although polymorphism is mostly em-
ployed in its more naive form, using simple encryption
schemes for the concealment of restricted payload bytes.
Considering the wide availability of sophisticated poly-
morphic shellcode engines, this probably indicates that
attackers are satisfied with the effectiveness of current
shellcode, and they do not need to bother with more com-
plex encryption schemes for evading existing network-
level defenses. Another possible reason is the extensive
code component reuse among different malware families
in both decryption routines and payloads. Less skilled
attackers probably rely on slight modifications of proof
of concept code and existing malware, instead of imple-
menting their own attack vectors.

However, attackers have also turned to the exploita-
tion of less widely used services and third-party applica-
tions, while we observed attacks employing more sophis-
ticated encryption schemes, such as doubly-encrypted
shellcode. It is thus not unlikely that in the future the
use of advanced polymorphic shellcode engines will be
commonplace, as has already happened with executable
packers, which are nowadays widely used by malware.

Acknowledgments

This work was supported in part by the project Cyber-
Scope, funded by the Greek General Secretariat for Research
and Technology under contract number PENED 03ED440.
Michalis Polychronakis and Evangelos Markatos are also with
the University of Crete. Part of this work done while Kostas
Anagnostakis was with FORTH-ICS.

References

[1] The metasploit project.http://www.metasploit.com/ .

[2] Microsoft Security Bulletin MS08-067 – Critical, Oct. 2008.
http://www.microsoft.com/technet/security/
Bulletin/MS08-067.mspx .

[3] Calculating the Size of the Downadup Outbreak, Jan. 2009.
http://www.f-secure.com/weblog/archives/
00001584.html .

[4] P. Bania. TAPiON, 2005. http://pb.specialised.
info/all/tapion/ .

[5] K. Borders, A. Prakash, and M. Zielinski. Spector: Automatically
analyzing shell code. InProceedings of the Annual Computer Se-
curity Applications Conference (ACSAC), pages 501–514, 2007.

[6] J. R. Crandall, Z. Su, S. F. Wu, and F. T. Chong. On deriving
unknown vulnerabilities from zero-day polymorphic and meta-
morphic worm exploits. InProceedings of the 12th ACM con-
ference on Computer and communications security (CCS), pages
235–248, 2005.

[7] T. Detristan, T. Ulenspiegel, Y. Malcom, and M. Underduk.
Polymorphic shellcode engine using spectrum analysis.Phrack,
11(61), Aug. 2003.

[8] P. Fogla, M. Sharif, R. Perdisci, O. Kolesnikov, and W. Lee. Poly-
morphic blending attacks. InProceedings of the 15

th USENIX
Security Symposium, 2006.

[9] J. Goebel, T. Holz, and C. Willems. Measurement and analysis of
autonomous spreading malware in a university environment.In
Proceedings of the 4th international conference on Detection of
Intrusions and Malware, & Vulnerability Assessment (DIMVA),
pages 109–128, 2007.

[10] K2. ADMmutate, 2001. http://www.ktwo.ca/
ADMmutate-0.8.4.tar.gz .

[11] C. Kruegel, E. Kirda, D. Mutz, W. Robertson, and G. Vigna.
Polymorphic worm detection using structural information of ex-
ecutables. InProceedings of the International Symposium on Re-
cent Advances in Intrusion Detection (RAID), Sept. 2005.

[12] J. Ma, J. Dunagan, H. J. Wang, S. Savage, and G. M. Voelker.
Finding diversity in remote code injection exploits. InProceed-
ings of the 6th Internet Measurement Conference (IMC), pages
53–64, 2006.

[13] M. Polychronakis, E. P. Markatos, and K. G. Anagnostakis.
Network-level polymorphic shellcode detection using emulation.
In Proceedings of the Third Conference on Detection of Intru-
sions and Malware & Vulnerability Assessment (DIMVA), July
2006.

[14] M. Polychronakis, E. P. Markatos, and K. G. Anagnostakis.
Emulation-based detection of non-self-contained polymorphic
shellcode. InProceedings of the 10th International Symposium
on Recent Advances in Intrusion Detection (RAID), September
2007.

[15] N. Provos, P. Mavrommatis, M. A. Rajab, and F. Monrose. All
your iFRAMEs point to us. InProceedings of the 17th USENIX
Security Symposium, pages 1–16, 2008.

[16] Rix. Writing ia32 alphanumeric shellcodes.Phrack, 11(57), Aug.
2001.

[17] Skape. Understanding windows shellcode, 2003.
http://www.hick.org/code/skape/papers/
win32-shellcode.pdf .

[18] Skape. Implementing a custom x86 encoder.Uninformed, 5,
Sept. 2006.

[19] Y. Song, M. E. Locasto, A. Stavrou, A. D. Keromytis, and S. J.
Stolfo. On the infeasibility of modeling polymorphic shellcode.
In Proceedings of the 14th ACM conference on Computer and
communications security (CCS), pages 541–551, 2007.

[20] P. Ször. The Art of Computer Virus Research and Defense.
Addison-Wesley Professional, February 2005.

[21] B.-J. Wever. Alpha 2, 2004.http://www.edup.tudelft.
nl/ ˜ bjwever/src/alpha2.c .

[22] V. Yegneswaran, P. Barford, and J. Ullrich. Internet intrusions:
global characteristics and prevalence. InProceedings of the 2003
ACM SIGMETRICS international conference on Measurement
and modeling of computer systems, 2003.

[23] Q. Zhang, D. S. Reeves, P. Ning, and S. P. Lyer. Analyzingnet-
work traffic to detect self-decrypting exploit code. InProceed-
ings of the 2nd ACM Symposium on Information, Computer and
Communications Security (ASIACCS), pages 4–12, 2007.

