
PhoneyC: A Virtual Client Honeypot

Jose Nazario
jose@monkey.org

April 1, 2009

Abstract

The number of client-side attacks has grown significantly in
the past few years, shifting focus away from defendable po-
sitions to a broad, poorly defended space filled with vulner-
able clients. Just as honeypots enabled deep research into
server-side attacks, honeyclients can permit the deep study
of client-side attacks. A complement to honeypots, a hon-
eyclient is a tool designed to mimic the behavior of a user-
driven network client application, such as a web browser,
and be exploited by an attacker’s content. These systems
are instrumented to discover what happened and how. This
paper presents PhoneyC, a honeyclient tool that can provide
visibility into new and complex client-side attacks. Phon-
eyC is a virtual honeyclient, meaning it is not a real ap-
plication but rather an emulated client. By using dynamic
analysis, PhoneyC is able to remove the obfuscation from
many malicious pages. Furthermore, PhoneyC emulates
specific vulnerabilities to pinpoint the attack vector. Phon-
eyC is a modular framework that enables the study of mali-
cious HTTP pages and understands modern vulnerabilities
and attacker techniques.

1 Introduction

Client-side attacks have radically changed the information
security landscape in recent years. A significant portion of
attackers in the past 20 years have focused on server-side
goals and vulnerabilities. With two changes in the past few
years, client-side attacks have become more successful for
attackers. First, the web browser has become the de-facto
tool to access Internet resources and is used for banking,
communications, and every day life. To accomplish this,
the web client has become more feature-rich and, in paral-
lel, more complex, leading to many security vulnerabilities
for attackers to exploit. Secondly, Internet servers have be-
come significantly more hardened in the past 5 years than
they were in previous years, significantly raising the bar for
attackers to gain access. The client has become the weakest
part of a network. This shift in the landscape has necessi-
tated a change in exploit discovery and analysis.

An ever growing number of HTTP client-side attacks
have been discovered and launched on the Internet [19]. In
this time the complexity and sophistication of attacks has
also grown, including obfuscation techniques and encryp-
tion, as well as server-side counter-surveillance techniques.
Also in this time we have seen the appearance of exploit
“packs” designed to facilitate the attacker’s activities [13].
These toolkits are able to construct dynamic HTML pages
that encode many exploits into a single site in an attempt to
infect the host. When coupled to massive website manipu-
lations, these toolkits can infect thousands of PCs.

One way of studying such toolkits is to use a client that is
designed to be exploited so that the effects may be studied.
We call such systems honeyclients [21], a modification of
the honeypot theme. Just as with honeypots, honeyclients
can be high interaction to simulate all aspects of the client
operating system, whereas a low-interaction honeypot only
simulates the client application. We can also differentiate
between real and virtual honeyclients. Real honeyclients
use the actual application that would be attacked, whereas
virtual honeyclients emulate the application in software. In
this paper we refer to PhoneyC as a low interaction, virtual
honeyclient because it only emulates the core functionality
of a web client and no underlying OS features.

Virtual honeyclients are an attractive tool to use to study
such content because they do not require additional com-
puters to analyze vast amounts of malicious content and can
easily scale. Using virtual honeyclients it is possible to in-
spect many websites in parallel with only one real system.
However, to convince a website that it is talking to a legit-
imate client application we need to mimic the application’s
behavior and responses to inspection.

This paper provides a brief overview of the design and
implementation of PhoneyC, a client program that emulates
a fully featured HTTP client. PhoneyC supports various
client emulations, dynamic languages such as JavaScript,
and mimics ActiveX add-ons, as well. PhoneyC can pro-
cess a suspect web page and analyze the script bodies and
react to the dynamic portions of the website. PhoneyC can
be configured to mimic a variety of common web clients.

To analyze the malicious content, obfuscated or en-
crypted JavaScript is decoded and reanalyzed, mimicking

1



what the real web browser would do with such content.
PhoneyC is the first virtual honeyclient that can perform
dynamic analysis of JavaScript and Visual Basic Script to
remove obfuscation. PhoneyC’s virtual features are instru-
mented to understand their vulnerable functions and to pro-
vide alerts. Furthermore, downloaded content is scanned
using an antivirus engine to look for known malicious con-
tent. PhoneyC can walk a malicious website and report on
the exploit chain. We also provide an experimental evalua-
tion of PhoneyC that shows that it can successfully decode
and analyze exploit websites found in the wild.

The rest of this paper is organized as follows. Section
2 gives background information on PhoneyC’s design and
implementation. In section 3 we present an evaluation of
PhoneyC in which we demonstrate its performance against
real exploit sites found in the wild. Limitations of Phon-
eyC and virtual honeyclients are described in section 4. In
section 5 we discuss the limitations of the current PhoneyC
design and discuss how it may be improved in the future.
We provide related work in section 6 and conclude in sec-
tion 7.

2 Design and Implementation
A virtual HTTP honeyclient is a combination of a web
crawler and an analysis engine. Like a web crawler, it must
be able to evaluate a web page and determine the links that
lead out from the page. However, unlike a standard web
crawler, it must be able to analyze the page to determine if
it is malicious or benign.

PhoneyC is implemented in the Python language [20] to
aid in rapid development and extendibility, as well as inte-
gration with other tools and libraries. Python was also cho-
sen to minimize security flaws that may appear in an imple-
mentation such as C or C++. At its core, PhoneyC has two
major components: an input collector and an input evalua-
tor. The input collector is simply a call to the Curl tool [23]
together with arguments to mimic a legitimate browser’s be-
havior.

The basic requirements for PhoneyC are:

• PhoneyC must be able to convince a website that it
is a legitimate web browser to collect the content that
would be sent to an actual user.

• Second, PhoneyC must be able to enumerate all of the
links from the HTML page and visit them. This in-
cludes all common HTML tags as well as generated
HTML content, IFRAMEs, and redirections.

• Third, PhoneyC must be able to understand and evalu-
ate dynamic content such as JavaScript and Visual Ba-
sic Script. Fourth, PhoneyC must be able to detect ma-
licious content and provide it for further analysis.

• Finally, because PhoneyC is analyzing hostile code, it
must be resilient to attacks itself.

Basic data flow through PhoneyC is shown in Figure 1.
URLs are fed to the system to initiate the evaluation, to-
gether with a referring URL when available (e.g. when a
link is followed). The client retrieves the data using Curl
from the server and stores all of the content on disk for ad-
ditional analysis, if needed, and the data is scanned using an
antivirus engine (ClamAV [8]). Curl, running as a subpro-
cess, provides a robust HTTP client in a separate process
space, effectively as a sandbox to minimize client system
attacks.

If the content is HTML, the SGML parser collects the
script content for JavaScript and Visual Basic Script (VBS).
No restructuring of the input HTML (such as DOM vali-
dation or tag balancing) is performed which may alter the
exploit. The parser also collects all of the outgoing links
and normalizes them as needed. Links can be present as
the common A and IMG tags, as well as IFRAME tags and
redirects. The script bodies are analyzed as described be-
low. The parsed page is stored as an object with all of its
contents and attributes as a page object referenced by the
origin URL. These attributes include the complete script
bodies and all outgoing links. PhoneyC also understands
major page events such as “onLoad()”, but does not handle
form submission or emulate mouse clicks. Once the full
page has been analyzed, PhoneyC repeats the process for
the next page with an outgoing link and the referring URL
as inputs.

PhoneyC is provided as a honeyclient module and an
HTTP client script, “honeywalk”, which calls the core
methods of the honeyclient module. Honeywalk is demon-
strated below. Other HTTP honeyclient tools can be build
on the existing honeyclient module.

PhoneyC is designed to crawl websites to discover ex-
ploits and also to act as a malcode collector. It is not, how-
ever, designed to extensively crawl the entire world wide
web. As such, the scalability and speed deficiencies present
in PhoneyC are not a pressing issue at this time.

2.1 Anti-Analysis Techniques

With the growth of web exploits has come a growth in their
analysis. To bypass such analysis, attackers have begun
applying obfuscation and encryption to their web exploit
pages. This can make static analysis more challenging, but
not impossible. In the past year we have seen more anti-
analysis techniques appear that are designed to defeat ille-
gitimate script access by tools such as PhoneyC.

One of the major goals of PhoneyC was to ease the anal-
ysis of complex malicious websites. To do this, PhoneyC
must be able to mimic a legitimate web browser to the

2



Figure 1: Data flow within PhoneyC. One or more URLs
are used to feed the client, which retrieves the content from
the server. This is then stored on disk, scanned by AV for
any suspect content, and also passed to an SGML parser
for evaluation if it is HTML. The SGML parser breaks out
script code by language for analysis by the specific script
engine. The SGML parser also collects and normalizes any
of the links from the HTML page as well as the output of
the script output. Foreign scripts not included in the page,
using the “src” argument to the SCRIPT tag, may also be
collected and analyzed in the context of the current page.
The script engines provide alerts to the system, as well.

server to receive the proper content, and to properly inter-
pret the content to decode it. PhoneyC has been able to
keep pace with most changes in the malicious website threat
landscape, although some changes have been made during
development.

While some sites will send all exploit pages to all vis-
itors, many sites will selectively direct clients to specific
pages on the basis of their browser software. The follow-
ing JavaScript differentiates between Microsoft Internet Ex-
plorer and other browsers, incorporating an IFRAME el-
ement with Internet Explorer-specific exploits if MSIE is
found in the User-agent header.

if(navigator.userAgent.toLowerCase().indexOf("msie")>0)
document.write("<iframe src=fl/ifl.html width=100

height=0>");
else

{document.write("<iframe src=fl/ffl.html width=100
height=0>")}

Obviously more sophisticated techniques to differentiate
between browsers is possible. The User-agent header check
may also be done on the server using, for example, a PHP
script.

To thwart such counter-analysis techniques, PhoneyC at-
tempts to mimic a legitimate web surfer using a legitimate
web browser. “Personalities” are created through the use of
the User-agent header [2] to mimic Internet Explorer 6 on
Windows XP (the default) or Mozilla Firefox 2 on Windows

XP. The JavaScript “navigator” object should also correctly
mimic the client browser version. Other browsers may be
mimicked through additional header forgery and script re-
sponses. Furthermore, if possible referring URLs are sent
to the web server in the HTTP client headers, another check
that some sites perform to ensure that only legitimate vic-
tims are served malicious content.

Once the content is presented by the server, additional
measures may be in place to prevent detection by an exter-
nal network-based tool such as an IDS or to slow down an
analyst’s inspection of the content. These sorts of methods
often include variable name obfuscation or base-64 encod-
ing of the content. More complicated techniques seen in the
wild to thwart analysis may include:

• Regular expression-based substitutions or removal of
junk characters.

• Compression of the script code, using an openly avail-
able script compressor that is popular in the web de-
velopment crowd.

• Encoding of the script code to provide some limited,
basic encryption. We have seen more sophisticated
sites use the page’s URL as an encryption key, so that
if the page is shared without the true URL it cannot be
decrypted easily.

• True encryption of the code using an encryption algo-
rithm such as RSA.

Additional methods have been seen and may be layered or
repeatedly applied. Multi-stage encodings are not uncom-
mon. The browser decodes one part of the page and uses
the output of that part as a component of the script for the
next part, such as a decoder routine. Some of these tech-
niques have been adopted by attackers from existing, be-
nign JavaScript protection tools and compressors, designed
to optimize page load times [7].

2.2 Script Parsing
Dynamic content in the form of JavaScript and Visual Ba-
sic Script is executed in a limited environment to perform
dynamic analysis. JavaScript processing is done in a sub-
process using the SpiderMonkey interpreter [4]. The web
page’s script body is collected and aggregated for analy-
sis. A basic environment is prepended to the script body
to mimic the browser’s features, including the document
object as well as window and the navigator object. Basic
DOM inspection features, such as getElementById and oth-
ers are implemented as well.

Script obfuscation, very common in web page ex-
ploits [13], is bypassed with the script interpreter and some
basic overrides in the script preamble. The “eval()” method,

3



common to execute a newly decoded block of code, is over-
ridden with a modified version that can recover if an error is
observed by rerunning the script code with any of the out-
put of previous runs. This effectively bypasses multi-stage
decoders or decrypters where new code (e.g. a decrypter en-
gine) is written to the page and then used in the next script
interpretation. The modified version of the “eval()” method
then calls the real “eval()” method to get the proper result
and prepends it to the script body as needed.

Visual Basic Script (VBS) code is analyzed using the
vb2py package [12] which translated VBS scripts into
equivalent Python scripts. These scripts are then analyzed
using a child Python interpreter process and the output is
collected. The VBS subsystem is not yet as well developed
as the JavaScript subsystem, but is designed to accomplish
the same results.

2.3 Vulnerability Modules

Detecting specific vulnerabilities to both classify them and
to respond to them is a key design goal of PhoneyC. Rather
than relying on external patterns or anti-virus alone which
may not completely detect malicious HTML content, Phon-
eyC performs dynamic analysis of the content to determine
the vulnerability and analyze the next action.

PhoneyC uses vulnerability modules to mimic vulnera-
ble HTTP client extensions, including ActiveX controls and
core browser functionality. These are similar to vulnerabil-
ity modules in the MWCollect virtual honeypot [5] in that
they are vulnerability-specific. However, unlike the MW-
Collect modules, they do not rely on matching shellcodes
or patterns. Instead, these modules look for exploit activity
against a vulnerable method independent of the payloads. In
a real browser, these objects are dynamically created in the
script code and provide an interface between the browser
and system libraries. In PhoneyC, these objects create pure
JavaScript or VBS objects that implement core functional
methods that are exploited.

By using a virtual honeyclient and the vulnerability mod-
ule architecture, PhoneyC avoids a number of real-world
constraints. The primary challenge to discovering exploits
on web pages with a real honeyclient is creating a vulner-
able system. Often the necessary add-ons are not present.
Another issue is the issue of language packs. In many cases
an exploit is designed to work specifically on one Windows
language pack but will not work on others. Virtual honey-
clients can more quickly load more vulnerable modules than
a real honeyclient, and they can analyze the exploit code for
multiple language packs more easily.

An example vulnerability module, implementing checks
for the WebViewFolderIcon.setSlice() attack (CVE refer-
ence ID CVE-2006-3730) is shown below. In this vulner-
ability, a magic value of 0x7ffffffe passed as the first ar-

gument to the “setSlice()” method enables arbitrary code
execution by the attacker [10].

function WebViewFolderIcon() {
this.setSlice=function(arg0, arg1, arg2, arg3) {

if (arg0 == 0x7ffffffe) { // magic value
add_alert(’WebViewFolderIcon.setSlice attack’);

}
}

}

This JavaScript is one of many modules prepended to the
page’s JavaScript code that is analyzed by the system for
any web page that includes script code. In this case the
code looks for a magic value in the first argument to the set-
Slice() method and alerts when such code is found. Similar
modules for other vulnerabilities can look for overly long
arguments or arbitrary file access.

Creating new modules is relatively easy and requires two
pieces, the vulnerability module and a reference to it via the
ActiveX CLSID values. The module code itself simply cre-
ates a class and the appropriate methods and arguments to-
gether with argument inspection to determine when to alert.
Furthermore, the modules can be written in the complete ab-
sence of any exploit code. All that is needed is to know the
basics of the vulnerability, such as the method names and
the nature of the malicious arguments, such as “an argument
longer than 400 bytes leads to a stack overflow”. Based on
those conditions a simple argument scanner can be devel-
oped. The class is then referenced in the ActiveX map by
the CLSID, both by hexadecimal values and by a simplified
name. This provides a new HTML object is created, map-
ping the object ID and the CLSID to the right script class.

Such an example is the NctAudioFile2 ActiveX control
buffer overflow. A vulnerability description was used to
create the vulnerability module, with analysis that reads in
part [15]:

The vulnerability is caused due to a boundary
error in the NCTAudioFile2.AudioFile ActiveX
control when handling the “SetFormatLikeSam-
ple()” method. This can be exploited to cause a
stack-based buffer overflow by passing an overly
long string (about 4124 bytes) as argument to the
affected method.

Based on this description, the following vulnerability mod-
ule was created:

function NCTAudioFile2() {
this.SetFormatLikeSample=function(arg) {

if (arg.length > 4124) {
add_alert(’NCTAudioFile2 overflow in

SetFormatLikeSample’);
}

}
}

Similar vulnerability modules can be written for exploits
that use malicious object properties through the JavaScript

4



“watch()” method, that handles property changes. The call-
back function to watch performs similar argument inspec-
tion to alert if an exploit scenario is encountered.

When an unknown CLSID is found, one for which Phon-
eyC has no modules, a message is generated. This can be
used to develop new modules which may indicate their use
in exploits.

At this time over 65 unique vulnerability modules exist
and are usable by PhoneyC. Major vulnerability modules
include handlers for Yahoo Messenger, RealPlayer, and the
WebFolderViewIcon handler in Internet Explorer 6. New
modules are frequently added based on vulnerability reports
and exploit code.

3 Evaluation

For a medium-scale evaluation of PhoneyC 470 unique
URLs were gathered that were suspected drive-by download
sites and web browser exploits. These URLs were gathered
from various sites and materials including the URL blacklist
maintained at lineage.paix.jp, the drive-by malware analysis
blog at ilion.blog47.fc2.com, and the author’s own suspect
URL collection based on spam traps. URLs were submitted
to the MITRE honeyclient system run by Honeyclient.org
for analysis and also run through PhoneyC. The test sys-
tem for PhoneyC was a MacBook running OS X 10.4.11
on an Intel Core Duo with a 2GHz clock speed and 2GB
of SDRAM using Python 2.3.5 and SpiderMonkey 1.6. To
speed up performance 24 PhoneyC processes were run in
parallel. Each PhoneyC process was allowed a maximum
depth of 4 links from the root URL.

Of the 470 candidate URLs, 115 were live (yielding a
200 OK), 14 URLs yielded a 300-series redirect, 42 yielded
an HTTP return code of 400 (a Bad request), 21 yielded a
401 (unauthorized) error, 149 yielded an HTTP 404 error
(the URI was not found on the server), 269 were unreach-
able (the host was not responding), and the remaining sites’
DNS names were unable to resolve. In total about 1.1MB
of HTML text was downloaded and analyzed.

3.1 Performance

PhoneyC’s performance is hampered by design weaknesses,
including calling out to external processes such as Curl,
ClamAV, and SpiderMonkey to assist with the analysis, as
well as only working on one URL at a time. The 470 unique
URLs analyzed in this evaluation data set provide a repre-
sentative sample of PhoneyC’s abilities. Some URLs were
analyzed faster than others. URL evaluation took between
3 seconds at a minimum and over 3.2 hours at a maximum
for any specific URL, depending on its complexity (num-
ber of outbound links and any encountered script evaluation

time). The average URL took 2.1 hours to analyze all out-
bound links and script code at a maximum distance of 4 ref-
erences, including images as well as links off of the page.
Note that PhoneyC can be slowed down dramatically if the
HTTP server for the URL is unreachable.

In contrast, the MITRE honeyclient, in contrast, was able
analyze the 470 URLs in approximately 14 minutes. This
is due to using a native browser, working in even greater
parallel, and only loading the one URL (including images
and scripts) before leaving the URL.

3.2 Accuracy and Insights

From the 470 URLs, 22 unique HTML pages (unique via
MD5 checksums) were downloaded, of which 2 yielded
hits in ClamAV (both for the signature Exploit.CVE-2006-
3730). Other scanners tested included Kaspersky Antivirus,
BitDefender, Grisoft’s AVG, and Fortinet’s ‘vscanner’ tool,
none of which yielded signature hits on the HTML down-
loaded by PhoneyC. Over 2700 script bodies were evaluated
(through a series of dynamic evaluations by PhoneyC), only
three of which yielded positive signature hits with ClamAV
for JS.Dropper-33 and Exploit.HTML.IFrameBOF-4.

Dynamic analysis by PhoneyC revealed that the most
popular exploits found in the URL corpus were for the Xun-
lei Thunder 5.x DownURL2() overflow [17] (6 found in to-
tal) and the PPStream (PowerPlayer.dll 2.0.1.3829) ActiveX
Remote Overflow Exploit in the Logo property [3] (6 found
in total in this data set). PhoneyC is able to emulate this Ac-
tiveX control that has been widely exploited as a malcode
dropper. As described below, PhoneyC’s limits means that
it is unable to capture all exploits seen in the wild, however.

In contrast to PhoneyC’s findings, the MITRE honey-
client setup found only 4 URLs that registered an alert.
These differences highlight weaknesses of PhoneyC as well
as some of its strengths.

URLs that registered an alert in PhoneyC did not always
register issues in the MITRE honeyclient setup. An exam-
ple is the URL http://www.pineapple4u.com/relogonn.htm.
This was flagged as containing an exploit in PhoneyC
(Exploit.CVE-2006-3730) even though the JavaScript sub-
system was unable to process the script correctly. This is
due to the combined approach used by the tool to analyze
URLs.

Another example is the URL
http://www.lineagecojp.com/tmsn/StormII.htm from
the feed of URLs processed by both PhoneyC and the
MITRE honeyclient. In this case PhoneyC’s dynamic
script analyzer found an issue with the page and flagged
an exploit for the PPStream (PowerPlayer.dll 2.0.1.3829)
ActiveX Overflow in the rawParse() method, even though
ClamAV did not register an issue. The MITRE honeyclient
did not flag this host.

5



Blacklist domain Number of domains blacklisted
sophosxl.com 83

surbl.org 102
mailshell.net 90

Table 1: Number of URLs screened by PhoneyC blacklisted
by major DNS-based blacklists. This indicates that these
URLs are possibly suspicious based on the domain name
status.

An example where both PhoneyC and the MITRE
honeyclient agreed that a URL was malicious was with
the root exploit URL http://sexbases.cn/in.cgi?16&1dfcb2.
This URL was flagged as suspicious by the MIYRE
honeyclient. PhoneyC is able to reveal that through
a series of scripts and IFRAMEs the real exploit
URL is http://dasretokfin.com/index.php, which exploits
Exploit.CVE-2006-3730.

PhoneyC missed some of the URLs
flagged by the MITRE honeyclient, such as
http://www.lineagecojp.com/ie/Ms06014.htm. In this
case this is a commonly found exploit for an XML
Request object in Internet Exploit 6. This emulation
is not fully available in PhoneyC at this time, so the
dynamic script analyzer was unable to correctly ana-
lyze this URL. Another URL missed by PhoneyC was
http://freeonlinehostguide.com/index.php. The MITRE
honeyclient correctly recognized an exploit on this page
but PhoneyC was not able to fetch any HTML contents
for this URL and so was not able to determine if the site
was malicious. This is commonly due to poor emulation of
the Internet Explorer request to a web server which looks
for specific browser request features before serving the
content.

Hostname blacklists were also used to compare the find-
ings and any suspicious nature of the URLs. If a domain
name for the URL appears on a blacklist the URL itself
may be malicious. To test this, and to verify that the URLs
were possibly malicious, three blacklists were queried for
the hostnames in the URLs. The results of any blacklisting
are shown in Table 1.

4 PhoneyC Detection

Virtual honeyclients are open to a number of detection tech-
niques and attack vectors. A number of these issues are
present in any virtual tool due to the limits of software em-
ulation and will be present in any virtual honeyclient.

PhoneyC specifically is vulnerable to detection through
a simple check for the “page alerts” array in any of the

JavaScript code. This variable name is not hidden at all and
is accessible by any of the script code. A malicious page
can simple check for the existence of this variable by ref-
erence and exit if it is found. To remedy this, the variable
reference can be randomly generated, for instance.

As shown in the previous section, PhoneyC is also much
slower than a normal web browser, enabling timing attacks
to be used against it. This is an extension of a simple de-
bugger check which uses the time elapsed between two set
points to detect single stepping. A malicious server that
measures the time between requests that should be very
short can deny the client content. Performance improve-
ments and concurrent requests to mimic a standard web
browser would remedy this issue.

When impersonating Internet Explorer, PhoneyC can be
detected through the SpiderMonkey JavaScript interpreter,
which differs slightly from the script engine in the real In-
ternet Explorer. Certain behaviors are well known and de-
rive from ambiguities in the JavaScript specification, such
as regular expression handling. Any virtual honeyclient that
relies on SpiderMonkey will suffer the same issues.

Finally, any virtual honeyclient will always fail to emu-
late all aspects of a real browser. Dynamic content can be
used to inspect arbitrary features of the browser using calls
that may not be documented. As such, suspicious sites may
be able to detect virtual honeyclients by calling methods
that are not implemented. This parallels attacks to detect
virtual execution environments used in malware sandbox-
ing [11] and is a fundamental flaw of any kind of emulation.

5 Future Work
PhoneyC is far from complete at this point, although it is
one of the tools the author uses to analyze malicious web-
sites. Currently a number of factors are being evaluated
to redesign PhoneyC to add functionality and improve re-
liability and performance. Minor improvements include
easier configuration, proxy support, and performance en-
hancements. PhoneyC’s vulnerability module architecture
is being re-evaluated to handle previously unknown Ac-
tiveX CLSIDs and methods using a generic approach. Ad-
ditionally, a generic scripting language framework is being
developed to avoid having to write two vulnerability mod-
ules for any specific attack vector, one in JavaScript and one
in VBS. Major PhoneyC deficiencies and improvements we
are evaluating are listed below.

5.1 Exploit Enumeration
One major drawback to the current design of the vulnera-
bility modules is that they can only alert for a single ex-
ploit that the system knows of. All other vulnerabilities that
may be present in the web page are not analyzed and not

6



reported. The author previously developed a version of the
script analysis engine used in PhoneyC, dubbed “Norberto”,
that performed static analysis of the page to enumerate mul-
tiple exploits in the page after some basic dynamic analysis
to decode the page. In the future, PhoneyC may be extended
with a similar static analysis engine to enumerate the com-
plete list of exploits in the page.

5.2 Additional Content Types
Since PhoneyC was first developed, a number of new con-
tent types have become the focus of exploit activity, includ-
ing Adobe’s Portable Document Format (PDF) and their
Flash format. These content types are not understood by
the tool and may contain malicious content. Currently, we
use manual techniques to analyze malicious Flash and PDF
documents. Their increased use on the web as a means to
deliver malicious executables to the end user means that we
should incorporate their analysis into PhoneyC.

5.3 Shellcode Analysis
PhoneyC is not able to understand shellcode that may be
presented in the dynamic HTML page and is currently lim-
ited to a generic alert for a vulnerable method. Because
of this, an analyst must still perform follow-up analysis of
the content to determine the next stage of the attack. We
have been working on integrating a shellcode analysis en-
gine, libEmu [1], into the dynamic payload inspection en-
gine to further understand the next stage of the attack. This
will also require tighter integration with the SpiderMonkey
script engine.

6 Related Work
Previous work at characterizing widespread web-based mal-
ware has been described by Provos et al [14]. In their work,
“drive by” websites were found to be widespread and aris-
ing from website compromises and third-party script abuse,
such as JavaScript-based visitor counters.

PhoneyC is not the first such honeyclient tool and builds
on a number of previous works. The vulnerability module
concept was inspired by the MWCollect virtual honeypot
daemon [5]. In PhoneyC, modules are designed to mimic
vulnerable ActiveX controls and implement the methods in
JavaScript. Argument checks validate the input and provide
a simple alerting mechanism.

Seifert’s HoneyC is a low interaction, virtual honeyclient
tool [18]. However, it suffers from a lack of ability to ana-
lyze obfuscated dynamic HTML and reliance on Snort sig-
natures for detection, which is easily evaded.

Real honeyclients have been developed by multiple in-
dependent groups. Seifert’s Capture-HPC is a high inter-

action honeyclient [9] that can be used with, for example,
Windows XP and Internet Explorer to analyze malicious
websites. The MITRE HoneyClient uses Internet Explorer
running on Windows [21]. Fed a list of URLs, the sys-
tem will visit the URL if needed or pull the results from
a local cache. When the URL is visited, if unexpected
system changes occur, the URL is marked as suspicious
and the new files are made available for additional analy-
sis. The HoneyMonkey project is another large-scale, au-
tomated web crawling effort to discover malicious web-
site [22]. URLs are visited both by an older version of the
browser and by a newer, up-to-date version to discover pre-
viously unknown and unpatched issues. Both are limited in
their attack visibility as they require vulnerable modules to
be installed in the client.

Not all honeyclient tools are restricted to HTTP content.
The SHIELA honeyclient uses Outlook Express driven by
external scripts to discover mail-based threats [16]. Trig-
ger conditions are very similar to those of the MITRE Hon-
eyclient, namely an alert happens if one of a set of illegal
operations occurs, such as Windows registry changes, file
creation, or specific network traffic.

Honeyclient research is also being done using browser
plug-ins. Efforts are also underway to incorporate some
of the basic heuristics and detection capabilities of honey-
clients into real browsers used by analysts [6].

7 Conclusion
PhoneyC is a virtual honeyclient for analyzing websites. It
mimics legitimate web browsers and can understand dy-
namic content, and is the first virtual honeyclient that can
de-obfuscate malicious content for detection. By using vul-
nerability modules, specific attacks can be pinpointed and
characterized much faster than with manual analysis.

We gave an overview of PhoneyC’s design and archi-
tecture and showed how PhoneyC’s analysis engine under-
stands malicious websites. Our experimental evaluation
showed that PhoneyC works on current, in the wild mali-
cious websites, albeit with room for improvements in both
performance and features. We demonstrated that PhoneyC
can determine what malicious software may be loaded onto
a system if exploits exist.

PhoneyC is publicly available as source code under a
GNU Public License. The subversion repository is avail-
able at http://code.google.com/p/phoneyc .

Acknowledgments
I would like to thank Georg Wicherski for his review of this
paper, his contributions to the PhoneyC codebase and his
assistance in a re-design of the toolkit. I would also like

7



to thank Marco Cova for helpful discussions and bugfixes
with PhoneyC. Chris Lee, Adrian Wiesmann, David Wat-
son, and Christian Siefert all provided a generous review of
this manuscript.

References
[1] P. Baecher and M. Koetter. libemu - x86 shellcode detection and emulation,

2007. http://www.mwcollect.org/.

[2] T. Berners-Lee, R. Fielding, and H. Frystyk. Hypertext Transfer Protocol. Work
in progress of the HTTP working group of the IETF.¡ URL: ftp://nic. merit.
edu/documents/internet-drafts/draft-fielding-http-spec-00. txt.

[3] dummy. PPStream (PowerPlayer.dll 2.0.1.3829) Activex Remote Overflow Ex-
ploit, 2007. http://www.milw0rm.com/exploits/4348.

[4] M. Foundation. SpiderMonkey (JavaScript-C) engine. http://www.
mozilla.org/js/spidermonkey/.

[5] F. Freiling, T. Holz, and G. Wicherski. Botnet Tracking: Exploring a Root-
Cause Methodology to Prevent Distributed Denial-of-Service Attacks. LEC-
TURE NOTES IN COMPUTER SCIENCE, 3679:319, 2005.

[6] O. Hallaraker and G. Vigna. Detecting Malicious JavaScript Code in Mozilla. In
Engineering of Complex Computer Systems, 2005. ICECCS 2005. Proceedings.
10th IEEE International Conference on, pages 85–94, 2005.

[7] D. Jackson. The Packer 2.0 Threat, 2008. http://www.secureworks.
com/research/threats/thepacker/.

[8] T. Kojm. ClamAV homepage. http://clamav.net/.

[9] F. Mara, Y. Tang, R. Steenson, and C. Seifert. Capture-Honeypot Client, 2006.

[10] H. D. Moore. MS Internet Explorer WebViewFolderIcon setSlice() (Mul-
tiple Exploits), 2006. http://www.securiteam.com/exploits/
6A0060AH5G.html.

[11] K. Natvig. Emulation: how low will you go... 2nd International CARO Work-
shop: Packers, Decryptors and Obfuscators, 2008.

[12] P. Paterson. vb2py homepage, 2009. http://vb2py.sourceforge.
net/.

[13] N. Provos, P. Mavrommatis, M. Rajab, and F. Monrose. All Your iFrames Point
To Us. Technical report, Technical Report provos-2008a, Google Inc, 2008.
http://research.google.com/archive/provos-2008a.pdf, 2008.

[14] N. Provos, D. McNamee, P. Mavrommatis, K. Wang, and N. Modadugu. The
ghost in the browser analysis of web-based malware. In HotBots’07: Proceed-
ings of the first conference on First Workshop on Hot Topics in Understanding
Botnets, pages 4–4, Berkeley, CA, USA, 2007. USENIX Association.

[15] S. Research. Cool Audio Products NCTAudioFile2 ActiveX Control
Buffer Overflow, 2007. http://secunia.com/secunia_research/
2007-34/.

[16] J. Rocaspana. SHELIA: A Client HoneyPot For Client-Side Attack Detection,
2009. http://www.cs.vu.nl/˜herbertb/misc/shelia/.

[17] Secunia. Xunlei Thunder DapPlayer ActiveX Control Buffer Overflow, 2007.
http://secunia.com/advisories/26964/.

[18] C. Seifert, I. Welch, and P. Komisarczuk. HoneyC-The Low-Interaction
Client Honeypot. NZCSRCS,(Hamilton, 2007), Available from
http://www.mcs.vuw.ac.nz/cseifert/blog/images/seifert-honeyc.pdf; accessed
on, 10, 2006.

[19] M. Servers. Know Your Enemy: Malicious Web Servers.

[20] G. van Rossum et al. Python Language Website, 2009. http://www.
python.org.

[21] K. WANG. Using honeyclients to detect new attacks [C/OL]. RECON Confer-
ence, 2005.

[22] Y. Wang, D. Beck, X. Jiang, R. Roussev, C. Verbowski, S. Chen, and S. King.
Automated Web Patrol with Strider HoneyMonkeys: Finding Web Sites That
Exploit Browser Vulnerabilities. In Proc. NDSS, 2006.

[23] S. Ward and M. Hostetter. Curl: a language for web content. International
Journal of Web Engineering and Technology, 1(1):41–62, 2003.

8


