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Problem Setting

" Peer-to-Peer (p2p) networks are used by
millions for sharing content

" |Increasingly difficult to find useful content
o Noise in user generated content (meta-data)
o Extreme dimensions
o Sparseness
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Work Goal

" Suggest a new metric for peer similarity
o Overcome the sparseness problem

" Improve ability to find content
o Search algorithms

* Similar peers are likely to hold relevant content

o Collaborative filtering

* Find “like-minded” peers
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Key Concept

= Build a file similarity graph
o Use data about all shared files

o Weights of edges = distance between files

= Peer similarity is calculated using the distance
between their shared files

o No need for overlapping content between peers
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Dataset

Active crawl| of Gnutella in 2007
Crawled 1.2 million peers
Only 35% of songs contain meta-data

530k distinct songs
o Identified using “title |artist”
o Accounting for spelling mistakes with edit distance



Percentage of peers

Dataset Statistics

= Using a sample of 100k peers (<10%)
= Over 511k songs remain (96%)
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Sparseness Problem
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File Similarity Graph
" Files are vertices
" Link weight is the number of peers sharing both
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Peer Similarity Estimation (1)

" Create a bi-partite graph connecting the files
of every two peers
= Connect files in the two sides with links:

o If exact same file —weight is 1

o Otherwise — use normalized similarity along the
shortest path between the files
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Dis;cance Estimation
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Peer Similarity Estimation (2)

= Run maximal weighted matching on the bi-
partite

o Find the “best” matching links between files
o The matching M is the sum of links weight

" Peer similarity
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Maxumal Welghted Matching
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Distance Estimation Issues

= File similarity graph can have connected
components

o Some distances are infinite

= All pairs shortest paths can be costly
o Reduce the size of the similarity graph
o Limit the search depth
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Song Index

(¢) Simuilarity sub-networks

" For each file, take only the top N nearest

neighboring files

= Distribution almost overlap for N>10
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Limit Search Depth

= Stop searching files once reached K times the
distance of the first finding

o Distance between files become asymmetric
o Depends on the peer we start from
" For K>1.5 links removed are unlikely to be
selected in the maximum matching
o Asymmetric links are mostly low-similarity links

o Hence will not be selected in the matching
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Meta-data and Similarity
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Normalized Similarity
(a) Artists

= Similarity between peers i and j using artists
(JA; N A,]) / min {| A4,

= Normalized similarity matches meta-data
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Geography and Similarity
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Normalized Similarity

(b) Geography

= Comparing the distance with similarity

= No direct correlation!
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Conclusions

= A metric for similarity between peers

" Evaluation using song files shared in Gnutella

o Metric reflects the similarity of peer preferences
IN MUSIC

" Geography is not necessarily a good indication
for peer similarity!
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Thank You!

Udi Weinsberg
udiw@eng.tau.ac.il



