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Problem Setting

� Peer-to-Peer (p2p) networks are used by 

millions for sharing content

� Increasingly difficult to find useful content

o Noise in user generated content  (meta-data)o Noise in user generated content  (meta-data)

o Extreme dimensions 

o Sparseness 

2Udi Weinsberg, IPTPS, April 2010



Work Goal

� Suggest a new metric for peer similarity

o Overcome the sparseness problem

� Improve ability to find content

o Search algorithmso Search algorithms

• Similar peers are likely to hold relevant content

o Collaborative filtering

• Find “like-minded” peers
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Key Concept

� Build a file similarity graph 

o Use data about all shared files

o Weights of edges = distance between files

� Peer similarity is calculated using the distance � Peer similarity is calculated using the distance 

between their shared files

o No need for overlapping content between peers
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Dataset

� Active crawl of Gnutella in 2007

� Crawled 1.2 million peers

� Only 35% of songs contain meta-data

� 530k distinct songs� 530k distinct songs

o Identified using “title|artist”

o Accounting for spelling mistakes with edit distance
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Dataset Statistics

� Using a sample of 100k peers (<10%)

� Over 511k songs remain (96%)

Power-law Power-law 
Popularity 
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98% of the peers 98% of the peers 
share less 
than 50 songs

Popularity 
distribution



Sparseness Problem

Median maximal Median maximal 
Peers with very Peers with very 

few popular 
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Median maximal 
overlap is 20%

few popular 
songs



File Similarity Graph

� Normalize similarity 

with popularity:

� Files are vertices

� Link weight is the number of peers sharing both

Power-law Power-law 
distribution, filter 

� Filter

o Keep only top 40%

o And no less than 10
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distribution, filter 
causes distortion



Peer Similarity Estimation (1)

� Create a bi-partite graph connecting the files 

of every two peers

� Connect files in the two sides with links:

o If exact same file – weight is 1o If exact same file – weight is 1

o Otherwise – use normalized similarity along the 

shortest path between the files
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Distance Estimation
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Peer Similarity Estimation (2)

� Run maximal weighted matching on the bi-

partite

o Find the “best” matching links between files

o The matching M is the sum of links weighto The matching M is the sum of links weight

� Peer similarity
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Maximal Weighted Matching
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Distance Estimation Issues

� File similarity graph can have connected 

components

o Some distances are infinite

� All pairs shortest paths can be costly� All pairs shortest paths can be costly

o Reduce the size of the similarity graph

o Limit the search depth
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Reducing Similarity Graph Size

� For each file, take only the top N nearest 
neighboring files

� Distribution almost overlap for N≥10
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Limit Search Depth

� Stop searching files once reached K times the 

distance of the first finding

o Distance between files become asymmetric

o Depends on the peer we start fromo Depends on the peer we start from

� For K≥1.5 links removed are unlikely to be 

selected in the maximum matching

o Asymmetric links are mostly low-similarity links

o Hence will not be selected in the matching
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Meta-data and Similarity

� Similarity between peers i and j using artists

� Normalized similarity matches meta-data
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Geography and Similarity

� Comparing the distance with similarity 

� No direct correlation!
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Conclusions

� A metric for similarity between peers

� Evaluation using song files shared in Gnutella

o Metric reflects the similarity of peer preferences 

in musicin music

� Geography is not necessarily a good indication 

for peer similarity!
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Thank You!Thank You!
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