Estimating Peer Similarity using Distance of Shared Files

Yuval Shavitt, Ela Weinsberg, **Udi Weinsberg**Tel-Aviv University

Problem Setting

- Peer-to-Peer (p2p) networks are used by millions for sharing content
- Increasingly difficult to find useful content
 - Noise in user generated content (meta-data)
 - Extreme dimensions
 - Sparseness

Work Goal

- Suggest a new metric for peer similarity
 - Overcome the sparseness problem
- Improve ability to find content
 - Search algorithms
 - Similar peers are likely to hold relevant content
 - Collaborative filtering
 - Find "like-minded" peers

Key Concept

- Build a file similarity graph
 - Use data about all shared files
 - Weights of edges = distance between files
- Peer similarity is calculated using the distance between their shared files
 - No need for overlapping content between peers

Dataset

- Active crawl of Gnutella in 2007
- Crawled 1.2 million peers
- Only 35% of songs contain meta-data
- 530k distinct songs
 - Identified using "title | artist"
 - Accounting for spelling mistakes with edit distance

Dataset Statistics

- Using a sample of 100k peers (<10%)
- Over 511k songs remain (96%)

Sparseness Problem

File Similarity Graph

- Files are vertices
- Link weight is the number of peers sharing both
- Normalize similarity with popularity: $\widehat{w}_{ij} = \frac{w_{ij}}{\sqrt{C_i \cdot C_j}}$
- Filter
 - Keep only top 40%
 - And no less than 10

(a) Degree distribution

Peer Similarity Estimation (1)

- Create a bi-partite graph connecting the files of every two peers
- Connect files in the two sides with links:
 - If exact same file weight is 1
 - Otherwise use normalized similarity along the shortest path between the files

Distance Estimation

Peer Similarity Estimation (2)

- Run maximal weighted matching on the bipartite
 - Find the "best" matching links between files
 - The matching M is the sum of links weight
- Peer similarity

$$P(p_i, p_j) = \frac{M}{\min\{|p_i|, |p_j|\}}$$

Maximal Weighted Matching

Distance Estimation Issues

- File similarity graph can have connected components
 - Some distances are infinite
- All pairs shortest paths can be costly
 - Reduce the size of the similarity graph
 - Limit the search depth

Reducing Similarity Graph Size

- For each file, take only the top N nearest neighboring files
- Distribution almost overlap for N≥10

Limit Search Depth

- Stop searching files once reached K times the distance of the first finding
 - Distance between files become asymmetric
 - Depends on the peer we start from
- For K≥1.5 links removed are unlikely to be selected in the maximum matching
 - Asymmetric links are mostly low-similarity links
 - Hence will not be selected in the matching

Meta-data and Similarity

Similarity between peers i and j using artists

$$(|A_i \cap A_j|) / \min\{|A_i|, |A_j|\}$$

Normalized similarity matches meta-data

Geography and Similarity

- Comparing the distance with similarity
- No direct correlation!

Conclusions

- A metric for similarity between peers
- Evaluation using song files shared in Gnutella
 - Metric reflects the similarity of peer preferences in music
- Geography is not necessarily a good indication for peer similarity!

Thank You!

Udi Weinsberg udiw@eng.tau.ac.il