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Problem statement

• Efficient, decentralized topic-based routing.

• Bringing nodes with shared interests 
closer makes gossip more efficient.

• Unfortunately, this usually requires fully 
disclosing interests to nearby nodes.

• Reliability is impacted due to clustering.
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An overlay per topic

• nodes join 
overlays 
independently

• increases 
maintenance 
overhead

• redundant 
retransmissions
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A single overlay
• shared interests 

recognized and 
disclosed

• network 
overhead

• no privacy

• redundant 
retransmissions 
avoided
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A single overlay
• with global 

knowledge, 
dissemination can 
be done efficiently

• building a 
minimal graph 
is NP-complete

• high clustering 
coefficient

• prone to 
partitioning 
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StAN
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• Assumptions

• How to optimize the overlays

• Node discovery



StAN

• are managed independently

• converge to share a large number of 
physical links

• retain desirable properties for gossiping

Multiple stacked aligned overlays, that

scalability resilience
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Assumptions

• Topic popularity follows a power-law 
distribution.

• The number of subscriptions per node also 
follows a power-law distribution.

• Subscriptions are strongly correlated.

• There is a non-negligible overlap in 
subscription sets.
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The initial overlays

• A separate random overlay for each topic 
such that:

• degree grows logarithmically              
with system size

• clustering is low

scalability

resilience
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The initial overlays
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The final overlay 
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An example
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 Each node assigns a 
weight to each link 
deterministically.

w(id) = Hash(string(myself) + string (id))
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Weight assignment
w(id) = Hash(string(myself) + string (id))
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Weight assignment
w(id) = Hash(string(myself) + string (id))
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Weight assignment
• Weight is 

independent of 
interests.

• Also, weight is not 
symmetric.

• Each node orders 
the node space 
uniquely and 
uniformly.

• This prevents StAN 
from inducing 
clustering in the 
physical overlay.
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Node discovery

15

Discovery is done 
independently
for each overlay.
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Node discovery

16

5

9

3

7

4

8
6

2

1

TTL=1
Now, 5 chooses one of its 
neighbors at random, and forwards 
it the random-walk message.

origin target ids

1 2 5, 4, 2

Discovery is done 
independently
for each overlay.

known by 1

in the rw msg 

unknown 



Node discovery

16

5

9

3

7

4

8
6

2

1

TTL=1
Now, 5 chooses one of its 
neighbors at random, and forwards 
it the random-walk message.

origin target ids

1 2 5, 4, 2

Discovery is done 
independently
for each overlay.

known by 1

in the rw msg 

unknown 



Node discovery
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Evaluation
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Subscriptions

• Built a two-
dimensional grid 
and randomly 
placed nodes and 
topics on it.

• Assigned an 
interest radius to 
nodes.

• Nodes are 
subscribed to 
topics within that 
radius.

Subscriptions are correlated with a 
high level of confidence. 19



Simulation Setup

• Erdős–Rényi model

• Strongly connected

• Measurements:

• physical link sharing

• impact on overlay properties
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View sizes
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View sizes
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• The number of 
physical links 
necessary to 
maintain the 
overlay is 
significantly 
reduced.

scalability
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Physical overlay 
properties

Measure Before After

Clustering 
Coefficient

Diameter

0.50 0.13

3 4

1000 nodes, 100 topics

• Clustering:

• decreases as 
the number of 
links decreases

• the increase 
induced by link 
sharing is 
mitigated by 
uniformity
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Physical overlay 
properties

Measure Before After

Clustering 
Coefficient

Diameter

0.50 0.13

3 4

1000 nodes, 100 topics

• Diameter:

• there is a small 
increase due to 
the reduction 
of physical 
links. 
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Summary

• StAN is the first protocol, to attempt to 
optimize pre-existent overlays in terms of 
physical links,  by exploiting shared 
interests, but without actually disclosing 
them.

• It’s a very simple protocol, yet surprisingly 
efficient.
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Future Work
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• We are currently applying StAN within 
NeEM, a gossip-based protocol, to 
experimentally evaluate its scalability in 
both:

• the number of topics in the system

• the number of topics subscribed to by 
each node



Questions?


