
StAN
Exploiting Shared Interests without Disclosing Them

in Gossip-based Publish/Subscribe

Miguel Matos Rui OliveiraAna Nunes José Pereira

Universidade do Minho

IPTPS’10

This work is partially supported by HP Labs Innovation
Research Innovation Award, project DC2MS
(IRA/CW118736)

Portugal

Problem statement

• Efficient, decentralized topic-based routing.

• Bringing nodes with shared interests
closer makes gossip more efficient.

• Unfortunately, this usually requires fully
disclosing interests to nearby nodes.

• Reliability is impacted due to clustering.

2

An overlay per topic

• nodes join
overlays
independently

• increases
maintenance
overhead

• redundant
retransmissions

A

A

A

A
A A

A

A

A

B
B

B

B

B

B

B

B

C

C

C

C
C

C

C

CC

3

A single overlay
• shared interests

recognized and
disclosed

• network
overhead

• no privacy

• redundant
retransmissions
avoided

4

A

B

C

AB

AC

A

AB

AB

C

A
A

A single overlay
• with global

knowledge,
dissemination can
be done efficiently

• building a
minimal graph
is NP-complete

• high clustering
coefficient

• prone to
partitioning

5

A

B

C

AB

AC

A

AB

AB

C

A
A

StAN

6

• Assumptions

• How to optimize the overlays

• Node discovery

StAN

• are managed independently

• converge to share a large number of
physical links

• retain desirable properties for gossiping

Multiple stacked aligned overlays, that

scalability resilience

7

Assumptions

• Topic popularity follows a power-law
distribution.

• The number of subscriptions per node also
follows a power-law distribution.

• Subscriptions are strongly correlated.

• There is a non-negligible overlap in
subscription sets.

8

The initial overlays

• A separate random overlay for each topic
such that:

• degree grows logarithmically
with system size

• clustering is low

scalability

resilience

9

The initial overlays

A

A

B

AB

AB

AB

AB

AB
AB

AB

AB

AB

AB

B

AB

AB

AB

AB

A
A

B

B

Low probability of
choosing the same
neighbor in different
overlays

ABAB

10

The final overlay

A

A

B

AB

AB

AB

AB

AB
AB

AB

AB

AB

AB

B

AB

AB

AB

AB

Links are
shared among

overlays.

AB

11

An example

A

A

B

AB

AB

AB

AB

AB
AB

AB

AB

AB

AB

B

AB

AB

AB

AB

 Each node assigns a
weight to each link
deterministically.

w(id) = Hash(string(myself) + string (id))

AB

A
A

B

B

12

An example

w =1 A

A

B

AB

AB

AB

AB

AB
AB

AB

AB

AB

AB

B

w = 7

AB
w =10

w = 11

w = 12

w = 13

AB

w =17

w = 2

w = 3
w = 4

w = 5

w = 6

AB w = 8

w = 9

w =14

w = 15

AB w =16

w = 18

 Each node assigns a
weight to each link
deterministically.

w(id) = Hash(string(myself) + string (id))

AB

A
A

B

B

12

An example

w =1 A

A

B

AB

AB

AB

AB

AB
AB

AB

AB

AB

AB

B

w = 7

AB
w =10

w = 11

w = 12

w = 13

AB

w =17

w = 2

w = 3
w = 4

w = 5

w = 6

AB w = 8

w = 9

w =14

w = 15

AB w =16

w = 18

Each overlay is
optimized

independently.

w(id) = Hash(string(myself) + string (id))

AB

A
A

B

B

13

An example

w =1 A

A

B

AB

AB

AB

AB

AB
AB

AB

AB

AB

AB

B

w = 7

AB
w =10

w = 11

w = 12

w = 13

AB

w =17

w = 2

w = 3
w = 4

w = 5

w = 6

AB w = 8

w = 9

w =14

w = 15

AB w =16

w = 18

Each overlay is
optimized

independently.

w(id) = Hash(string(myself) + string (id))

AB

B

B

A

A

13

An example

w =1 A

A

B

AB

AB

AB

AB

AB
AB

AB

AB

AB

AB

B

w = 7

AB
w =10

w = 11

w = 12

w = 13

AB

w =17

w = 2

w = 3
w = 4

w = 5

w = 6

AB w = 8

w = 9

w =14

w = 15

AB w =16

w = 18

Each overlay is
optimized

independently.

w(id) = Hash(string(myself) + string (id))

AB

A

A

B

B

13

Weight assignment
w(id) = Hash(string(myself) + string (id))

id3

id2

id1

14

Weight assignment
w(id) = Hash(string(myself) + string (id))

w = 2

w = 4
id3

id2

id1

14

Weight assignment
w(id) = Hash(string(myself) + string (id))

w = 2

w = 4

w = 54

w = 13

Because of the confusion and diffusion
properties of the hash function, nodes
id2 and id3 will assign completely
different weights to id1.

id3

id2

id1

14

Weight assignment
• Weight is

independent of
interests.

• Also, weight is not
symmetric.

• Each node orders
the node space
uniquely and
uniformly.

• This prevents StAN
from inducing
clustering in the
physical overlay.

w(id) = Hash(string(myself) + string (id))

w = 2

w = 4

w = 54

w = 13

Because of the confusion and diffusion
properties of the hash function, nodes
id2 and id3 will assign completely
different weights to id1.

id3

id2

id1

14

Node discovery

15

Discovery is done
independently
for each overlay.

5

9

3

7

4

8
6

2

1

A node chooses one of its
neighbors at random, and sends it
a random-walk message, with
TTL=2.

origin target ids

1 5 empty

known by 1

in the rw msg

unknown

Node discovery

15

Discovery is done
independently
for each overlay.

5

9

3

7

4

8
6

2

1

A node chooses one of its
neighbors at random, and sends it
a random-walk message, with
TTL=2.

origin target ids

1 5 empty

known by 1

in the rw msg

unknown

Node discovery

16

5

9

3

7

4

8
6

2

1

TTL=1
Now, 5 chooses one of its
neighbors at random, and forwards
it the random-walk message.

origin target ids

1 2 5, 4, 2

Discovery is done
independently
for each overlay.

known by 1

in the rw msg

unknown

Node discovery

16

5

9

3

7

4

8
6

2

1

TTL=1
Now, 5 chooses one of its
neighbors at random, and forwards
it the random-walk message.

origin target ids

1 2 5, 4, 2

Discovery is done
independently
for each overlay.

known by 1

in the rw msg

unknown

Node discovery

17

5

9

3

7

4

8
6

2

1

TTL=0
Node 2 returns the random walk
message to the origin.

origin target ids

1 1 5, 4, 2

Discovery is done
independently
for each overlay.

known by 1

in the rw msg

unknown

Evaluation

18

Subscriptions

• Built a two-
dimensional grid
and randomly
placed nodes and
topics on it.

• Assigned an
interest radius to
nodes.

• Nodes are
subscribed to
topics within that
radius.

Subscriptions are correlated with a
high level of confidence. 19

Simulation Setup

• Erdős–Rényi model

• Strongly connected

• Measurements:

• physical link sharing

• impact on overlay properties

20

View sizes

0

75

150

225

300

100 200 300

Before After

Total number of logical links for 1000 nodes.

topics

nu
m

be
r

of
 li

nk
s • StAN maintains

the number of
neighbors each
node already has
in each overlay.

resilience

21

View sizes

0

37.5

75.0

112.5

150.0

100 200 300

Before After

Unique (physical) links for 1000 nodes.

topics

nu
m

be
r

of
 li

nk
s

• The number of
physical links
necessary to
maintain the
overlay is
significantly
reduced.

scalability

22

View sizes

0

30

60

90

120

150

1000 2000 3000

Before After

Unique (physical) links for 100 topics.

nodes

nu
m

be
r

of
 li

nk
s

0

30

60

90

120

150

100 200 300

Before After

Unique (physical) links for 1000 nodes.23

topics

Physical overlay
properties

Measure Before After

Clustering
Coefficient

Diameter

0.50 0.13

3 4

1000 nodes, 100 topics

• Clustering:

• decreases as
the number of
links decreases

• the increase
induced by link
sharing is
mitigated by
uniformity

24

Physical overlay
properties

Measure Before After

Clustering
Coefficient

Diameter

0.50 0.13

3 4

1000 nodes, 100 topics

• Diameter:

• there is a small
increase due to
the reduction
of physical
links.

25

Summary

• StAN is the first protocol, to attempt to
optimize pre-existent overlays in terms of
physical links, by exploiting shared
interests, but without actually disclosing
them.

• It’s a very simple protocol, yet surprisingly
efficient.

26

Future Work

27

• We are currently applying StAN within
NeEM, a gossip-based protocol, to
experimentally evaluate its scalability in
both:

• the number of topics in the system

• the number of topics subscribed to by
each node

Questions?

