StAN

Exploiting Shared Interests without Disclosing Them in Gossip-based Publish/Subscribe

Miguel Matos

Ana Nunes

Rui Oliveira

José Pereira

Universidade do Minho Portugal

IPTPS'10

This work is partially supported by HP Labs Innovation Research Innovation Award, project DC2MS (IRA/CW118736)

Problem statement

- Efficient, decentralized topic-based routing.
 - Bringing nodes with shared interests closer makes gossip more efficient.
 - Unfortunately, this usually requires fully disclosing interests to nearby nodes.
 - Reliability is impacted due to clustering.

An overlay per topic

- nodes join overlays independently
- increases maintenance overhead
- redundant retransmissions

A single overlay

- shared interests recognized and disclosed
 - network overhead
 - no privacy
 - redundant retransmissions avoided

A single overlay

- with global knowledge, dissemination can be done efficiently
 - building a minimal graph is NP-complete
- high clustering coefficient
- prone to partitioning

StAN

- Assumptions
- How to optimize the overlays
- Node discovery

StAN

Multiple stacked aligned overlays, that

- are managed independently
- converge to share a large number of physical links
- retain desirable properties for gossiping

scalability

resilience

Assumptions

- Topic popularity follows a power-law distribution.
- The number of subscriptions per node also follows a power-law distribution.
- Subscriptions are strongly correlated.
 - There is a non-negligible overlap in subscription sets.

The initial overlays

- A separate random overlay for each topic such that:
 - degree grows logarithmically with system size

scalability

clustering is low

resilience

The initial overlays

The final overlay

Links are shared among overlays. AB AB

Each node assigns a weight to each link deterministically.

Each overlay is optimized independently.

Each overlay is optimized independently.

Each overlay is optimized independently.

$$idl_{W} = 2$$

$$id3$$
_W = 4

w(id) = Hash(string(myself) + string (id))

$$id3$$
_{w = 4}

$$id2$$
_{w = 54}

Because of the confusion and diffusion properties of the hash function, nodes id2 and id3 will assign completely different weights to id1.

w(id) = Hash(string(myself) + string (id))

$$id3$$
_{w = 4}

Because of the confusion and diffusion properties of the hash function, nodes id2 and id3 will assign completely different weights to id1.

- Weight is independent of interests.
- Also, weight is not symmetric.
- Each node orders the node space uniquely and uniformly.
- This prevents StAN from inducing clustering in the physical overlay.

Evaluation

Subscriptions

Subscriptions are correlated with a high level of confidence.

- Built a twodimensional grid and randomly placed nodes and topics on it.
- Assigned an interest radius to nodes.
- Nodes are subscribed to topics within that radius.

Simulation Setup

- Erdős–Rényi model
- Strongly connected
- Measurements:
 - physical link sharing
 - impact on overlay properties

View sizes

 StAN maintains the number of neighbors each node already has in each overlay.

resilience

Total number of logical links for 1000 godes.

View sizes

 The number of physical links necessary to maintain the overlay is significantly reduced.

scalability

Unique (physical) links for 1000 nodes.

View sizes

Unique (physical) links for 100 topics₂₃

Unique (physical) links for 1000 nodes.

Physical overlay properties

Measure	Before	After
Clustering Coefficient	0.50	0.13
Diameter	3	4

1000 nodes, 100 topics

- Clustering:
 - decreases as the number of links decreases
 - the increase induced by link sharing is mitigated by uniformity

Physical overlay properties

Measure	Before	After
Clustering Coefficient	0.50	0.13
Diameter	3	4

1000 nodes, 100 topics

- Diameter:
 - there is a small increase due to the reduction of physical links.

Summary

- StAN is the first protocol, to attempt to optimize pre-existent overlays in terms of physical links, by exploiting shared interests, but without actually disclosing them.
- It's a very simple protocol, yet surprisingly efficient.

Future Work

- We are currently applying StAN within NeEM, a gossip-based protocol, to experimentally evaluate its scalability in both:
 - the number of topics in the system
 - the number of topics subscribed to by each node

Questions?