Don't Love Thy Nearest Neighbor

Cristian Lumezanu

Georgia Tech

Dave Levin, Bo Han, Neil Spring, Bobby Bhattacharjee
University of Maryland

Distributed Internet applications need the ability to find nodes that satisfy latency constraints

Cost optimization in the network coordinate space

Nearest neighbor is not enough

Sherpa

- Overlay network system that finds the lowest cost node under latency constraints
- Broad classes of latency-based cost functions, without knowing all the nodes that we are querying
- 1. Network coordinates
- 2. Voronoi regions
- 3. Compass routing
- 4. Gradient descent

Overlay setup

Querying/Node discovery

Evaluation

- Two latency data sets:
 - 1715 DNS servers, 213 PlanetLab nodes
 - network coordinate system: Vivaldi
- 1,000 queries: "find centroid of 30 nodes"

$$cost(m) = \frac{\sum_{i=1}^{N} d(m, p_i)}{N} + (\max_i (d(m, p_i)) - \min_i (d(m, p_i)))^2$$

Nearest neighbor is not enough

For 80% of the queries, the node chosen by Sherpa has a lower cost than the nearest neighbor

Conclusions and Future Work

- Generalized node selection with network coordinates
- Sherpa finds the lowest cost node

- Implementation
- Cost functions
- Other applications: split TCP, route avoidance