Middleware for Gossip Protocols

Michael Chow and Robbert van Renesse Cornell University

Motivation

- Gossip protocols are highly robust
- Problematic when an error does occur
 - E.g. Amazon S3 6 hours to fix an otherwise simple problem
 - Want to offer a way to fix such problems without having to take down the entire system

Contributions

Design, implementation, and analysis of gossip middleware that supports rapid code updating

Talk Outline

- Versions and Deployments
- Architecture
- Evaluation
- Conclusion and Future Work

Talk Outline

- Versions and Deployments
- Architecture
- Evaluation
- Conclusion and Future Work

Versions and Deployments

- Modules: Gossip application instances
- Each module assigned a Deployment Number
 - Identifies originating node and time of deployment
 - Used to determine whether or not nodes are running the correct version of the application
 - Does not correspond with code version

Versions and Deployments

Initial Deployment

Code Version: v₁ Code Deployment: d₁

Code Update

Code Version: v₂
Code Deployment: d₂

Roll Back

Code Version: v₁ Code Deployment: d₃

Talk Outline

- Code Updating
- Architecture
- Evaluation
- Conclusion and Future Work

Architecture

Core

- Provides Module Management and Updating
- Core gossips deployment numbers and corresponding code versions
- Core itself cannot be updated this way
- Challenge: keep core small
- Approach: core leverages ongoing gossip between modules

Module Management

- Core maintains a configuration file that contains:
 - List of Modules and current versions (identified by hash codes of the class files)
 - Deployment Number
- Keeps track of which modules and corresponding versions are currently running
- Cores gossip Configuration files

Gossip Mediation

- Core mediates gossip between modules
- Two advantages
 - 1. Core piggybacks module deployment number on existing gossip traffic which keeps core simple
 - Core uses HTTP to minimize problems with firewalls

Backup Gossip

- Cores need to be able to update code even if all modules have failed
- Cores implement a rudimentary but robust gossip protocol
 - Static list of rendezvous nodes
 - Intercepted membership hints from module gossip

Core

Examples of gossip interactions

- Normal case: core piggybacks deployment numbers and checks for matched modules
- Mismatched deployment numbers: core initiates code update
- Modules fail to gossip usefully: core gossips configuration information

Node A Module₁ Deployment: d₁ Core

Request code update

Failure to Gossip usefully

Exchange configuration deployment number

Failure to Gossip usefully

Failure to Gossip usefully

Talk Outline

- Code Updating
- Layered Architecture
- Evaluation
- Conclusion and Future Work

- Tested on 100 local instances with 10 serving as rendezvous servers
- Application: A Simple Membership Protocol

How much overhead does the core add?

Conclusion and Future Work

- Can we make the core smaller?
- Can the core be updated?
- Security
- NAT Traversal as a layered service

Questions?

Module Management

 Core provides the following public methods for module updating:

