Middleware for Gossip Protocols

Michael Chow and Robbert van Renesse
Cornell University

Motivation

* Gossip protocols are highly robust
* Problematic when an error does occur

— E.g. Amazon S3 — 6 hours to fix an otherwise
simple problem

— Want to offer a way to fix such problems without
having to take down the entire system

Contributions

Design, implementation, and analysis of gossip
middleware that supports rapid code
updating

Talk Outline

Versions and Deployments
Architecture
Evaluation

Conclusion and Future Work

Talk Outline

Versions and Deployments
Architecture
Evaluation

Conclusion and Future Work

Versions and Deployments

* Modules: Gossip application instances
 Each module assigned a Deployment Number

— |dentifies originating node and time of deployment

— Used to determine whether or not nodes are
running the correct version of the application

— Does not correspond with code version

Versions and Deployments

Initial Deployment

Code Version: v,
Code Deployment: d,

Code Version: v,

Code Deployment: d,

Code Version: v,
Code Deployment: d,

Talk Outline

Code Updating
Architecture

Evaluation

Conclusion and Future Work

Architecture

Module,

Module,

Module,

Module,

Core

Provides Module Management and Updating

Core gossips deployment numbers and
corresponding code versions

Core itself cannot be updated this way
Challenge: keep core small

Approach: core leverages ongoing gossip
between modules

Module Management

* Core maintains a configuration file that
contains:

— List of Modules and current versions (identified by
hash codes of the class files)

— Deployment Number

* Keeps track of which modules and
corresponding versions are currently running

* Cores gossip Configuration files

Gossip Mediation

* Core mediates gossip between modules
* Two advantages

1. Core piggybacks module deployment number on
existing gossip traffic which keeps core simple

2. Core uses HTTP to minimize problems with
firewalls

Backup Gossip

* Cores need to be able to update code even if
all modules have failed

* Cores implement a rudimentary but robust
gossip protocol

— Static list of rendezvous nodes

— Intercepted membership hints from module
gossip

Core

From Modules

To Modules

L

1 11

.|||_ |||||||||||
1
_III—IIW IIIIIIIII
P
==l ———————
Y VWV V
Q
@)
©
T
(Vg
)
-
I
A A A
e e e
I I
PPN RN N ————
|
PPN P ————

Outgoing Gossip Connections

Incoming Gossip Connections

Examples of gossip interactions

* Normal case: core piggybacks deployment
numbers and checks for matched modules

 Mismatched deployment numbers: core
initiates code update

* Modules fail to gossip usefully: core gossips
configuration information

Normal Case

Node A Node B

Module, Module,

Deployment: d, Deployment: d,

Core Core

Normal Case

Node A Node B

Module, Module,

Deployment: d, Deployment: d,

~ Core Core

Normal Case

Node A Node B

Module, Module,
Deployment: d, Deployment: d,

Normal Case

Node A Node B

Module, Module,
Deployment: d, Deployment: d,

Mismatched Deployment Numbers

Node A Node B

Module, Module,

Deployment: d, Deployment: d,

~ Core Core

Mismatched Deployment Numbers

Node A Node B

Module, Module,
Deployment: d, Deployment: d,

Mismatched Deployment Numbers

Node A Node B

Module, Module,

Deployment: d, Deployment: d,

i

Request code update

Mismatched Deployment Numbers

Node A Node B

Module, \YleJe[V][=H

Deployment: d, Deployment: d,

Core Core

Mismatched Deployment Numbers

Node A Node B

Module, \YleJe[V][=H
Deployment: d, Deployment: d,

Failure to Gossip usefully

Node A Node B

Module, Module,

Deployment: d; Deployment: d,

o

Exchange configuration deployment number

Failure to Gossip usefully

Node A Node B

Module, Module,

Deployment: d; Deployment: d,

o

Request code update

Failure to Gossip usefully

Node A Node B

Module, \YleJe[V][=H
Deployment: d, Deployment: d,

Talk Outline

Code Updating
Layered Architecture
Evaluation

Conclusion and Future Work

Evaluation

* Tested on 100 local instances with 10 serving
as rendezvous servers

e Application: A Simple Membership Protocol

Evaluation

How much overhead does the core add?

Percentage of Messages sent that were code updates

Percentage
[y
(R3]

1 | | | | 1 1 | | |
0 50 100 150 200 250 300 350 400 450 500
Time (s)

Evaluation

How long does it take to propagate code?

Propagation Time of Code Updates

100

90 - -

80 - -

0F -

60 - -

50+ -

anf -

Percentage of Nodes

30 -

201 =

10 -

Evaluation

How long does it take to propagate code?

Propagation Time of Code Updates

100

90 - -
80 - -
0F -
60 - -
50+ -

oL Rendezvous nodes |

loaded with code
30+ =

Percentage of Nodes

201 =

10 -

Evaluation

How long does it take to propagate code?

Propagation Time of Code Updates

100

90 - -
80 - -
0F -
60 - -
50+ -

mf Backup gossip .
in the background

Percentage of Nodes

30

201 =

10 -

Evaluation

How long does it take to propagate code?

Propagation Time of Code Updates

100

90 - -

80 - -

O
5 70 -
O
Z eop L . ’
5 Application gossip
% 50 . k .
o picks up
T af .
L
Q
o 0t _
o
20+ j -
10+ -
0 | | | |
0 5 10 15 20 25

Conclusion and Future Work

Can we make the core smaller?
Can the core be updated?
Security

NAT Traversal as a layered service

Questions?

Module Management

* Core provides the following public methods
for module updating:

public String transferState()
public void acceptState()

Module, Module,
Deployment: d, Deployment: d,

transferState() acceptState()

