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Motivation

* Gossip protocols are highly robust
* Problematic when an error does occur

— E.g. Amazon S3 — 6 hours to fix an otherwise
simple problem

— Want to offer a way to fix such problems without
having to take down the entire system



Contributions

Design, implementation, and analysis of gossip
middleware that supports rapid code
updating
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Versions and Deployments

* Modules: Gossip application instances
 Each module assigned a Deployment Number

— |dentifies originating node and time of deployment

— Used to determine whether or not nodes are
running the correct version of the application

— Does not correspond with code version



Versions and Deployments

Initial Deployment

Code Version: v,
Code Deployment: d,

Code Version: v,

Code Deployment: d,

Code Version: v,
Code Deployment: d,
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Architecture
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Core

Provides Module Management and Updating

Core gossips deployment numbers and
corresponding code versions

Core itself cannot be updated this way
Challenge: keep core small

Approach: core leverages ongoing gossip
between modules



Module Management

* Core maintains a configuration file that
contains:

— List of Modules and current versions (identified by
hash codes of the class files)

— Deployment Number

* Keeps track of which modules and
corresponding versions are currently running

* Cores gossip Configuration files



Gossip Mediation

* Core mediates gossip between modules
* Two advantages

1. Core piggybacks module deployment number on
existing gossip traffic which keeps core simple

2. Core uses HTTP to minimize problems with
firewalls



Backup Gossip

* Cores need to be able to update code even if
all modules have failed

* Cores implement a rudimentary but robust
gossip protocol

— Static list of rendezvous nodes

— Intercepted membership hints from module
gossip



Core

From Modules

To Modules
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Outgoing Gossip Connections

Incoming Gossip Connections



Examples of gossip interactions

* Normal case: core piggybacks deployment
numbers and checks for matched modules

 Mismatched deployment numbers: core
initiates code update

* Modules fail to gossip usefully: core gossips
configuration information
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Mismatched Deployment Numbers
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Failure to Gossip usefully

Node A Node B

Module, Module,

Deployment: d; Deployment: d,

o

Exchange configuration deployment number



Failure to Gossip usefully

Node A Node B

Module, Module,

Deployment: d; Deployment: d,

o

Request code update



Failure to Gossip usefully

Node A Node B

Module, \YleJe[V][=H
Deployment: d, Deployment: d,
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Evaluation

* Tested on 100 local instances with 10 serving
as rendezvous servers

e Application: A Simple Membership Protocol



Evaluation

How much overhead does the core add?

Percentage of Messages sent that were code updates
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Evaluation
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Evaluation

How long does it take to propagate code?
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Evaluation

How long does it take to propagate code?
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Conclusion and Future Work

Can we make the core smaller?
Can the core be updated?
Security

NAT Traversal as a layered service



Questions?



Module Management

* Core provides the following public methods
for module updating:

public String transferState()
public void acceptState()

Module, Module,
Deployment: d, Deployment: d,

transferState() acceptState()



