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Abstract—Peer-to-Peer (p2p) networks are used by millions of
users for sharing content. As these networks become ever more
popular, it becomes increasingly difficult to find useful content in
the abundance of shared files. Modern p2p networks and similar
social services must adopt new methods to help users efficiently
locate content, and to this end approximate meta-data search
and recommendation systems are utilized. However, meta-data
is often missing or wrong, and recommender systems are not
fitted to handle p2p networks due to inherent difficulties such as
implicit ranking, noise in user generated content and the extreme
dimensions and sparseness of the network.

This paper attempts to bridge this gap by suggesting a new
metric for peer similarity, which can be used to improve content
search and recommendation in large scale p2p networks and
semi-centralized services, such as p2p IPTV. Unlike commonly
used vector distance functions, which is shown to be unfitted
for p2p networks due to low overlap between peers, this work
leverages a file similarity graph for estimating the similarity
between peers that have little or no overlap of shared files. Using
100k peers sharing over 500k songs in the Gnutella network, we
show the advantages of the proposed metric over commonly used
geographical locality and vector distance measures.

1. INTRODUCTION

Peer-to-Peer (p2p) content sharing networks are used by
millions of users world-wide. Searching for content is per-
formed using search strings, which in fully distributed net-
works such as Gnutella [11], is propagated between peers.
Alternatively, in semi-centralized networks, such as BitTorrent
[13] and various IPTV and VoD [3] services, peers send their
queries to a server that has enough information to find peers
that hold the content. In either case, once content is located,
it is downloaded directly from a selected subset of the peers.

However, current trends show increase adoption of recom-
mendation systems for finding content, since it overcomes
several limitations of traditional location of searched content.
First, the abundance of content makes searching a grueling
task of finding a needle in a haystack. Second, search strings
are usually matched against meta-data fields (such as ID3 tags
in mp3 files) that are attached to the content. Often, some of
this data is missing, incorrectly spelled or encoded (such as
musical genre) making it difficult for users to find the data
they are looking for in the abundance of existing content (less
than 10% of the queries in Gnutella network are successful
in returning useful content [16]). Finally, modern services,
such as IPTV often have limited user interface (like a simple
TV remote control), making typing search strings extremely
inconvenient for users.

Accounting for these changing needs can be accomplished
using peer similarity, making it possible to find “like-minded”
peers. For traditional search string propagation, peers that are
similar to a searching peer are more likely to hold the searched

content than other peers. In recommendation systems, it is
obviously more promising to recommend content from like-
minded peers.

Accurate peer similarity metrics can be beneficial for both
distributed and centralized search schemes. In distributed
searches, querying only like-minded peers can significantly
reduce the overall query load on the network. In centralized
searches, creating smaller and more accurate lists of peersthat
are used for each search can reduce its load. Moreover, pushing
these lists to the peers themselves can improve the robustness
of the network in face of server failures.

However, developing peer similarity metrics in modern p2p
networks is challenging. First, in p2p networks, users do not
explicitly rank their preferences, but simply download content,
use it and possibly delete it or simply ignore it if they dislike
it. This form of implicit ranking makes it difficult to assess
whether users “like” or “dislike” the downloaded content.

Additionally, there is a large amount of noise that inherently
exists in p2p networks, since content is mostly generated and
tagged by the users. This results in an abundance of duplicate
content with different titles, multiple and even conflicting
tagging and spelling mistakes or ambiguities.

Finally, the abundance of peers and content creates a sparse
network, having lots of users sharing lots of content, whereas
each given user holds only a tiny fraction of the content,
and only this downloaded content is implicitly ranked. This
increases the difficulty of assessing how similar peers are.

Various searching techniques were proposed, such as ap-
proximate searching [8], semantic overlays [14] and even com-
plete restructuring of the network [15]. However, current p2p
networks employ simple string matching algorithms against
files names and meta-data.

Fessantet al. [5] showed that there exists a “natural”
clustering in p2p networks when looking at peer geographical
proximity and correlation between shared content. In this
work, we show that simple content correlation is not sufficient
to be used as peer similarity, since the abundance of files
results in poor overlap of content between arbitrary peers.
For some file types, it is possible to use coarser granularity
for overlap, like artists or genres in music files. However, in
previous work [12], we showed that this is inaccurate, since
artists or genres often fail to capture the true preferencesof
the users.

Recommender systems were suggested to help users find
new content based on their preferences or similarity to other
like-minded users. These systems have been studied exten-
sively in recent years [10], mostly relying on the willingness
of users to rank their preferences in order to provide betterrec-
ommendation. However, as mentioned above, p2p networks,
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alongside with new home entertainment services such as IPTV,
do not enjoy the luxury of explicit ranking of content, therefore
require new methods to assess peer similarity.

The primary objective of this work is to find a peer similarity
metric in p2p networks, which overcomes the complexities
while being efficient to calculate in fully-distributed andsemi-
centralized environments. Integration of the suggested similar-
ity metric can improve accuracy and speed of searches, reduce
query load [5] and improve the robustness on the network.

Overcoming the difficulties is achieved by leveraging the
information about the similarity between files that are shared
by peers for creating file similarity graph. Then, this informa-
tion is used to accurately calculate the distance between any
given peers.

Evaluation is performed on song files shared by peers in
the Gnutella [11] p2p network. Collecting the songs shared
by more than 1.2 million users yielded over 530k. A sample
set of 100k users is used for validation and the advantages
of the proposed metric over traditional metrics. Distribution
of the algorithm is considered by evaluating its efficiency and
applicability for real-world scenarios. Finally, we show that
geographical locality should not be used as a direct indication
for peer similarity, as we find diverse peer similarity values
for geographically near peers.

The contribution of this work is twofold: (a) a new peer
similarity metric is presented, which is simple, well suited
to sparse large-scale p2p systems, efficient and robust against
the existence of partial view of the network, (b) using real-
world large-scale p2p network, we quantify the problems of
using vector overlap, validate the applicability of the proposed
metric and present problems in commonly used metrics.

2. SHARED FILES

Many p2p networks, such as Gnutella and KAD, employ a
completely distributed approach for finding content that resides
on peer storage, usually by means of flooding search queries in
the network. Unless anonymity measures are used the replies
are sent directly to the originating peer. Therefore the remain-
ing peers are unaware of content that resides on other peers
but was not directly sent to them. Some networks, such as
Gnutella, permit content browsing, where peers can manually
look at the shared folders of other peers. Other proposed
networks simply propagate portions of this information in the
network to allow easier location of content.

A more centralized network can have a broader view of
peer content by monitoring peer activity. For example, a server
storing BitTorrent trackers can monitor which peer is interested
in (and probably downloading) which content. Moreover, by
simply participating in many “swarms”, even without actually
downloading the content, as is performed in the Apollo [13]
project, can reveal a lot of information about content whichis
held by many peers.

In either case, it is possible to obtain information on the
content that is held by peers. Assuming thatn peers share
overallm distinct files, it is possible to create a sparse binary
n×m matrix A(i, j), which indicates whether a useri shares
a file j (which is a private case of the traditional collaborative
filtering matrix, having only0/1 ranking).

Theoretically, using standard distance functions (Euclidian,
correlation, etc.) between the files shared by two peers, can
result in a distance value between these peers. However, in
p2p networks, this simply does not work. The most significant
difficulty of applying traditional vector distance functions is
its extreme spareness. Even in the existence of complete
information on the content that resides in all peers, which can
be obtained using active crawling or centralized information,
the overlap between peers is small.

This sparseness is also the result of the difficulty to identify
which files are identical. Comparing the actual content of files
is usually done using the MD5 hash of the files, which fails
when different copies exist. Using meta-data on the other hand
is susceptible to different tagging and spelling mistakes.

In order to illustrate the extent of this problem, we use a
snapshot of the music files that were shared in the Gnutella
p2p network. These were collected using a 24 hours active
crawling of the shared folders of over 1.2 million peers on the
25th November 2007, selecting only files that correspond to
musical content (.mp3 files). Overall 531,870 song files were
collected. During the time of the crawl, Gnutella was the most
popular file sharing network [9].

Identification of songs is performed using the name of the
song concatenated with the name of the performing artist
to account for ambiguities. We refer to this as the song id.
Spelling mistakes are handled by grouping together songs that
have ids with edit-distance smaller than 3, counting inserts,
deletes and substations.

Using a sample set of 100k peers, we find the number of
different songs each peer shares, the maximal overlap (number
of songs) it has with other peers and the percentage of peers it
has no overlap with. In the sampled set there are 511k songs,
a value which is not much lower than the 530k songs in the
original crawl using 1.2 million users. This shows that most
users in the p2p network share similar files and suggests that
it is not needed to perform an exhaustive crawl in order to
obtain sufficient representative data.

Fig. 1(a) shows the distribution of the number of songs
shared by peers in our sample. This distribution closely
resembles the one reported by Zhaoet al.[17]. Almost 85%
of the peers share less than 20 songs while less than 3% share
more than 50 songs, which matches the observation [1] of
”free-riders” in the Gnutella network. Also notice that allpeers
share less than 200 songs. We attribute this to the finite amount
of disk space users are willing to devote for sharing or to the
actual amount of different songs that are of interest to a user.

Fig. 1(b) shows the cumulative distribution of the maximal
overlap on songs between all pairs of peers. The figure shows
that 90% of the peers have a maximal overlap of 60% with
at least one more peer. Moreover, 8% of peers have 100%
overlap of songs with other peers. However, while this looks
promising, this high overlap is mostly attributed to peers with
very small number of shared songs. Furthermore, Fig. 1(c)
shows the cumulative distribution of the number of peers with
no overlap, revealing that 50% of the peers have zero overlap
with more than 80% of the other peers. Such a high ratio
of non-overlapping content between peers means that direct
vector distance is unusable as a similarity measure.
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(a) Shared songs
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(b) Max overlap
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(c) Zero overlap

Fig. 1. Songs shared by a sample of 100k peers, showing cumulative distributions of (a) number of shared songs, (b) the overlap of songs with the highest
overlapping peer, and (c) the number of peers with no overlap

3. PEER SIMILARITY METRIC

A. File Similarity Graph

Using the file sharing matrixA, a file-similarity graphS is
created. The weight of a linkwij between two filesi and j
is the number of peers that hold adjacent files. Additionally,
a popularity distribution vectorC is created, counting the
number of times each file appears in the network.

The similarity between files is normalized to allow com-
parison of similarity values between pairs of files that have
different popularity. Each link weightwij is normalized using
a modified cosine-distance function of the popularity of both
files given in Eq. 1.

ŵij =
wij√
Ci · Cj

(1)

Sincewij ≤ Ci ·Cj , the normalized metric obeys0 < ŵij ≤
1. The normalized similarity graph is denoted byŜ.

We construct the similarity graph using the complete crawl
of 1.2 million peers in Gnutella. During the collection of songs
we only include links between songs that appear in at least 16
different peers. This helps remove “weak” ties between songs
from the similarity graph, which are useless for the similarity
metric. The second filter keeps, for each file, only the top
40% links (ordered by descending similarity value) and not
less than 10. After these preliminary filters, roughly 20 million
undirected links remain.

The degree distribution of the resulting similarity graph is
shown in Fig. 2(a). The figure shows a distinct Zipf distribution
with a broad set of degrees. The curve observed in the low
degrees is attributed to the filtering. Similarly, Fig. 2(b)shows
the number of different peers that share each song, with a
clear Zipf distribution containing a long tail. This indicates
that many of the songs are shared by only a few peers, proving
once again the need to find a better metric than a simple file
vector comparison.

B. Calculating Distance Between Peers

Once the file similarity graph is obtained, it is possible to
calculate the distance between peers using all of their shared
files, and not only the same files that are shared by both. The
pseudo-code for the algorithm is given in Alg. 1. For any two

given peers, we create a bipartite graphB that contains the
songs of each peer in each side. Each peer file is connected to
files of the other peer. The weight of each link is the shortest-
path distance between the two files on the similarity graph
(lines 3–10).

Algorithm 1 Pseudo-code of peer similarity estimation
Input: Peer files matrixA, file similarity graphS
Output: Peer similarity matrixP
1: for all pairs of peers(pi, pj) ∈ A do
2: B ← Ø
3: for all pairs of files(fk

i , fr
j ) ∈ (pi, pj) do

4: if fk
i = fr

j then
5: w = 1
6: else
7: w = d−1

(
shortest path

(
fk

i , fr
j

))
, on S

8: end if
9: B(fk

i , fr
j )← w

10: end for
11: M = maximal weighted matching (B)
12: P (pi, pj) = M

min{|pi|,|pj |}
13: end for
14: Return P

In order to select the set of links and their weights, Dijkstra
[4] shortest-path algorithm is executed from each of the files
of one of the peers to all other files of the other peer (i.e., the
target files). When the similarity graph is not fully connected,
which is expected to be quite common, files that are in
different components remain unconnected.

Calculating the distance between files using the file simi-
larity graph manages to capture the “wisdom of the crowds”,
as it estimates the distance between files based on the global
preferences of many peers. We further show how this graph
is leveraged to provide the requested peer similarity, in a
broader fashion than using the more traditional methods such
as distance vectors or geographical proximity.

Running shortest-path on the similarity graph requires the
usage of a distance function,d(i, j). The distance function
applies a transformation operator on all links along the shortest
path betweeni and j, transforming the weight of the links
from similarity to distances, so that two files that have high
similarity value will have low distance value. When building
the bipartite graph the similarity values are used as weights
and not the distance values.

Once the bipartite graph is built, amaximum weighted
bipartite matchingalgorithm is applied (line 11). This results
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(a) Degree distribution
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(b) Popularity (c) Similarity sub-networks

Fig. 2. Properties of the song similarity graph, showing theZipf distributions of the degrees and popularity, and top relation distribution of various sub-graphs

in a set of links such that no two links share a common file,
and the total weight of the links in the set is maximal. In order
to compare between peersi andj that have different number
of files, |pi| and |pj |, the weight of the matching (sum of the
link weights in the matching) is normalized usingmin {n, m},
which is the average link weight (line 12). This value is used
as the peer similarity.

There are two main benefits of using maximum weighted
matching. First, it provides an efficient method for assessing
the best match between two sets of files, hence provide a good
estimation for the peer similarity without requiring overlap
of the shared files. Second, since only the highest similarity
links are selected to the matching, various filters can be used
for reducing the size of the similarity graph and improving run
time and memory consumption of the algorithm, with minimal
bias in the results.

C. Efficiency

The similarity of any two peers, one sharesn files and the
other sharesm files, is calculated by running a single-source
Dijkstra once and then a maximum matching on the resulting
bipartite graph. Assuming that the similarity graph holds|V |
files and|E| links, a single-source Dijkstra can be efficiently
calculated [2] inO (|E| + |V | log |V |).

The resulting bipartite holds at mostn + m files and
n · m links. Maximum weighted matching on a bipartite
graph can be computed using Hopcroft-Karp algorithm [7] in
O

(√
n + m · (nm)

)
. However, even less algorithms will be

fast due ton andm being relatively small.
Since the most demanding phase of the similarity calcula-

tion is finding distances between files, it can be beneficial
to reduce the size of the file similarity graph. Looking at
the similarity graph of our dataset, reveals an extremely
large and sparse graph, having less than 0.03% of possible
links between songs actually exist. However, since maximum
matching is robust to the removal of low-weight links, smaller
sub-networks can be used. For each file, only the topN
neighbors are included, ordered by non increasing normalized
similarity. This extends the basic filters since it uses the
normalizedsimilarity values, allowing it to capture the relative
popularity of adjacent files.

Using the complete dataset, we verify that these sub-
networks, denoted by TRN , do not significantly change the

similarity graph. For this end, the number of times each song
appears as the nearest neighbor for different values ofN was
calculated. Fig. 2(c) shows that forN=1,5,10,20 the overall
distribution is very similar in nature, and forN ≥ 10 the
distributions almost overlap. This indicates that it is possible
to extract smaller sub-networks that can speed up the distance
calculations, while keeping a minimal bias in the results.

To further avoid extensive traversal on the similarity graph,
the shortest path procedure can be stopped once a target file
is found in given distance threshold after the first target file.
This is done under the assumption that further distant files are
too far away to be considered relevant as a link, and hence
should not affect the similarity between the peers. Files that
do not have a link are removed from the bipartite graph.

Notice, however, that stopping shortest path before reaching
all targets causes the proposed algorithm to be not symmetric
to the selection of the peers. The peer that is the base for the
shortest-paths will have all files includes, while the latter may
have some files that are removed from the bipartite graph since
no link reaches them. However, links that are added from one
peer but are not added from the second peer are unlikely to
be selected in the maximum matching, since these are mostly
low-similarity links.

D. Applicability

To be truly effective in p2p networks, the similarity metric
should be integrated with the p2p network and seamlessly
provide users improved search results. In semi-centralized
networks, that consist of servers that help locate content,all
the functionality can be easily included in the server.

However, in completely distributed networks, like Gnutella
network, this can be achieved by deploying a set of ultra-
peers (or “hubs”) that capture a large percentage of search
queries [6]. Partial information can be shared amongst ultra-
peers in order to have replications of the similarity graph,
hence improving its redundancy and scalability.

Another aspect is the highly dynamic nature of p2p net-
works, where files are constantly added and removed by peers.
Removing files is mostly done by peers that want to preserve
local disk storage or upload bandwidth, thus they do not reflect
a change in the true similarity between files. However, there
are peers that delete files when they are not satisfied with what
they have downloaded. This means that the deleted file should
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not be related to the other files which are co-shared by the
peer. We assume that files, which are downloaded by users by
mistake, are relatively rare or at least not highly correlated
between different peers, and therefore their corresponding
links usually have very low weights, which are filtered and
therefore do not have an affect on the similarity between peers.

On the other hand, adding files to the network changes the
similarity graph, where each file contributes a single vertex but
can lead to many different links between it and the additional
peer shared files. However, only when the new file is shared
by many users that have common files, its links with the other
files become significant enough to be included in the similarity
graph causing for a change in the similarity graph.

4. VALIDATION

Validation of the similarity metric is performed using the
sampled set of 100k peers, TR10 similarity graph, a distance
functiond(x) = − log2(x) and a cut-off of 1.5 in the shortest-
path process. For each pair of peers, we compare the resulting
similarity to the artist similarity. For this end, the artists
performing the songs shared by each peer are resolved, using
the ID3 tags in each file. Assuming that two peersi andj have
two sets of artistsAi and Aj , the artist similarity is defined
as (|Ai ∩ Aj |) / min {|Ai| , |Aj |}.
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Fig. 3. Comparing peer similarity with geographical distance and artists
similarity (500 random peers are shown for brevity)

Fig. 3(a) shows that high peer similarity indicates high artist
similarity, which validates the overall correctness of thesim-
ilarity metric. However, high peer similarity also exists when
artist similarity is zero, showing that comparing exact songs
between peers, even using coarser granularity is insufficient.

We further wish to examine the correlation between files
and geographical distance of peers [5], by considering the
geographical distance between peers and their corresponding
similarity. Fig. 3(b) compares the geographic distance of peers
from the dataset to other randomly selected peers, and shows
the advantage of using the proposed similarity over similarity
based of geography. Although it is possible to see that there
are clusters of peers that share similar geographical distance
and similarity values, for roughly the same distance there is a
wide range of different similarity values. As such, it is possible
to see that there are peers with high similarity that are both
geographically far and near.

These observations suggest that while locality of interest
may still be valid in today’s p2p networks, similarity of
files shared by peers (or at least music preferences, which
are studied in this evaluation) takes a more global approach.

As such, bootstrapping peers or creating a semantic overlay
of peer links based solely on shared content correlation or
geographic locality is insufficient. Adding the proposed peer
similarity metric manages to include a more global “wisdom
of the crowds” into the process of peer similarity estimation.

5. CONCLUSION

This paper presents a new metric for peer similarity, based
on the distance between shared files on the file similarity
graph. This metric is well suited to large-scale p2p networks,
where the overlap of files shared by peers is low, mostly due
to the vast sparsity of the network.

As peer-based networks and services become ever more
popular, it is important to find new ways for improving the
ability to find useful content in the network. Better estimating
the distance between peers is an important building block
in most search paradigms, such as approximate search
and recommendation systems, and it can help make semi-
centralized services more robust to failures.
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