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1 Introduction

One of the most flexible features of Internet routing—that
service providers have administrative autonomy over their
networks—has, over the years, proven to be one of the most
restrictive—users have little to no say in how their packets are
forwarded, nor what kind of quality of service they receive.

As online services’ and users’ demands have evolved, the
goals of Internet routing have broadened. For example, al-
though ISPs engineer for high throughput, users often benefit
from low-latency paths, as well [22]. Also, recent concerns
over traffic shaping [10] have led to demands for net-neutral
routing mechanisms that subvert ISPs’ routing policies [29].
Overlay routing systems [1}, 22] address some of these con-
cerns by allowing users to forward traffic through one an-
other. Because they can choose the overlay path, users have
some say in what path their packets take.

An important primitive in overlay routing systems is
node location: the ability to find nodes that satisfy la-
tency constraints. For example, content distribution networks
(CDNSs) [[L1] and online games’ matchmaking services [7] are
more efficient when performed through hosts that decrease
delay to receivers [27,[15]. Network coordinates [9, 23] offer
a practical and scalable solution to node location by assign-
ing nodes position in a geometric space such that the distance
between the positions estimates the real Internet latency.

Viewing hosts as network coordinates, many complex rout-
ing queries can be rephrased as geometry problems [25]]. For
instance, the problem of finding a game server that mini-
mizes the average latency to a set of players’ machines can
be thought of as finding the game server that is the centroid
of the players’ network coordinates. Of course, it is highly
unlikely that there will be a server at the precise centroid; the
goal is thus to find the node “closest” to such an ideal point—
typically called nearest neighbor search.

In this paper, we find that nearest neighbor search often
does not result in the best result for a given query. Fig-
ure [T[top) shows the contour plot of a possible cost func-
tion for the centroid computation problem. B and N repre-
sent nodes in the Internet and M is the theoretically optimal
centroid for a set of nodes (not shown on the plot). Although
N is closer to M than B, B is in fact a better choice for the
centroid, since it lies on a lower cost contour.

We present the design of Sherpa, an overlay routing system
in which routing queries take the form of arbitrary, contin-
uous cost functions over node coordinates. Sherpa returns
nodes corresponding to local minima of the cost function.
Sherpa routing consists of two phases: (1) a modified com-
pass routing algorithm [[16] on the network coordinate space
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C(B) < C(N)
dist(M, B) > dist(M, N)

Figure 1: Nearest neighbor is not enough. M is the theoretical
lowest cost point, N and B are nodes in the geometric space.
Although N is closer to M than B, the cost of B is lower,
making it more desirable than N.

to discover the nearest neighbor to a theoretical optimal point,
and (2) a gradient descent algorithm based on Voronoi region
information to find the lowest cost node. We note that neither
of the mechanisms underlying Sherpa’s routing are, in and of
themselves, new. Rather, the main contribution of Sherpa is
the observation that only by combining them can complex,
latency-based routing queries be resolved accurately.

Simulations on two real world latency data sets show that
Sherpa finds nodes with cost that is significantly lower than
the nearest neighbor and close to the optimal, even consider-
ing the embedding error of network coordinates.

We bring the following contributions. First, we frame the
problem of finding nodes that satisfy location constraints as a
cost optimization problem over the network coordinate space
(Section [2). We then describe the design of Sherpa, a sys-
tem that finds low cost nodes given arbitrary continuous cost
functions on the network coordinate space (Section [3). We
evaluate Sherpa through simulations within the context of dis-
tributed game server selection and show that finding low cost
nodes is accurate (Section Ef[) Last, we observe that there is a
far broader set of Internet routing queries that can be viewed
as geometry problems than previously considered (Section[9)),
and we discuss how Sherpa supports them.

2 Nearest Neighbor Is Not Enough

We express finding nodes under location constraints as a cost
optimization problem, where the cost of each node is deter-



mined by a function over node coordinates. Specifically, if
we consider S a finite set of nodes with network coordinates
in a d-dimensional space, and a cost function C : R? — R,
the optimization problem is to find:

arg minC(n) (1)
nes
For simple location problems, such as finding the closest node
to a coordinate T, the cost is represented by the distance to the
target (i.e., C(n) = d(n,T),¥n € S). The lowest cost node
can be easily computed using distributed nearest neighbor ge-
ometric routing algorithms over the coordinate space [18].
Finding the nearest neighbor using network coordinates is
not always sufficient. Consider the problem of computing the
centroid among a set of nodes P: the best node will offer
minimal latency to all nodes in P. A simple cost function is:
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Figure[I] presents two ways to visualize the cost function. On
top, there is a contour plot, where each curve corresponds
to the same cost value and the cost is increasing towards the
center. Another way to imagine the cost function, depicted
on the bottom of Figure[T} is that it defines some surface over
the Euclidean space.

In Figure |1} M represents the theoretical minimum cost
point, B and N candidate closest nodes. We emphasize the
distinction between a node, a physical entity whose coordi-
nates place it in a unique position in space, and a point, a
coordinate in space without necessarily a node occupying it.
Although, in the Euclidean space, node B is further to M than
N, B has a lower cost. A nearest neighbor algorithm using
network coordinates would incorrectly choose node N as the
best node that approximates the centroid of all nodes in P.

3 Sherpa

Sherpa is a general substrate for searching broad classes of
cost surfaces and without necessarily knowing all the nodes
in the set that we are querying. It uses information about each
node’s position in a virtual geometric space to search for the
lowest cost node satisfying location constraints. Sherpa is
scalable and provides accurate results regardless of the place-
ment of nodes in the geometric space. In this section, we
present the design of Sherpa, focusing on components (what
are the requirements to join Sherpa) and operation (how par-
ticipants look for lowest cost nodes).

3.1 Joining Sherpa

To join Sherpa, a node has to compute its network coordi-
nate and its Voronoi region—the set of points in the space
which are closer to it than to any other node. As part of the
overlay, every node maintains connections with its Delaunay
neighbors—those nodes whose Voronoi regions are adjacent.

Network coordinates Before serving and forwarding re-
quests, every Sherpa node must compute its network coor-
dinate. We use Vivaldi for network coordinates because it is

Figure 2: Computing the Voronoi region for a Sherpa node:
(a) A, B, C and D are Sherpa nodes that have already com-
puted their Voronoi regions; solid lines represent Voronoi
edges, dotted lines connect Delaunay neighbors; (b) Node E
joins and finds that its coordinate lies in the region owned by
D; it advertises its position to D and to D’s neighbors, request-
ing a re-computation of their Voronoi regions; (c) E becomes
responsible for its own region, with neighbors A, D and C.

distributed and scalable [9]. Every node maintains a set of
neighbors, which are other Sherpa nodes, that it probes peri-
odically and uses the round trip time and the network coordi-
nates of these neighbors to update its own coordinate. After
each probe, the node computes the coordinate that minimizes
the squared estimation error to all of its neighbors.

Voronoi regions Given a discrete set S of nodes in Eu-
clidean space, the Voronoi diagram is the subdivision of the
space into |S| regions, one for each node, such that any point
in the region corresponding to a node is closer to that node
than to any other node. We denote the Voronoi region of a
node p as V(p). Two nodes are Delaunay neighbors if their
Voronoi regions share an edge. Figure[2|a) illustrates the dia-
gram formed by four nodes. The solid lines are Voronoi edges
and the dotted lines connect Delaunay neighbors.

When joining Sherpa, a node E must compute its Voronoi
region. Starting from a known overlay node, it finds the
closest Sherpa node to its own coordinate (node D in Fig-
ure[2) using the algorithm described in the next section. Then
it contacts D and its Delaunay neighbors, A, B and C, ad-
vertising its position and asking for local Voronoi region re-
computation.

Each node needs to know only of its Delaunay neighbors to
compute its region [4]], ensuring only local operations. Patho-
logical cases may arise, when a region borders all other re-
gions. The node owning the region is a Delaunay neighbor
for all other nodes in the system and a re-computation of the
whole tessellation would be necessary. However, due to the
placement of nodes based on network coordinates, which re-
flect the nodes’ geographical position [17], we do not expect
such cases to occur often.

The stability of network coordinates or node churn may in-
fluence the computation of Voronoi regions. There are several
practical solutions to stabilize network coordinates [26,19] or
to construct and maintain Voronoi regions in dynamic envi-
ronments [20} 21]]. We leave their study and interaction with
Sherpa for future work.



3.2 Querying in Sherpa

Querying in Sherpa consists of two stages: nearest neighbor
search and gradient descent. Given a cost function C and a set
of nodes P with known network coordinates, the source (or
the query initiator) first calculates the theoretical point c that
corresponds to the local (or global) minimum of C. It then
uses compass routing [[16] to find the nearest neighbor to c
in the coordinate space. Because the nearest neighbor N may
not be the node that minimizes C, we continue with a gradient
descent algorithm using the Delaunay neighbors of N.

Nearest neighbor search We use compass routing [16]
on the graph formed by Delaunay neighbors (the Delaunay
graph) to discover the nearest Sherpa node to a coordinate.
Compass routing uses geometric information to advance to
the destination. Each node chooses the next hop such that
the angle formed by the line segment between itself and the
potential hop and the line segment to the destination is mini-
mized. Compass routing is guaranteed to find the destination
when running on a convexly embedded geometric graph such
as a Delaunay graph. Because Sherpa is looking for a coor-
dinate c and not an actual node in the graph, it risks entering
an infinite loop where there is always a Delaunay neighbor
that makes a smaller angle with ¢ than the owner of the re-
gion where c lies. To eliminate this possibility, we simply
require that each node verify whether ¢ belongs to any of its
neighbors’ regions before computing the next hop.

Descent Finding the nearest neighbor is not enough for
generalized node location problems. Certainly, for trivial cost
functions such as the Euclidean distance itself, nearest neigh-
bor precisely corresponds to the minimum cost node. How-
ever, for more complex surfaces such as that induced by find-
ing the centroid among a set of nodes, proximity in the Eu-
clidean space does not necessarily translate into proximity on
the cost surface. We use a deterministic descent algorithm to
efficiently locate the proper minimum cost node.

The algorithm begins at the nearest neighbor p to a theo-
retical coordinate ¢ and recursively explores all its Delaunay
neighbors that contain points that lower the cost. This is nec-
essary because, even though our optimization is on a discrete
set of nodes—the centers of each Voronoi region—the cost
is defined on the coordinate space and any point can lead to-
wards the minimum. In practice, due to the difficulty of com-
puting the cost for every point in a Voronoi region, we only
compute the cost for the vertices. We show in Section [4] that
this is enough to obtain good results.

The descent algorithm discovers the lowest cost node using
only network coordinate information. Due to inherent inaccu-
racies in embedding Internet latencies into geometric spaces,
the best node in coordinate space (B’) may not be the best in
latency space (B). To alleviate this problem, B’ also com-
putes its cost using latencies—by sending a constant number
of latency probes to all nodes on which the cost depends—and
asks its Delaunay neighbors to the same. Sherpa returns the
node with the lowest cost, computed with the latency probe

results. In Sectionfd] we show that, by sending latency probes,
we improve significantly the accuracy of Sherpa.

To conclude, we use the nearest neighbor algorithm to ap-
proach a theoretical optimal point in coordinate space. We
then use the descent algorithm to exhaustively explore the
geographic region around the nearest neighbor, biasing our
search towards lower cost regions.

4 Evaluation

Our general formulation for node location captures a diversity
of problems and extends the applicability of network coordi-
nates beyond nearest neighbor searches. To evaluate Sherpa,
we consider the distributed game server selection (centroid
computation) in multi-player online games.

4.1 Distributed Game Server Selection

Many online game communities allow their players to select
which game server to use for their online play. The server is
responsible for all player-to-player communication and to act
as a trusted generator of random events. Selecting a server
that offers good performance and fairness among players is
essential for the gameplay experience.

Studies have shown that player performance suffers when
latency to the game server is high [5,24]]. When a geograph-
ically distributed group of friends wants to play together, it is
paramount that they choose a server that minimizes latency
to all players. For fairness, the relative disparities between
player latencies (e.g., between the maximum and minimum
latency of all players using the server) should also be low.

Selecting a game server for a group of nodes can be ex-
pressed as a centroid computation problem. We consider N
players p1,ps2,--- ,pnN, Who all know each other and who
wish to choose one of M game servers such that both game
performance and fairness among players are preserved. Each
game server is assigned a cost value:

Zi\il dZSt(mapz)
c(m) = i (3)
+  (max(dist(m,p;)) — min(dist(m, p;)))*

where dist(m, p;) represents the distance between server m
and player p;. The cost captures the average latency from
the game server to each of the players as well as the relative
disparities between latencies.

To find a centrally-located game server, a group of players
needs to compute its network coordinates. Then one of the
players or a designated third party submits a query request to
a Sherpa node, including the coordinates of all players and the
cost function. Sherpa computes the best node that minimizes
the cost and returns it to the requester.

4.2 Methodology

We build a prototype of Sherpa to study how well it finds the
low cost neighbors. The prototype is written in approximately
2,500 lines of Ruby and simulates the computation of Voronoi
regions, compass routing to find the nearest neighbor and the
descent algorithm to find the lowest cost node.
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Figure 3: Nodes visited by descent
when starting at random and from
nearest neighbor of a theoretically op-
timal centroid for PL-213.

We use two real world latency data sets, PW-King-1715
and PL-213. PW-King-1715 was collected by Lumezanu e?
al. [22] between 1,715 DNS servers using the King method
[12] in February 2008. We collected the second data set,
PL-213, between 213 PlanetLab nodes in January 2009. We
considered only one node for each PlanetLab site around the
world. To compute the network coordinates of each node, we
use the implementation of Vivaldi by Ledlie et al. [[19].

We consider the cost function in Equation [3] and simulate
Sherpa for 1,000 rounds. At each round, we select at most
30 nodes and issue a query to discover their centroid. We
choose the nodes such that they form two geographically sep-
arate groups: one of at most five, the other of at most 25
nodes. The asymmetry of the group populations makes the
distributed centroid population more challenging than when
nodes are chosen completely at random.

We first show that nearest neighbor is necessary, but it is
not sufficient. Then, we show that nodes chosen by Sherpa
as best matches for centroid are ranked high even when real
latencies are considered.

4.3 Nearest neighbor is necessary

Is searching for the nearest neighbor of a theoretically mini-
mum even necessary, considering that it can have an arbitrar-
ily high cost? Indeed, one could imagine starting the descent
algorithm from any node in the system and eventually con-
verging to the solution.

Finding the nearest neighbor first reduces significantly the
overhead incurred to find the lowest cost node. We compute
the number of nodes visited by the descent algorithm, first
from a random node and then, from the nearest neighbor of
a theoretically optimal centroid. Figure [3|shows the distribu-
tion of visited nodes. Starting descent from nearest neighbor
reduces the number of nodes visited by more than half.

4.4 Nearest neighbor is not enough

The node closest to a theoretically optimal centroid is not nec-
essarily the best choice for the centroid (i.e., the lowest cost
node). To understand the difference, we define the cost reduc-

cost reduction

Figure 4: Distribution of cost reduc-
tion. Positive values indicate that the
node returned by Sherpa has a lower
cost than the nearest neighbor.
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Figure 5: Relative rank of best node
returned by Sherpa for centroid com-
putation, with and without latency
probes, for PW-King-1715.

tion of a query as the difference between the nearest neighbor
cost and the cost of the optimal node divided by the nearest
neighbor cost. Although the optimization is done using em-
bedded distances, here we express the cost of a node in terms
of real latencies, since it reflects what an application using
Sherpa would obtain. Positive cost reductions indicate that
the optimal node is a better choice than the nearest neigh-
bor. For example, when the cost reduction is 0.5, the optimal
node reduces the cost of the nearest neighbor by half. Queries
finding optimal nodes that are worse in latency space than the
nearest neighbor have negative cost reductions.

Figure [] shows the cost reduction for the two data sets.
For around 80% of the queries, Sherpa is able to find a node
with cost lower than the nearest neighbor. The cost reduction
is more than 50% for a fifth of all queries. This proves that
finding the nearest neighbor is not sufficient most of the time.

4.5 Relative ranking

Finding the lowest cost node in coordinate space does not
imply also finding the lowest cost node when real latencies
are considered. For each query, we order all nodes in each
data set by their cost expressed in terms of real latency and
identify the rank of the optimal node returned by Sherpa. We
present the relative rank—the rank normalized to the number
of nodes. A relative rank of 10% means that the selected
node is among the 10% lowest cost nodes when using real
latencies. To understand the importance of issuing latency
probes from the neighbors of the node returned by the descent
algorithm (see Section , we consider the situations when
they are used and when they are not. Figure [5] shows that
latency probes matter: they improve the relative rank of the
selected node by at least twice, for both data sets.

S Applications of Sherpa

The leitmotif of this paper is the power of network coordi-
nates in solving distributed systems problems. Our general-
ized formulation for node location is applicable to many ap-
plications, some whose performance does not depend directly



on latency. We enumerate them below; applying Sherpa to
them is the main focus of our future work.

Improving throughput with split-TCP Split-TCP proto-
cols [14]] establish a relay between the two endpoints of a
TPC connection. Jain and Ott [13]] demonstrated that choos-
ing a relay that has a shorter RTT between both source and
destination than the two endpoints have to one another results
in an overall increase in end-to-end throughput. Sherpa could
easily find such relays by specifying a cost function that min-
imizes the distance from the relay to the endpoints.

Content distribution Multicast and streaming [3]] are more
efficient when performed through users that minimize la-
tency to receivers. Previous research [3|] shows that placing
centrally-located nodes higher in the multicast tree can im-
prove transmission latencies. Finding these nodes is similar
to the problem of finding a game server for a set of players.

Off-site backup Essentially a resource replication problem
[8L 16]], off-site backup attempts to add a new replica to an ob-
ject. The location of the replica should ensure that the origi-
nal object and the replica would not fail at the same time. To
do that, one may choose the location to be outside some ra-
dius around the original’s position. A potential cost function
would try to minimize the distance between the replica and
the original (for faster backups) while satisfying the radius
constraints.

Node avoidance Network accountability systems seek to
prove who originated and forwarded traffic, predominately
with the goal of blocking unwanted traffic close to the
source [2l 28]. However, they cannot prove that a particular
host h was not on the path from source to destination. This
feature can be achieved with latency constraints by choosing
arelay whose latency to the destination is less than the latency
that would be incurred were the relay to forward through the
host h. This insight can be realized in Sherpa with a cost func-
tion that penalizes nodes who are too close to hosts which the
users wishes to avoid.

6 Conclusions

In this paper, we have considered generalizations of node lo-
cation problems in distributed systems using network coordi-
nates. Finding nodes that satisfy location constrains can be
naturally expressed as an optimization problem over node co-
ordinates. We designed a new system, Sherpa, that finds the
lowest cost node in distributed applications, for a wide range
of continuous cost functions and regardless of the placement
of nodes.
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