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Abstract
This paper presents SplitQuest, a controlled and ex-

haustive search protocol that relies on a hybrid net-
work structure to avoid unnecessary query replication
and to speed up query propagation in P2P networks. In
SplitQuest, peers are organized in replication groups, in
which each peer shares its contents with all members,
and queries are propagated only once to a group. By
avoiding query duplication, directing queries to disjoint
groups, and exploiting peers’ heterogeneity, SplitQuest
is able to achieve high levels of recalls and low response
times, while incurring very low overhead. We simu-
late SplitQuest using synthetic and traces of real-world
topologies and show that it outperforms the best known
solution in number of messages, response time, number
of hops, and success rate for query resolution, while be-
ing resilient to high churn rates. We also derive upper
bounds on query routing for SplitQuest.

1 Introduction
In recent years, peer-to-peer (P2P) systems have emerged
as a powerful networking paradigm that allows shar-
ing of a multitude of resources at the edge of the In-
ternet in a completely distributed manner. More impor-
tant, this new paradigm gave life to several new and ex-
citing applications, such as instant messaging, internet
phone (Skype), video distribution, distributed computa-
tion (SETI@Home), and many others. Concomitantly,
end users have become enthusiastic producers of infor-
mation that needs to be shared with the rest of the world.
This last fact is particularly evident if we consider the
increase in the number of personal blogs and Wikis in
the Internet. To maintain these sources of information,
users still rely on centralized infrastructure. One of the
reasons is because, despite numerous research efforts, ef-
ficient complex queries in P2P networks still remain an
open and challenging problem.

Search in structured P2P networks has elegantly and
efficiently been solved for hash-based queries [6, 5].
However, the overhead of keeping a well defined topol-

ogy, in which peers have to maintain many pointers to
other peers in a dynamic population, is often a source of
criticism. Moreover, the query semantic is very limited,
since a user must know exactly the name of the object to
determine the rendezvous peer responsible for keeping a
replica of the object or its reference. Complex queries,
composed by multiple keywords, can be implemented,
but at higher, and sometimes prohibitive, costs.

Exhaustive search has been recently introduced for un-
structured P2P networks [3, 8] as an effective and reli-
able search method. In this type of search, a query is
evaluated against all data in the network and each peer
is free to choose a local search algorithm. The query
semantic is greatly improved, in comparison with hash-
based queries, since sophisticated algorithms can be run
locally in each peer. However, the most efficient solu-
tions rely on random walks [3], or their variants with
multiple branching factors [8], to provide probabilistic
guarantees. As it is well known, random walk is a blind
search method that may visit the same peer more than
once, generating unnecessary overhead, and that does not
guarantee network coverage, unless a significant number
of messages is generated. Moreover, both solutions repli-
cate large amounts of data on random peers in order to
reduce query response time and improve query success.

In this paper, we propose SplitQuest, an exhaustive
search protocol that relies on a hybrid structure to avoid
unnecessary query duplication and to guarantee network
coverage in P2P networks. In SplitQuest, peers are
uniquely identified and placed uniformly on a virtual
ring. This lightweight structure is embedded on a ran-
dom graph in which peers also keep connections to other
randomly selected peers, as in a pure unstructured P2P
network. The number of random connections of each
peer varies depending on its available resources. This
heterogeneity of peer connections is intelligently ex-
plored by SplitQuest, which aggressively propagates
queries on highly connected peers. Moreover, the simple
structure allows SplitQuest to direct queries to specific
parts of the network, avoiding the overhead of query du-



plication that is present in blind search methods, as ran-
dom walks.

SplitQuest also relies on replication to achieve high
levels of recall and to speed up query resolution. Peers
are organized in replication groups, in which each peer
shares its contents with all members of the group.
Groups are formed by peers on a contiguous segment of
the virtual ring. The length of the segment determines the
size of the group and, consequently, the tradeoff between
index replication and query overhead.

2 The SplitQuest Protocol
A replication strategy in a P2P network, coupled with
a search protocol, must ensure that a query is evaluated
on every data. In structured P2P networks, a query is
directed exactly to a peer where the sought object is sup-
posed to be installed. As it is well discussed in the lit-
erature, the query semantic in this case is very limited,
because objects can be queried only on their hash val-
ues. Unstructured P2P networks, on the other hand, offer
a richer semantic at a higher cost of replicating meta in-
formation on several peers or flooding a query to a large
fraction of peers. Sublinear solutions in unstructured net-
works [3][8] replicate meta information on a random set
of peers and, similarly, query another set of randomly
selected peers. These solutions rely on random walks to
offer probabilistic guarantees. Random walk, however,
is a blind search method that does not guarantee network
coverage and does not prevent a query to be evaluated at
the same peer more than once, generating unnecessary
overhead.

SplitQuest avoids the overhead of previous search
methods by imposing a lightweight structure on a mostly
unstructured network that allows queries to be directed
to specific and distinct parts of the network. In ad-
dition to random connections, normally present in un-
structured networks, SplitQuest places peers on a virtual
ring, i.e., each peer has a predecessor and a successor,
and uniquely identifies them with identifiers in the inter-
val [0, 1]. Moreover, peers store the IDs of their neigh-
bors locally. This might look similar to structured net-
works, but as it will be discussed in the next sections,
our approaches to peer join, data replication, and query
propagation are rather different. Peer connections are
still random, there is no well defined routing substrate,
and queries are loosely and randomly propagated in the
network. Most importantly, SplitQuest allows richer
queries, not limited to hash values, since each peer is free
to execute the most convenient local search algorithm.

2.1 Index Replication
The basic assumptions in SplitQuest are that peers are
uniformly distributed in the interval [0, 1] and that each

peer can estimate the network size (n). Network size es-
timation is a well-studied problem and can be solved by
different approaches, as described in [8] and references
therein.

Index replication in SplitQuest is performed on a set
of random peers located on a contiguous subinterval of
the [0, 1] interval. When peers are uniformly distributed
in the whole interval, the expected number of peers in a
contiguous subinterval is proportional to the subinterval
length. Consequently, the basic problem in this case is
to determine the subinterval length, or more specifically
the replication group size, that minimizes the overhead
of index replication and query propagation. When n is
known, the subinterval length with expected number of
peers equal to d is given by d/n. Let d be the group size,
and q be the number of groups in the network. The to-
tal number of messages to replicate and query an object,
M = q + d, is given by

M =
n

d
+ d

It is easy to see that d equals to
√

n minimizes M . When
query and data messages have different sizes, for in-
stance b1 and b2 bytes respectively, the value of d that

minimizes the total byte overhead is given by
√

b1
b2

n.
Figure 1 illustrates how peers are organized in replica-
tion groups in the interval [0, 1].

d/n d/n d/n
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Figure 1: Replication groups in SplitQuest.

Groups in SplitQuest are numbered from 1 to dn
d e, and

a peer’s group can be computed by d ID×n
d e, where

ID is the peer’s identifier in the interval [0, 1]. To install
a reference to an object, a peer i sends installation mes-
sages to its immediate neighbors, peers with IDs smaller
and greater than i, if they belong to the same group. The
immediate neighbors of i check and forward the received
messages if their neighbors are also in the same group,
messages are not forwarded to peers already visited. The
process is repeated until all peers in the group receive a
copy of the reference.

2.2 Search Algorithm
Peers in SplitQuest replicate their contents in other peers
in the same group. As a result, queries related to the con-
tent of a group can be answered by any group member.
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Figure 2: Query propagation in SplitQuest.
.

This replication strategy greatly simplifies query propa-
gation, inasmuch as a query will be answered with cer-
tainty, positively or negatively, if it reaches any peer in
each group. Therefore, the search algorithm must ensure
that each group is visited at least once, and preferably no
more than once. To guarantee that each group is visited
only once, SplitQuest uses two different artifacts: search
by interval and group shortcuts.

Search by interval means that each query message car-
ries an interval [X, Y ] the query has to cover. When a
peer i receives a message with the interval [X, Y ], it in-
spects its connections and determines which neighbors
are within the received interval. These neighbors are
possible candidates for query forwarding. Next, peer i
computes the group IDs of the possible candidates and
keeps only one peer for each different group, the choice
to which peer to keep is random. Depending on the se-
lected groups, peer i breaks down the initial interval and
sends subintervals to each one of the selected peers. Fig-
ure 2 shows a simple example of a query propagation,
only a small set of peer connections are shown. The
query starts at peer a that is connected to peers b, e, and
g and that has to cover the whole [0, 1] interval. Peer
a builds three messages with intervals [0, x4], [x5, x8],
and [x8, 1] and sends them to peers b, e, and g respec-
tively. Peer b sends a message to c with interval [0, x2],
and peer e sends a message to f with interval [x6, x8].
Finally, peer c sends a message to d with interval [0, x1],
and peers b and f have to cover the remaining subinter-
vals ([x2, x3] and [x6, x7]).

In the example above, peer a has only three connec-
tions. If the number of connections were greater, the
query could have been propagated to many other inter-
vals, and, consequently, the query response would be
faster. It is important to emphasize that the other peers in
the figure may have several other random connections,
we chose to show only the connections used to propa-
gate the query. The hidden connections could be to other
peers in intervals already covered in the current query, to
groups not shown, or to peers in the same groups as the
peers shown in the figure. Moreover, the split process al-
ways tries to build subintervals with the same sizes. This
split process avoids long paths caused by uneven distri-

butions and, consequently, speeds up query resolution.
Another artifact used by SplitQuest to improve query

performance is group shortcuts. Peers build shortcuts
(direct connection to other peers) to the two adjacent
groups to the group to which they belong. These short-
cuts guarantee that there is always a group path, i.e., a
path in which a new hop covers a new group, between
two different groups, and avoid that a query bounce sev-
eral times inside a group. A peer with ID w can build
shortcuts to adjacent groups by connecting to peers with
IDs w +1/d and w− 1/d, or to peers with IDs closest to
these values if the peers with the exact computed IDs are
not present in the network. In these cases, the IDs must
be appropriately fixed.

2.3 Analysis
In SplitQuest, groups are visited only once. If we con-
sider the group connections, built as random connections
at the peers visited during a query, we can model query
propagation to the different groups as a broadcast in a
random tree. At each step of the algorithm, the groups
are partitioned based on a peer’s connection and on the
interval it has to cover.

Theorem 1. Any query in SplitQuest can be solved in
O(log n) steps.

Proof. Consider G as the number of groups to be visited.
Initially, G is equal to the total number of groups. Each
gk represents the cardinality of a set of groups that cov-
ers non overlapping intervals. When a query starts at a
peer i, it has to visit a set of G disjoint groups. This set is
randomly split into R subsets, which depend on the con-
nections of i, with distribution given by P (R = r) = pr,
where pr is a probability distribution on {1, 2, . . .}. Con-
ditionally on the event {R = r}, for 1 ≤ k ≤ r, a
group is in the k-th subset with probability Vk,r, where
Vr = (Vk,r; 1 ≤ k ≤ r) is a random probability vector
on {1, . . . , r}. If Nk is the cardinality of the k-th sub-
set, then, conditionally on the event {R = r} and on
the random variables V1,r, . . . , Vr,r, the distribution of
the vector (N1, . . . , Nr) is multinomial with parameters
G−1 and (V1,r, . . . , Vr,r) [4]. The analysis of the height
(HG) of the induced random tree for a general distribu-
tion of R is very intricate and is generally obtained by
complex analysis techniques [4]. When r is in {1, 2},
which means that there are at most two branches at each
broadcast step, we can obtain a more conservative upper
bound. Devroye [2] shows that when r is in {1, 2} the
height of the tree is bounded by O(log G), more specifi-
cally Devroye [2] shows that

lim
G→∞

P{HG > c log G} = 0

where c is a constant. A stronger result is derived in [1],
where it is shown that HG/ log G → 4.31106 . . . in
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Figure 3: Maximum distance in hops a query travels
from the starting peer in SplitQuest for different branch
factors. The top lines are the theoretical bounds for
1000k and 100k peers respectively.

probability. Due to space limitation, we refer the reader
to [1] for more details on the analysis.

It is easy to see the above derived upper bound is
also an upper bound for the farthest (number of hops)
a query travels in SplitQuest. Since SplitQuest can for-
ward a query to more than two groups, the upper bound
is, in fact, very conservative. Figure 3 shows results
to the maximum number of hops a query travels from
the starting peer in networks with 100k and 1000k peers
and when the maximum number of branches is increased
from 2 to 10.

3 Preliminary Results

In this section, we present numerical results for the
comparisons between SplitQuest and Bubblestorm. We
show results for three metrics (number of messages, suc-
cess rate and latency) under three different topologies
(trace [7], regular and power-law) and under different
churn scenarios (static and churn). In all figures below,
the x-axis represents different network sizes and the y-
axis represents a specific measure computed as the aver-
age of 11 independent runs. To be fair in our comparison,
we borrowed most of the simulation parameters from [8],
including churn rates and network sizes.

In Figure 4, we show results for the number of mes-
sages when 5000 articles are inserted in the network. For
each article, a query is started 100 seconds after the arti-
cle is inserted. The total number of messages presented
is the sum of data and query messages during the whole
simulation time, we observed similar behavior for the to-
tal traffic. We can see that, in all three topologies and
network sizes, the number of messages for SplitQuest is
almost the same. We can in fact see the three lines as
the single line at the bottom of the figure. This behav-
ior is easy to understand, since SplitQuest uses only the
network size as its parameter to determine the number of
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Figure 4: Number of messages with churn.

replicas and query messages. An important conclusion
we can infer from the figure is that the number of mes-
sages SplitQuest generates is independent of topology
(at least for the three cases we studied) and independent
of particular parameters of peers, such as degree distribu-
tion (as BubbleStorm which uses a protocol based on de-
gree distribution and on a certainty factor). We can also
observe in Figure 4 that SplitQuest outperforms Bub-
bleStorm in all three different topologies. The gains vary
from 50% up to 52% in the regular topology, from 53.5%
up to 55.5% in the trace topology, and from 22.5% up to
30.5% in the power-law topology.

The success rate in a dynamic scenario (with churn)
can be observed in Figure 5. We observe that, for
SplitQuest, the success rate is over 99.8%, which repre-
sents a decrease of approximately 0.17% in comparison
with the static scenario (not shown and which yielded
100% of success rate). This decrease can be explained by
peers leaving the network while they are still processing
data or query messages. A peer that receives a data repli-
cation message has to distribute the data to other peers
in the group. If the peer leaves, peers not yet covered
may not receive the message. Furthermore, a peer that
leaves the network may not forward a query message to
other peers in the interval it has to cover. Even though
BubbleStorm replicates more data and query messages
than SplitQuest, it does not achieve success rate higher
than 98.5%. This result is mainly due to the blind search
method it uses that does not explore all possible peers
(the success rate in BubbleStorm can be increased, but
with an additional increase in query or data messages).
The results also show that SplitQuest is resilient to peer
joins and departures, and that it keeps high success rate
even under churn.

One of the most important characteristic of Bub-
bleStorm is the low latency in query resolution, it im-
proved significantly the response times for exhaustive
search in comparison with the first approach based on se-
quential random walks [3]. SplitQuest is able to achieve
even lower times, as can be seen in Figure 6. This
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Figure 6: First-match latencies in hops for the three different topologies and under churn.
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reduction in latency is possible because SplitQuest ag-
gressively exploits the heterogeneity of peers and spread
query messages much more quickly than BubbleStorm.
High-degree peers are able to send a query message to
several different groups in one single step. Moreover,
the directed search avoids loops and rapidly cover all the
groups in the network. The ability to explore the het-
erogeneity of peers is more evident when we compare
the latencies in the regular topology with the latencies in
the power-law topology. Since the power-law topology
contains peers with up to 800 connections, SplitQuest is
able to solve a query with up to 4 fewer hops than in the
regular case.

For all topologies and network sizes,
SplitQuest presents better results in terms of times
and hops than BubbleStorm. The best improvement
is observed in the power-law topology, in which the
latency is reduced by approximately 59%. The worst
case happens in the regular topology, but SplitQuest still
outperforms BubbleStorm by approximately 11%.

4 Conclusion and Future Work

An initial implementation of SplitQuest appears promis-
ing, but there are still several questions we need to ex-
plore. Our future work includes a more detailed analysis

of SplitQuest’s replication strategy. We plan to extend
our replication strategy and analyze the impact of repli-
cating data in more groups in the network and also in
groups of different sizes. The metrics evaluated in this
work will most likely be affected, as higher number of
replicas should offer more options for search messages
to be spread in the network. Moreover, object popularity
should offer another important dimension to be explored,
since popular objects do not need to be replicated at the
same rate as rare objects.
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