
A Middleware for Gossip Protocols

Michael Chow
Cornell University

mcc59@cornell.edu

Robbert van Renesse
Cornell University
rvr@cs.cornell.edu

Gossip protocols are known to be highly robust in sce-
narios with high churn, but if the data that is being gos-
siped becomes corrupted, a protocol’s very robustness
can make it hard to fix the problem. All participants
need to be taken down, any disk-based data needs to be
scrubbed, the cause of the corruption needs to be fixed,
and only then can participants be restarted. If even a sin-
gle participant is skipped in this process, say because it
was temporarily unreachable, then it can contaminate the
entire system all over again. We describe the design and
implementation of a new middleware for gossip proto-
cols that addresses this problem. Our middleware offers
the ability to update code dynamically and provides a
small resilient core that allows updating code that has
failed catastrophically. Our initial PlanetLab-based de-
ployment demonstrates that the middleware is efficient.

1 Introduction

Gossip or epidemic protocols provide state updates in a
scalable and reliable manner [4, 5, 7]. However, this very
property can make the management of gossip applica-
tions cumbersome. Unlike other systems, where com-
ponents can be updated one at a time, updating a gossip
protocol that has gone bad often requires taking down the
entire system and redeploying.

For example, the Amazon S3 storage system makes
use of a gossip protocol to disseminate server state infor-
mation. During the course of a system outage on July 20,
2008, some server state information became corrupted,
possibly due to a spontaneous bit flip. A corrupted value
began disseminating causing servers to fail. The entire
system needed to be shut down and on-disk state infor-
mation fixed on every machine before the system could
be brought back. The system was down for more than 6
hours before service could be restored [2].

We often see these kinds of scenarios when develop-
ing our own gossip-based applications. Small bugs in
the system that cause a local data corruption can create

a poison pill that infects the entire system like a mali-
cious virus and results in significant overhead when try-
ing to fix the problem. We desired a solution with which
we could robustly repair such problems. Our idea was
to gossip new code that fixes the corruption and restores
service, but the challenge was how to gossip the code
when the very gossiping infrastructure is broken.

In this paper we propose a layered middleware for gos-
sip protocols with the capability of rapid code updating.
Our Java-based implementation provides a flexible and
resilient framework for developing gossip applications
and allows for robust management of gossip protocols.
The code updating scheme makes use of gossip to dis-
tribute code, inspired by Trickle, an algorithm for prop-
agating code updates in wireless sensor networks [9].
The code updating scheme is managed in the bottom-
most layer of our middleware. We call this layer the core.
Since it alone cannot be updated dynamically, many of
our design decisions are driven by the desire to keep the
core to be small and simple.

In Section 2, we describe how versions of code are de-
scribed. The architecture of the core is described in Sec-
tion 3. In Section 4, we look at the performance overhead
of our middleware. We discuss related work in Section 5,
and conclude in Section 6.

2 Code Versions and Deployments

Our middleware can support a collection of concurrently
running gossip-based applications, each of which is im-
plemented by a module. Modules can interact, as we will
describe later in Section 3.3. Modules can also be up-
dated, and in this section we describe how versions and
deployments of modules are described.

Each module has a name that uniquely identifies it to
the core. A version of the module consists of a set of
immutable Java class files that we call a code archive.
Each class file is stored as an instance of a wrapper class,
which contains the byte data of the class as well as the

1



class name and size. One class is designated as the mod-
ule class. The module class implements the Module in-
terface, which describes how the core can interface with
the module.

A deployment of a module is a tuple consisting
of a module version and a deployment number that
uniquely identifies the deployment. The deployment
number itself is a tuple consisting of the time the de-
ployment was initiated and the ID of the node that ini-
tiated the deployment (the node that initially loaded
the code). Deployment numbers are unique and or-
dered lexicographically. See Figure 1 for an ex-
ample. The core maintains a mapping of module
name and deployment number to the corresponding
code archive: (Deployment Number,Module Name) →
{Class1,Class2, ...}.

Figure 1: Example of a module. A module is identified
by a unique module name, gossip.GossipLayer, and its
deployment number <12252009,81724612051>. These
two identifiers map to a set of classes.

It is important to distinguish between versions and
deployments of a module. For example, suppose our
system is initially running version v1 of a module with
deployment number d1. We update our module with a
newer version v2. The core then proceeds to deployment
number d2. Next we discover a bug in our module and
decide to roll back the code to version v1. We proceed to
update our system with code corresponding to v1, using
deployment number d3. Thus, deployment numbers do
not correspond with versions and different deployment
numbers may map to the same versions of the code.

3 Core Architecture

The core manages modules and mediates in gossip be-
tween modules of the same type at different nodes.
The core itself is a module, and indeed can gossip au-
tonomously with cores on peer nodes. Because the core
cannot be updated, the services provided by the core
should be small and simple. If there is a bug in the core,
then the entire system must be taken down so that the bug
can be fixed, and we are trying to keep this to a minimum.

In our prototype, the core system is just under 2000 lines
of Java code (not counting standard Java libraries that we
use). This includes code for loading and managing code
updates.

A configuration file contains the list of modules, their
current versions (identified by hash codes of the corre-
sponding class files), and a deployment number. The
configuration file determines which modules and corre-
sponding versions are currently running. The configu-
ration file has its own system-wide deployment number,
which maps to a list of modules and their versions. The
system-wide deployment number allows nodes to iden-
tify whether or not their configuration is up-to-date. The
core also maintains some information it needs to gos-
sip autonomously, such as the location of rendezvous
nodes for bootstrapping and a list of membership hints
(see Section 3.2).

The core provides a small set of functions to the mod-
ules that it is running. This includes a function to gossip
with another destination. We describe these functions
below.

Figure 2: The core system demultiplexes messages to
specific modules depending on the unique module name.

3.1 Gossip and Code Update

The core acts as a standard HTTP web server, listening
on a configured port number. The URI in each HTTP
request starts with a module name, and the core for-
wards the request to the corresponding module and have
it serve the request. The demultiplexing function of the
core is illustrated in Figure 2. The core itself acts as a
module using the reserved name core. The core offers
a web interface for access to information such as loaded
modules and deployment numbers. An example of an
HTTP request for the core’s configuration file is: GET
/core/config HTTP/1.1

Gossip, too, happens using HTTP GET and POST
requests between matching modules on two different
nodes. A gossip request contains the deployment num-
ber of the source of the request. On receipt, in the com-
mon case that the deployment numbers match, the core
demultiplexes the message and delivers it to the module

2



Figure 3: The core maintains a configuration file that lists all of the modules and their versions. It also keeps a list of
rendezvous servers and membership hints provided by its modules.

identified in the HTTP request. The module generates a
response that is returned to the requesting peer.

If the deployment number in a request does not match
the deployment number of the local configuration file,
the receiver determines which of the two nodes has the
more recent configuration. Using HTTP messages, the
more recent configuration file is transferred to the peer,
and the missing class files are requested and transferred.

Code updating is implemented through Java class
loading. A custom class loader searches the appropri-
ate code archive for the module class, and then loads and
instantiates the class. The core provides the ability to
transfer module state from an old version of the module
to a new one. For example, an application may have built
up a membership view over some period of time and for
good continuing performance it is important that the new
module can pick up from where the old module left off
as much as possible. Thus, in our Module interface we
provide two methods for transferring state. The method
signatures are:

public String transferState()

public void acceptState(String state)

It is up to the developer to decide what state should be
transferred, but we require that it is packed into a Java
String object to ensure that there will be no class con-
flicts. The core explicitly stops the old module before
any state is transferred. After the core transfers state in-
formation from the old module to the new module, the
core starts execution of the new module. This prevents
the old module and the new module from simultaneously
executing.

Alternatively, we could have provided a small data
store in the core, but we decided against this as we

wanted to keep the size and functionality of the core
small.

3.2 Gossip between Cores

As described, the code update functionality piggybacks
on existing gossips between modules. We designed it this
way to keep the core small. However, we do not want to
depend on existing modules for configuration and code
updates to work correctly, as modules may fail. Also,
initially the core will be running without any modules
other than itself.

The core implements a very rudimentary but robust
gossip protocol. For this it has a static list of rendezvous
nodes for bootstrapping purposes, and it maintains a
small list of membership hints. (Deployments typically
originate at rendezvous nodes although they can origi-
nate from any node.) The list of membership hints is
initialized with the addresses of the rendezvous nodes.
During normal operation, the core monitors successful
gossip exchanges between modules and adds addresses
to its membership hints. The core keeps this list of hints
relatively small (configured, but typically on the order of
two dozen addresses) and maintains the most recent ad-
dresses of successful gossip exchanges in there, as well
as the addresses of the rendezvous nodes.

Periodically, the core selects a random membership
hint and attempts to gossip with the core at the corre-
sponding address. If this fails, then the core removes
the hint from its list of hints. Note that if all else fails,
eventually the core will be gossiping with only the ren-
dezvous nodes. This ensures that the core can continue
to obtain configuration and code updates even if all its
modules fail, but will be inefficient as long as there is no
reasonably working gossiping module loaded.

3



3.3 Layers

It is often useful for different modules to make use of
each other’s services. For example, one module could
gossip membership, while another module could gossip
failure information, and yet another module could im-
plement an aggregation service. These modules could
make use of each other’s services rather than duplicate
functionality. In order to support this, our middleware
provides a layer abstraction in addition to the module ab-
straction. Modules can register, with the core, a Layer
interface that other modules can access. Indeed, the core
itself exports such a Layer interface. A module may use
multiple layers. See Figure 4 for an example.

The Layer interface is non-blocking and upcall-based.
For example, a Layer that implements membership in-
vokes an upcall to all interested modules whenever
membership changes. The interface calls are mediated
through the core so that individual modules can be up-
dated without affecting other modules, even dependent
ones.

Figure 4: Layers are simply modules, but they can pro-
vide an additional service to other modules. Layers must
also register with the core in order for the core to provide
code updating services.

4 Performance

We performed a series of tests in order to determine the
amount of additional overhead associated with provid-
ing automatic code updating. Using a prototype of our
middleware, we recorded all of the messages sent and re-
ceived by the core as well as all of the messages sent and
received by an application built on the core. The appli-
cation we are running is a simple membership protocol
that gossips membership views containing 30 members
and merges them (taking the union and each selecting 30
members at random, using self-reinforcement [1]). The
amount of overhead is the number of messages that the
core adds to the total message count from both the core
and the application. In a series of tests, we ran 100 in-
stances of our middleware on a local machine with 10

rendezvous nodes containing the loaded code to be dis-
tributed. The interval for gossips for the core was set to
10 seconds and 5 seconds for the membership module.
We started recording messages as soon as the node was
initialized so that we could measure the number of mes-
sages sent when code is being sent to the node.

Figure 5: The percentage of messages sent by the core
for code updates in a node.

In Figure 5, initially when there is an exchange of code
and when the application is first starting up, the messages
from the core represent a large portion of traffic. How-
ever, after the core has finished loading, the application
begins to dominate the traffic, as expected. The core no
longer needs to perform code updates and is only sending
out messages to check its configuration file periodically.

Figure 6: The figure above shows the propagation time
of code updates. The rendezvous nodes are shown all the
way to the left.

Next we look at propagation time of code updates and
how long it takes for code to propagate through the sys-
tem. Using the same gossip and code intervals from the
previous test, we measured how long it took for each
node to receive the code after creating a new deployment.

4



The times were recorded and measured. In the figure, the
rendezvous nodes loaded the new code separately at the
beginning. The graph shows the typical S-shaped propa-
gation behavior of gossip, starting slowly, then progress-
ing rapidly to reach the remaining participants.

5 Related Work

The code update mechanism that we use is similar to that
of Trickle [9], an algorithm used for propagating code
updates among wireless sensor nodes. Trickle gossips
metadata that describes the version of the running code.
Using the gossip, the wireless sensor nodes are then able
to detect whether they should broadcast code or request
code.

Our work is also related to mobile code and mobile
agents, although in our work we disseminate code sep-
arately from state (both using gossip). The objective in
mobile code systems is usually to bring code to the data,
rather than vice versa, in order to avoid moving large
amounts of data across the Internet [8]. In active net-
works, programs can be sent to a node in the network to
be executed or processed [3], so that the behavior of a
network can be controlled in a dynamic manner.

Gossip applications have been used in data aggrega-
tion, overlay maintenance, and resource allocation. Pre-
vious work has focused on trying to characterize a model
for gossip applications [5, 7].

Other gossip middlewares include GossipKit [10] and
T-Man [6]. GossipKit is an event-driven framework and
seeks to support a wide array of gossip protocols and
applications on various communication layers. It makes
use of a modular and inheritance approach to provide ex-
tensibility for different gossip applications [10]. In com-
parison, our work focuses on providing reliable code up-
dating with a layered-upcall architecture. T-Man is a spe-
cific gossip middleware for creating and managing dif-
ferent network overlays. Our work can be used to sup-
plement such specific gossip applications by providing a
reliable code updating service.

6 Conclusion and Future Work

Our modularized middleware provides the ability to
update code dynamically and allows for updating and
rolling back of different versions of gossip-based ser-
vices without having to take the system down, even under
catastrophic scenarios where the services have gone sour.

Future work includes offering NAT traversal through
a layer service. Another important issue is security, as
code may be disseminated from any node, but we can
address this by only accepting configuration files signed
by trusted authorities and using cryptographically secure

hashes to identify class files. We are also looking into
ways in which we can support updating the core module
itself, although it will be clear that doing so will have to
be done with utmost care, as roll-back may not be possi-
ble.

Acknowledgments
The authors would like to thank the anonymous review-
ers for their suggestions. This work was supported in part
by NSF TRUST, AFRL Castor, and AFOSR grants.

References

[1] A. Allavena, A. Demers, and J.E. Hopcroft. Correctness
of a gossip based membership protocol. In PODC ’05:
Proceedings of the twenty-fourth annual ACM sympo-
sium on Principles of Distributed Computing, 2005. ACM
Press.

[2] The Amazon S3 Team. Amazon S3 Availability
Event: July 20, 2008 [online]. Available from:
http://status.aws.amazon.com/s3-20080720.html

[3] K. Calvert, S. Bhattacharjee, E. Zegura, and J. Sterbenz.
Directions in Active Networks. IEEE Communications
Magazine, Special Issue on Programmable Networks, Oc-
tober 1988.

[4] A. Demers, D. Greene, C. Hauser, W. Irish, J. Larson,
S. Shenker, H. Sturgis, D. Swinehart, and D. Terry. Epi-
demic algorithms for replicated database maintenance, In
PODC ’87: Proceedings of the sixth annual ACM sympo-
sium on Principles of Distributed Computing, 1987. ACM
Press.

[5] P. Eugster, P. Felber, and F. Le Fessant. The “Art” of Pro-
gramming Gossip-based Systems. ACM SIGOPS Operat-
ing Systems Review. Volume 41, Issue 5, October 2007.
pp 37-42.

[6] M. Jelasity, A. Montresor, and O. Babaoglu. T-Man:
Gossip-based fast overlay topology construction. Com-
puter Networks. Volume 53, Issue 13, 28 August 2009,
Pages 2321-2339.

[7] A-M. Kermarrec and M. van Steen. Gossiping in Dis-
tributed Systems. ACM SIGOPS Operating Systems Re-
view, Volume 41, Issue 5, October 2007. pp 2-7.

[8] D. Lange and M. Oshima. Seven good reasons for mobile
agents. Communications of the ACM. Volume 42, Issue
3, March 1999. Pages 88-89.

[9] P. Levis, N. Patel, D. Culler, and S. Shenker. Trickle:
A Self-Regulating Algorithm for Code Propagation and
Maintenance in Wireless Sensor Networks. In Proceed-
ings of the First USENIX/ACM Symposium on Network
Systems Design and Implementation (NSDI), 2004.

[10] S. Lin, T. Francois, and G. Blair. GossipKit: A Frame-
work of Gossip Protocol Family. 5th MiNEMA Work-
shop, 2007.

5

http://status.aws.amazon.com/s3-20080720.html

	Introduction
	Code Versions and Deployments
	Core Architecture
	Gossip and Code Update
	Gossip between Cores
	Layers

	Performance
	Related Work
	Conclusion and Future Work

