
Birds of a fethr: Open, decentralized micropublishing
Daniel R. Sandler Dan S. Wallach
{dsandler,dwallach}@cs.rice.edu

Abstract
Microblogging, as exemplified by Twitter, is gaining pop-
ularity as a way to exchange short messages within so-
cial networks. However, the limitations of current mi-
croblog services—proprietary, centralized, and isolated—
threaten the long-term viability of this new medium. In
this work we investigate the current state of microblog-
ging and envision an open, distributed micropublishing
service that addresses the weaknesses of today’s systems.
We draw on traces taken from Twitter to characterize the
microblogging workload. Our proposal, fethr, connects
micropublishers large and small in a single global net-
work. New messages are gossiped among subscribers
using a lightweight http-based protocol. Cryptographic
measures protect authenticity and continuity of updates
and prove message ordering even across providers.

1 Introduction
Thanks to the phenomenal success of the Twitter service,
microblogging has emerged as a significant new form of
internet communication, yet it defies easy classification
or even explanation. At its most essential, a microblog
is a personal publication medium composed of very short,
ephemeral messages. Unlike a conventional weblog, how-
ever, microblogs are tightly bound to one another via sub-
scriptions: each user’s view of the system interleaves his
own published entries with the contributions of other mi-
crobloggers whom he has explicitly chosen to follow. This
opt-in, social networking model effectively resists abuse
while still allowing an off-hand comment to blossom into
a large public discussion.

Like blogging before it, microblogging has the poten-
tial to become mainstream within just a few years—a
“communication utility,” in the words of one of Twitter’s
founders [1]. Unfortunately, as useful and indispensable
as it has already become for early adopters, in its present
form it is unlikely to earn a permanent place alongside
email, instant messaging, and the Web. Today’s fledgling
microblogging offerings are centralized services, each a
single point of control and failure for its own isolated user
community. Twitter has earned some notoriety for its dif-
ficulties coping with its rapid growth, but its users are re-
luctant to move to more reliable competitors due to net-
work effects. If this popular new communication medium
is to survive and flourish, it must be rearchitected to be
decentralized, secure, reliable, and open to new service
providers.

In this paper, we begin by detailing the properties and

limitations of current microblogging systems, including
some early analysis of the microblogging workload de-
rived from several weeks of Twitter traces (Section 2).
This helps shape our proposed design for fethr, a sim-
ple but powerful architecture for general micropublishing
distributed across the Internet (Section 3). Finally, we de-
scribe our prototype implementations and sketch our fu-
ture plans for the protocol (Section 4).

2 Background
The Twitter service has been the subject of countless news
stories, blog posts—and, yes, Twitter updates—since its
launch in 2006. The model is deceptively simple: a
user may publish short messages—up to 140 bytes, just
enough text to fit in an sms—to others who have explicitly
subscribed to that user’s updates (“tweets” in Twitter jar-
gon). Subscribers will receive those updates via the Web,
on their cell phones, or via dedicated client software, as
they prefer. Each user’s “timeline” of messages is pub-
lished on the Web for bulk perusal, but updates are more
commonly consumed live, aggregated with the latest news
from each reader’s own idiosyncratic set of subscriptions.

Conceptually, the microblog falls somewhere in the
space between a public weblog, a cloistered chat room
or mailing list, and a private instant message exchange. It
is perhaps most akin to a more corporeal mode of social-
ization: casual hallway conversation. Indeed, Twitter’s
main interface is characterized by a single, simple text en-
try box whose accompanying prompt, “What are you do-
ing?”, sounds like the canonical beginning of an exchange
by the watercooler.

Even so, it has found use far beyond idle chatter. Twit-
ter has become an important tool for interacting with
broad groups of people, from companies using Twitter
for customer service [1] to musicians (large and small)
connecting with fans, to political candidates getting the
message out to supporters and voters. It has become a
source of immediate information on breaking news; Twit-
ter was awash in reports of the major 2008 earthquake in
China within seconds, before the shaking stopped—well
before information appeared on major news and geology
sites [10].

As Twitter’s userbase has grown (by a factor of 14 in
the last year [7]), dozens of competitors have quietly ger-
minated. They differentiate themselves by offering addi-
tonal features (e.g., the unique graphical timeline view of
plurk.com) or targeting different users (e.g., yammer.com,
which caters to corporate users). Identi.ca distinguishes it-
self by its open-source codebase, allowing easy creation

1

plurk.com
yammer.com
Identi.ca

of Twitter clones. The combined userbase of these ser-
vices, however, hardly approaches that of the Twitter jug-
gernaut.

Additionally, other web services with “social” fea-
tures (viz., subscribing to updates from other users) ex-
hibit traits of micropublishing; examples include the list
of saved pages on delicious.com or Google Reader, or a
flickr.com user’s recent photos. The FriendFeed aggre-
gator attempts to unify these various streams of public
data, allowing users to consolidate updates from their var-
ious social networking accounts into a single (copious)
view. Finally, Facebook—reigning champion of social
networks as of this writing—has, since the introduction
of the News Feed in 2006, presented each user with an
aggregate view of status updates and other recent changes
made by his friends. The News Feed feature was revised
in March 2009 to highlight and expand this feature [3];
the result, including a prominent text entry box (asking
the user, “What’s on your mind?”), is strikingly similar to
the Twitter experience.

Common to micropublishing services is their opt-in
subscription model. Unlike email, users receive messages
only from others whom they’ve previously explicitly de-
cided to follow (or “friend” in Facebook). A user’s circle
of contacts becomes his own unique view on the world,
a cross-section of hallway discussions and idle commen-
tary, all of it from sources of interest to that user.

2.1 Users and uses of Twitter
It is our goal to design a micropublishing infrastructure
that integrates many different microblogging services,
large and small. Real data taken from Twitter’s global
public timeline helps us understand the microblogging
community and workload that must be accommodated.

We collected trace data over a three-week period (3–25
Sep 2008) by polling, once per minute, a special url1 that
returns the 600 most recent public messages from all Twit-
ter users. Our data set contains 4,917,042 public messages
from 472,735 distinct Twitter users.

We first consider popularity in Twitter as measured by
the number of subscribers to a given user’s updates. As
is typical of popularity contests, the data resemble a Zipf
or power-law distribution. Figure 1 shows the cumulative
distribution of subscribership size across users observed
in our traces. We observe that roughly half of Twitter’s
users have ten or fewer subscribers; only ten per cent
have 100 or more. A very few “Twitter celebrities” (led
by cnnbrk,2 according to twittercounter.com) have tens or
hundreds of thousands of subscribers.

1We thank Alex Payne (@al3x), API Lead at Twitter, for access to
this resource.

2 @cnnbrk: a Twitter account used to post CNN breaking news, of-
ten before it reaches the cnn.com homepage. As of this writing (March
2009), cnnbrk has in excess of 622,000 subscribers.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1 10 100 1000 10000 100000

F
ra

ct
io

n

Followers + 1

Twitter users

Figure 1: CDF of Twitter users’ followers. 10% of users have 100
followers or more; 5% have 186; 1% have 598.

To understand the kind of traffic generated by this wide
spectrum of users, we added a second dimension: mes-
sage volume. Figure 2 plots messages vs. followers for
each individual Twitter user. The average user has about
100 subscribers and sent about the same number of mes-
sages. While there are anomalously high-output users
(usually robots such as rss feeds) and the aforementioned
highly-subscribed celebrities, there appear to be no users
who fall into both categories. (Verbosity appears some-
what anathema to popularity.) We note finally that a few
users have a high message-follower product; they gen-
erate the greatest per-capita proportion of Twitter traf-
fic, and we must take steps in our design to accom-
modate these high-impact users (and their subscribers)
even though the lion’s share of Twitter users make much
smaller demands on the microblogging service.

2.2 Limitations of modern microblogging
Twitter, and all other existing microblogging websites, are
centralized systems. They may use distributed systems
internally to manage load, but from the standpoint of the
user, they are monolithic black boxes with a concomitant
set of drawbacks and limitations:

The service is a performance bottleneck and central
point of failure. Twitter has a history of sluggishness
or outright downtime, particularly during times of excep-
tional load. For example, as many as 3% of page re-
quests in June 2008 yielded “over capacity” errors (Twit-
ter’s now-famous “fail whale” image [11]). To mitigate
performance issues, Twitter has been forced to take dras-
tic measures, including rate-limiting, retraction of fea-
tures that have proven difficult to scale (e.g., xmpp ser-
vice), and controlled partial outages (i.e., turning off cer-
tain features). As of late 2008, Twitter continues to im-
prove its performance, but its steadily-growing userbase
seems to hungrily consume the additional capacity. While

2

delicious.com
flickr.com
twittercounter.com
http://twitter.com/al3x
http://twitter.com/cnnbrk
cnn.com

Figure 2: Twitter users in message-follower space. A rough
centroid exists: most users have about 100 followers and sent
about 100 messages during this three-week trace.

such growing pains are not uncommon for new web apps,
users will benefit greatly from a system that does not de-
pend completely on a single service provider. Similarly,
security breaches (such as the recent compromise of an
administrative account that allowed several dozen high-
profile Twitter accounts to be hijacked [12]) threaten all
users of such a centralized system.

Poor design decisions are forced on everyone. Cen-
tralized and distributed systems alike will enforce archi-
tectural decisions for all users, but Twitter also applies
higher-level limitations that are not strictly necessary but
users are powerless to change. For example:

• To shorten messages, Twitter automatically replaces
urls of a certain length with TinyURL contractions,
whether or not users want this behavior (and associ-
ated dependency on tinyurl.com).
• Twitter has a public API for third-party clients, but it

has constraints (rate limiting, for example) that hin-
der external development and make some extensions
difficult or impossible to realize.
• Twitter has a simple “reply” syntax: if Alice prefixes

a message with the text @Bob, that message is as-
sumed to be a reply to Bob’s most recent message at
that time. The Twitter API is slightly more flexible
here, as it allows client software to supply an arbi-
trary message ID as the replied-to message, enabling
a “reply to this tweet” feature in te gui. However,
only one parent is allowed, and it is not possible to
walk the links in the opposite direction (looking for
replies).

Network effects prevent users from leaving. As men-
tioned earlier, Twitter now has many contemporaries:
competitors offering additional features, better uptime,
faster page loads, or simply an alternative to the dominant

service. Unfortunately, these systems are unable to talk
to one another, and so network effects become powerful
influencing factors in user behavior. The intrinsic value of
joining Twitter—that is, the benefit it offers a single user
in a vacuum—is small, and likely similar to other services.
But that value is massively amplified by the presence of
other users with whom each new user may interact. Once
dominant players are established, new competitors find it
impossible to gain ground. The likely result is something
akin to the current im landscape: a few large services that
do not interoperate, forcing users to maintain accounts on
each to ensure connectivity to everyone.

Alternatively, modern internet email has escaped this
Balkanized fate by inheriting a venerable set of proto-
cols for interoperation. There are indeed a small num-
ber of quite large providers of email (Yahoo!, Hotmail,
and so on), but thanks to smtp, rfc 2822 and mime mes-
saging, users need not acquire separate email accounts on
each service to communicate with users of those services.
Furthermore, the burden of handling email is distributed
across the world; small servers are suitable for individu-
als or small organizations, while major webmail providers
may apply datacenter-scale techniques to satisfy a giant
userbase. Users are free to migrate from one provider to
another in search of better performance or more features;
local failures only impact local users. We wish to achieve
similar properties in the evolution of microblogging.

3 FETHR
3.1 Objectives
We seek a robust decentralized infrastructure for microp-
ublishing in order to better support the remarkable inter-
est in this new medium. It is imperative that we connect
today’s isolated services in a distributed, global, interop-
erating ecosystem—a model that has been demonstrated
to be effective and enduring by the Web and email. We
are emphatically not trying to improve the performance
of any one microblogging service (e.g., Twitter); rather,
we wish to admit new providers, freeing users to choose
any available service (or perhaps start one of their own)
without abandoning the dominant user community.

A successful design will have the following properties:

Decentralized. It must not rely on a single service for au-
thentication, publication, or subscription to updates.

Robust. It must continue to function when some of its
participants are unavailable or malfunctioning.

Secure. The authenticity, integrity, and completeness of
any publisher’s updates must be preserved by the sys-
tem and independently verifiable by subscribers.

Abuse-resistant. The system must not allow bad actors
to significantly decrease the quality of service offered
to other users. The nuisance and spamming capabil-
ity of attackers must be minimized or eliminated.

3

tinyurl.com

FETHR address:
http://example.com/alice

alice

FETHR address:
http://another.example.net/bob

bob
POST /bob/subscribe
id=http://example.com/alice

GET /bob/profile
(a)

alice

chuck

diane

bob

POST /alice/push

POST /chuck/push

POST /diane/push

POST /alice/push

POST /diane/push

(b)

bob

?

(c)

Figure 3: FETHR publishing. In (a), Alice collects information
about Bob by requesting his profile, and then subscribes by post-
ing a subscription request containing her canonical url. When
Bob wishes to publish updates (b), he pushes new signed mes-
sages to his subscribers using http POST. To control the costs of
publishing to many recipients (c), Bob may push new messages
to a subset of his subscribers who then gossip those updates.

Timely. Updates must be distributed to subscribers
promptly; hard real-time guarantees are unnecessary,
but delays of more than a few minutes will severely
impact the utility of a micropublishing system.

Interoperable. The protocol design must allow existing
micropublishing and microblogging services to in-
teroperate, allowing users of service A to subscribe
to any number of users of service B.

Flexible. While current microblogging services tend to
contain a single 140-byte payload, other content may
be desirable.

3.2 Functional description
fethr (Featherweight Entangled Timelines over http Re-
quests) is our protocol design for distributed micropub-
lishing. Users of web applications that understand the
fethr protocol are able to subscribe to one another’s up-
dates as if they were members of the same conventional
centralized microblogging service. We term this global
federated service the “fethr publishing network.” At a
high level, the fethr network involves the following en-
tities and functions [illustrated in Figure 3 (a) and (b)]:

• Individual users participating in fethr may fill the
role of a publisher, subscriber, or both. (Note that
many publishers may in fact be users of the same
multi-user service; for example, a fethr-enabled
Twitter would host many thousands of publishers.)
• A fethr publisher maintains a local timeline of en-

tries. The content of these entries is unspecified; for
a microblog they would likely include fragments of
plain text or html. Whatever the payload, the pub-
lisher must wrap it in a digital signature to allow sub-
scribers to validate the entry’s authenticity.
• Each publisher provides a canonical urlwhere those

entries and other peripheral information can be found
in human-readable (viz., html) format.
• This url also serves as the publisher’s “address”; it is

a rendezvous point for fethr clients to consume en-
tries and other metadata in a machine-readable for-
mat (detailed below).
• One or more fethr participants, given the publisher’s

canonical url, can ask the publisher to be subscribed
to (viz., “follow”) her updates.
• The publisher is responsible for distributing new en-

tries to each subscriber.

3.3 Message distribution
We decide in fethr to adopt the strategy of messaging sys-
tems (email & im) in pushing the entire contents of updates
to subscribers rather than merely notifying subscribers of
new information. Micropublications are often short, so
a notification and the full message text are of roughly
the same size; furthermore, by replicating updates among
subscribers, we allow that data to be reviewed (or relayed
to new subscribers who did not originally hear it) if the
original publisher later becomes unavailable. Currently,
when a microblog service goes offline, users are unable
to even read old messages without the help of some local
cache, such as a desktop client.

Even with small microblog updates, there exist scenar-
ios in which distribution load is of concern. For small
readerships—a few hundred subscribers—serial unicast is
quite tolerable. However, while the traces presented in
Section 2.1 show that this accounts for the vast majority
of Twitter users, there are outliers with readerships in the
tens or hundreds of thousands. Subscriber-assisted redis-
tribution of messages is therefore an essential feature for
these users who find themselves so popular that pushing
updates directly to every subscriber becomes intractable.
(Worse still would be a polling-based architecture such as
rss, in which popularity brings with it many redundant
update requests even when no update is available [8].)
fethr subscribers may therefore propagate public up-

dates via gossip. Gossip is well-established as a

4

lightweight mechanism for achieving eventual consis-
tency in distributed systems, and is quite resilient in case
of network failures and asymmetries. A fethr publisher
may elect to send a message only to a subset of her sub-
scribers, with the instruction (embedded in the signed
message) that the message should be gossiped to other
subscribers. By limiting her fanout, the publisher con-
trols publishing load and bandwidth requirements while
still ensuring that all subscribers receive the message with
very high probability. (The necessary fanout has been
shown to be logarithmic in the size of the overall sub-
scribership; the probability of success may be tuned by
adding a small constant number of additional recipients to
the fanout [4].) Subscribers who never receive an update
via gossip can detect this situation (by observing a ces-
sation of updates) and take action, such as contacting the
publisher directly.

We note that gossip is not the only point in the de-
sign space. Application-level multicast trees guarantee
that updates reach all subscribers in a logarithmic number
of steps without unnecessary traffic, but additional com-
plexity is typically necessary to maintain the system (e.g.,
multicast tree repair; upkeep of a structured routing over-
lay). Furthermore, redundancy must be reintroduced in
order to survive failure and attack. However, in low-churn
situations with very many subscribers, extremely high up-
date rates, or more real-time requirements, this may be
a reasonable approach, and such a propagation strategy
could easily be layered atop fethr.

3.4 Security features
The presence of untrusted third parties in the update dis-
tribution path requires additional measures to safeguard
against attack. To guarantee authenticity, publishers in-
clude digital signatures with each update. This is not suffi-
cient to defend against suppression of individual updates,
so fethr also links a publisher’s entries together in a hash
chain.

Each entry published in fethr includes the crypto-
graphic hash of one or more of that publisher’s prior en-
tries, establishing a provable partial ordering over those
entries (and a total ordering if every message succeeds
exactly one other, save the first). A publisher’s timeline
is therefore a kind of secure log [2, 9] in which the most
recent entry serves as an authenticator for her entire his-
tory. These chains allow subscribers to identify gaps in a
publisher’s timeline (introduced by the intentional or ac-
cidental failure of intermediaries to pass along updates).

Although a simpler mechanism such as sequence num-
bers would achieve the same effect, hash chains offer ad-
ditional useful properties. First, authenticators allow us
to verify that a publisher has not retroactively modified or
elided any entry from his timeline. While current Twit-
ter users may not be overly concerned with the historical

integrity of timelines, we believe a more general microp-
ublishing service will benefit from such a property, partic-
ularly if we create dependencies between timelines from
different publishers.

Therefore, a fethr publisher includes hashes of prior
events from other participants in addition to his own,
weaving many individual timelines into a single dag span-
ning the entire fethr network. With their timelines thus
entangled [6], different publishers can now establish a
provable order between their messages in the manner of
Lamport’s logical clocks [5], giving our platform times-
tamping and notarizing properties.

We reuse this notion of explicit pointers between
events to represent and reconstruct threads of conversa-
tion, which abound on Twitter but (as noted in Section 2)
are often inferred based on cues in the message text.
fethr makes these relationships explicit by also includ-
ing in each message the authenticator of any number of
related messages, permitting reconstruction of the entire
conversation—something not easily achieved at present.

3.5 Adoption; incentives
While fethr represents an entirely new protocol for mi-
cropublishing, it is one that maps neatly onto existing sys-
tems like Twitter, with good reason: it is Twitter’s large
community that most contributes to its continued success,
and it is our explicit goal to include those users. We there-
fore intend for current microblogging systems to add sup-
port for the fethr api to their offerings. Every existing user
of a system like Twitter would become a fethr publisher:
Twitter would respond, for each user, to fethr queries and
push fethr updates.

As the pioneering microblogging example, Twitter is
unlikely to suffer much from the arrival of competitors;
in fact, the profile of microblogs can only be raised by a
larger group of users who can all talk to one another. But
Twitter has an even more compelling incentive to partic-
ipate: when, inevitably, a serious challenger appears, in-
teroperability allows it to remain relevant and connected
rather than becoming a ghost town (like so many other so-
cial networking sites now abandoned for newer offerings).

4 Conclusions and Future Work
Twitter and its ilk have discovered a previously unknown
sweet spot in the social network design space: lightweight
messaging via short updates, broadcast to the world, fun-
neled along social links to interested subscribers. To sup-
port the evolution of this style of communication, we have
proposed fethr, a similarly lightweight distributed pub-
lishing system with Twitter-like subscription semantics.

Our future work includes flexible group communica-
tion (a frequently-requested but rarely found microblog-
ging feature); multiple-level privacy (expanding on Twit-
ter’s simplistic “protected account” to allow timelines that

5

mix public and private information, borrowing also from
the successes and failures of Facebook’s privacy system);
and attention management (filtering a user’s view to help
deal with the increasing volume of data that micropub-
lishing often creates). We believe that each of these can
be built on top of the fethr protocol using only local pol-
icy changes.

We intend also to expand our prototype, which cur-
rently includes a single-user fethr microblog Birdfeeder
and a Twitter gateway service. Together they comprise
about 1500 lines of Python code, owing to the simplic-
ity of the design and reliance upon existing technologies
like http. We are currently collecting data from the sys-
tem, which has been in operation since June 2008 and has
processed 120,000 messages (to and from the authors).
Birdfeeder will be a useful platform as we explore the di-
rections described above and identify necessary optimiza-
tions to the design; we plan to make our code and data
available at http://brdfdr.com.

References
[1] S. Baker. Why Twitter matters. Businessweek, May 15 2008.

[2] M. Bellare and B. Yee. Forward integrity for secure audit logs.
Technical report, UC at San Diego, Dept. of Computer Science
and Engineering, Nov. 1997.

[3] P. X. Deng. Welcome to your new home page. The Facebook
Blog, Mar. 11 2009.
http://blog.facebook.com/blog.php?post=59195087130.

[4] A.-M. Kermarrec, L. Massoulié, and A. J. Ganesh. Probabilistic
reliable dissemination in large-scale systems. IEEE Transactions
on Parallel and Distributed Systems, 14(3):248–258, 2003.

[5] L. Lamport. Time, clocks, and the ordering of events in a
distributed system. Commun. ACM, 21(7):558–565, 1978.

[6] P. Maniatis and M. Baker. Secure history preservation through
timeline entanglement. In USENIX Security, Aug. 2002.

[7] M. McGiboney. Twitter’s tweet smell of success. Nielsen Wire,
Mar. 18 2009. http://blog.nielsen.com/nielsenwire/online_mobile/
twitters-tweet-smell-of-success.

[8] D. Sandler, A. Mislove, A. Post, and P. Druschel. FeedTree:
Sharing Web micronews with peer-to-peer event notification. In
IPTPS ’05, Feb. 2005.

[9] B. Schneier and J. Kelsey. Cryptographic support for secure logs
on untrusted machines. In USENIX Security, Jan. 1998.

[10] R. Scoble. Twittering the earthquake in China, May 12, 2008.
http://scobleizer.com/2008/05/12/quake-in-china/ (accessed 8-Oct
2008).

[11] E. Williams. Measurable improvements, July 2008.
http://status.twitter.com/post/41492128/measurable-improvements
(accessed 25-Sep-2008).

[12] K. Zetter. Weak password brings ‘happiness’ to Twitter hacker.
Wired News, Jan. 6, 2009.
http://blog.wired.com/27bstroke6/2009/01/professed-twitt.html.

6

http://brdfdr.com
http://blog.facebook.com/blog.php?post=59195087130
http://blog.nielsen.com/nielsenwire/online_mobile/twitters-tweet-smell-of-success
http://blog.nielsen.com/nielsenwire/online_mobile/twitters-tweet-smell-of-success
http://scobleizer.com/2008/05/12/quake-in-china/
http://status.twitter.com/post/41492128/measurable-improvements
http://blog.wired.com/27bstroke6/2009/01/professed-twitt.html

	Introduction
	Background
	Users and uses of Twitter
	Limitations of modern microblogging

	FETHR
	Objectives
	Functional description
	Message distribution
	Security features
	Adoption; incentives

	Conclusions and Future Work

