
Europa: Efficient User Mode Packet Forwarding in Network Virtualization

Yong Liao†, Dong Yin‡, and Lixin Gao†

University of Massachusetts at Amherst (USA)†, Northwestern Polytech University (China)‡

Abstract

Network virtualization provides the ability to run concur-

rent virtual networks over a shared substrate. However,

it is challenging to design such a platform to host mul-

tiple heterogeneous and often highly customized virtual

networks. Not only minimal interference among different

virtual networks is desired, high-speed packet forwarding

is also required. This paper presents Europa, a virtual net-

work platform uses Efficient UseR mOde Packet forwArd-

ing, which supports high-speed and highly customizable

virtual networks. Our platform adopts lightweight OS-

level virtualization to slice a physical server into virtual

machines. The data plane of a virtual router runs in an

isolated virtual machine so as to safe for customization.

We design a new user mode packet processing scheme for

virtual routers hosted in Europa to achieve high speed for-

warding. Experiments show that an Europa virtual router

can be four times faster than conventional user mode soft-

ware router.

1 Introduction

Network virtualization has been proposed as a power-

ful approach to facilitate testing and deploying network

innovations over a shared substrate. In a network virtu-

alization infrastructure, concurrent virtual networks can

be created so that it is possible to independently deploy

and experiment with new innovations. Virtual networks

should be isolated from each other to minimize the inter-

ference among them.

However, it is challenging to build a shared substrate

that can support multiple concurrent virtual networks.

The intrinsic heterogeneous nature of network innova-

tions requires that a virtual network must be highly flexi-

ble and customizable. It is often required to tune various

aspects of the virtual networks. For example, a virtual

network may be created to test new routing protocols, and

therefore, its control plane needs to be customized. One

may also experiment with new packet forwarding func-

tions in a virtual network, such as queuing schemes or

new addressing mechanisms, which cannot be realized

without a customized data plane. In addition to the flex-

ibility requirement, to experiment and test network inno-

vations in a realistic environment, and more importantly,

to attract long term deployment of new applications, a

network virtualization platform should provide good data

plane performance as well. It is desirable that the over-

head of virtualization is minimized, so that the data plane

performance of the platform can closely approach the full

potential of the underlying hardware.

Achieving both high degree of flexibility and high per-

formance is challenging. To guarantee the isolation be-

tween virtual networks so as to provide the flexibility to

do customization, both control plane and data plane of a

virtual network should run in the unprivileged domain of

the hardware, which can introduce overhead. Although

this overhead may not be an issue for control plane func-

tions, it can largely impact data plane performance. For

example, the VINI platform [1] provides high degree of

flexibility by running virtual network data planes in oper-

ating system user mode, but the packet forwarding speed

of VINI is much slower than what the hardware can poten-

tially achieve. Running the data plane of a virtual network

in OS kernel mode, as what Trellis [2] does, can achieve

much better performance. However, Trellis is limited in

its ability to customize data plane in a virtual network due

to the constraint imposed by the forwarding function pro-

vided by the kernel.

In this paper, we explore how to build a network virtual-

ization platform that can achieve high degree of flexibility

without sacrificing data plane performance. We propose

Europa, a virtual network platform built from commodity

hardware. Europa puts flexibility as its first design goal.

Hence, the data plane of a virtual network hosted in Eu-

ropa has to run in a virtual machine and essentially in OS

user mode, so that a virtual network can be granted the

full control of its data plane. We design a new user mode

packet forwarding scheme for Europa, which can achieve

high forwarding speed. Experimental results show that al-

though an Europa virtual network runs its data plane in OS

user mode, it can achieve close to the best known software

router data plane performance. Europa achieves high for-

warding speed by adopting two mechanisms, i.e., sharing

packet buffer and polling packet state.

First, unlike the conventional ways of forwarding pack-

ets in user mode, our scheme uses shared memory to store

packets and eliminates the overhead of copying packets

between user space and kernel space. Although this idea

has been exploited in designing zero-copy I/O mechanism

in operating system [3], our paper is the first one to apply

this idea in building network virtualization platforms with

both high-degree of flexibility and high packet forwarding

speed, which is of practical value as network virtualiza-

tion is attracting increasing interests from both research

community and industry.

Second, our scheme also avoids the overhead of invok-

ing system calls by letting a user mode virtual router and

OS kernel independently poll the state of a packet, which

is an important factor differentiating our work from exist-

ing work in operating system area. As we will see later

in the paper, avoiding the overhead of invoking system

calls is important for an Europa virtual router to forward

packets at high speed, because using system calls to in-

teract between user mode process and kernel introduces

considerable overhead. Note that when there is no packet

to forward, polling for packets could consume lots of CPU

resource without forwarding any packets. However, even

a virtual router uses all its CPU cycles in polling, this does

not impact the resource isolation among virtual routers

because the server virtualization mechanism ensures a vir-

tual router not to exceed its CPU resource quota. To

save CPU cycles when a virtual router has no packet to

forward, an adaptive polling mechanism can be adopted,

which slows down the polling frequency when the incom-

ing packet rate is slowed.

The rest of this paper is organized as followings. In

section 2, we examine different types of software routers

running in commodity hardware and study why the con-

ventional user mode packet forwarding has degraded per-

formance. Section 3 presents our Europa platform that

uses efficient user mode packet forwarding. The experi-

mental evaluation results are presented in section 4. Sec-

tion 5 concludes this paper.

2 Packet Forwarding in Software Routers

A software router, like the widely used Click router [4],

can run in both OS kernel mode and user mode. Running

Click in kernel mode achieves reasonably good forward-

ing speed [5,6]; user mode Click, on the other hand, for-

wards packets much slower. In this section, we examine

the packet forwarding procedures of kernel and user mode

software routers. The study can help us to understand why

conventional user mode software router has slow forward-

ing speed.

2.1 Packet Forwarding Procedures

When a packet is received by the NIC (Network Inter-

face Controller) hardware, a kernel mode software router

usually starts a DMA process to transfer the packet into

a buffer in kernel space and processes the packet in the

“in-place” manner. After kernel mode router decides how

to forward that packet, it transfers the packet to the outgo-

ing NIC via DMA. We test the forwarding speed of ker-

nel mode Click running in a commodity PC, which has

a 2.66GHz dual-core CPU and Gbit PCIe NICs. In our

tested machine, the maximum forwarding speed is about

1050K packet per second (pps) for 64-byte packets.

In Linux platform, user mode Click router uses the so-

called PF PACKET socket to interact with the kernel to

send and receive packets. When a packet is ready in NIC,

the kernel uses DMA to transfer it from NIC to main

memory and attaches that packet to the kernel buffer as-

sociated with the PF PACKET socket. When the packet-

receiving task is scheduled, Click calls the recvfrom() sys-

tem call to copy the entire packet into a user space buffer.

After processing the packet, Click invokes the send() sys-

tem call to copy the packet back to kernel and kernel sends

the packet out via NIC. We test the forwarding speed of

user mode Click using the same machine in testing ker-

nel mode Click. The maximum forwarding speed is about

230 Kpps.

2.2 Causes of Slow User Mode Forwarding

We see that the major difference between packet for-

warding in kernel mode Click and user mode Click is

two-fold. For user mode Click to forward a packet, (i)

that packet needs to be copied between the kernel space

and user space twice; (ii) user mode Click needs to in-

voke two system called to interact with the kernel. In the

following, we quantify these two types of overhead.

Memory copying: We measure the CPU cycles needed

to copy data between user space and kernel, by using the

“time stamp counter” of Intel CPU [7]. The results are

shown in Table 1. For 64-byte packets, it takes about 140

cycles to copy a packet from user space to kernel and 160

cycles to copy a packet from kernel to user space.

packet size (bytes) 64 128 256 512 1024 1500

copy to user 162 188 239 302 442 575

copy from user 140 157 200 259 388 507

Table 1: CPU cycles used to copy packets.

System call: We measure the overhead of invoking the

recvfrom() and the send() system calls used in user mode

Click. Our measurement (Table 2) shows that for the user

mode Click to forward one packet, the overhead of using

system calls is about 6,400 CPU cycles.

system call send() recvfrom()

CPU cycles 3000 cycles 3400 cycles

Table 2: CPU cycles consumed in invoking system calls.

To forward one packet in user mode Click, there is a

total of 6,700-cycle extra overhead as compared with for-

warding packet in kernel mode Click. In our tested ma-

chine with a 2.66 GHz CPU, the extra 6,700 CPU cycles

would limit the forwarding speed of user mode Click to

no more than 400 Kpps for 64-byte packets.

Our study indicates the directions of efficient user mode

packet forwarding. First, user mode software router

should avoid using system calls to interact with OS kernel.

Although system call is the most common way to interact

between user and kernel space, the overhead is too expen-

sive for achieving high speed packet forwarding. Second,

it is desirable to copy packets as less as possible. Ideally, a

packet should be processed in the “in-place” manner once

it is in the main memory.

2

3 Europa System Design
Having identified the main causes for slow packet for-

warding in conventional user mode software router, in this

section we present Europa, which adopts an efficient user

mode packet forwarding scheme to facilitate high speed

packet forwarding in virtual networks.

3.1 Basic Ideas

Firstly, to avoid copying packets between user space

and kernel, Europa adopts a mechanism widely used in

OS inter-process communication. That is, for each virtual

router hosted in an Europa server, we have a buffer to store

all its packets. The buffer is shared between the virtual

router and the OS kernel, so that the virtual router running

in user mode can directly process packets stored in the

buffer without copying them back-and-forth between user

space and kernel space.

Secondly, to avoid using expensive system calls, Eu-

ropa adopts an asynchronous model for a virtual router

and the kernel to access their shared buffer. Both the

virtual router and the kernel independently monitor the

“state” of a packet stored in the shared buffer, e.g., they

poll the state of a packet. If either the user mode virtual

router or kernel notices that a packet is ready to be taken

over, the user mode virtual router or kernel starts to pro-

cess the packet.

3.2 Europa Architecture

Figure 1 depicts the basic architecture of Europa.

An Europa server is sliced into virtual routers using

lightweight OS-level virtualization mechanism [8]. Each

virtual router has a data plane running inside itself. For

example, Figure 1 shows an Europa server hosting two

virtual routers. An Europa server runs a module, referred

to as the EuropaKM, inside its OS kernel. The EuropaKM

receives packets from NICs of the Europa server and clas-

sifies the packets to their virtual routers. After packets

are processed by the virtual routers, EuropaKM will send

them out to NICs.

EuropaKM

data plane

memory mapping between
user space and kernel space

data plane

packet pool packet pool

packet pool packet pool

User

Space

Kernel

Space

NIC NIC

virtual router A virtual router B

Figure 1: Europa architecture.

Sharing packet buffer: For each virtual router, a mem-

ory buffer, called the packet pool, is allocated by Eu-

ropaKM to store all packets belong to that virtual router.

The packet pool is shared to the user mode virtual router

by the mmap mechanism [9], so that the user mode virtual

router can use its own virtual memory address to directly

access packets in the pool. A packet pool is organized

as an array of equal size slots. Each slot is identified by

its index in the array. The size of a slot should be large

enough to store one entire packet, i.e., it should be larger

than the NIC’s MTU. Given Addrpool, the virtual address

of the first byte in the packet pool, and Sslot, the size of a

slot, a virtual router can access the ith packet (its index is

i) in the pool at address Addrpool + i× Sslot.

Asynchronous accessing packets: Each slot in the

packet pool has a flag to indicate its “state”. A user mode

virtual router polls the state flag of a slot (which slot to

poll will be discussed in section 3.3 when we present the

more detailed design of a virtual router) and only when

the state of a slot is “FILLED”, which means this slot

is filled with a packet, the virtual router can process the

packet in that slot. After a virtual router processes a

packet in a slot, it changes the state flag of that slot to

be “PROCESSED”. The EuropaKM monitors the packet

pool of the virtual router. If the state flag of a slot is

“PROCESSED”, EuropaKM sends the packet out to NIC

and changes the state flag of that slot to be “EMPTY”,

which means this slot can be used to store another packet.

We see that the state flag of a slot serves as the mutex

to coordinate the user mode virtual router and the Eu-

ropaKM, and prevent them from concurrently accessing

a slot. Hence, changing the state flag should be atomic.

3.3 Virtual Routers

We use OpenVZ [10], an OS-level virtualization

scheme, to slice a server into virtual routers. The data

plane of a virtual router is implemented by user mode

Click. Figure 2 shows the diagram of an Europa virtual

router. Each Europa virtual router has its own virtual

NICs. A virtual NIC is essentially two ring buffers, de-

noted as rxRing and txRing, respectively. Both rxRing and

txRing of a virtual NIC store only the indexes of packets

in the packet pool. The rxRing has the indexes of packets

received from a virtual NIC; the txRing stores the indexes

of packets to be sent out via that virtual NIC. Like the

packet pool, the rxRing and txRing of all virtual NICs in

a virtual router are also shared between EuropaKM and

the virtual router via mmap, so that both the virtual router

and the EuropaKM can directly read and write them.

vNIC vNIC

packet
pool

rxRing/

txRing
rxRing/

txRing

data plane functions

to poolprocessing
from
pool

Figure 2: Diagram of the user mode virtual router.

From a virtual router’s perspective, receiving a packet

from a virtual NIC is essentially reading an index i from

the rxRing and accessing the packet at addressAddrpool+

i×Sslot in the packet pool, which is the “from pool” func-

tion in Figure 2; sending a packet via a virtual NIC, which

is the “to pool” function in Figure 2, is essentially writ-

3

ing a packet index into the txRing of the virtual NIC and

changing the state of packet slot to be “PROCESSED”,

so that EuropaKM knows a packet is ready to be sent out.

How a virtual router processes packets is up to each vir-

tual router. That is, the “processing” function in Figure 2

is free to be customized by each virtual router.

3.4 EuropaKM

Kernel mode Click is used to implement EuropaKM,

whose basic functions are depicted in Figure 3. After

receiving a packet from an NIC, EuropaKM first clas-

sifies the packet and decides which virtual router it be-

longs to (the “classify” function in Figure 3). Then the “to

pool” function of EuropaKM finds a slot, whose state is

“EMPTY”, in the virtual router’s packet pool and copies

that packet into the empty slot. The “to pool” func-

tion also writes the index of that slot into rxRing of the

virtual NIC and changes the slot state to be ‘FILLED”.

The “from pool” function monitors the txRings to check

whether a virtual router has a processed packet. Once the

“from pool” function finds that the state of a slot is “PRO-

CESSED”, the index of that slot is passed to the “to de-

vice” function, which sends out the packet in that slot and

changes the slot state to “EMPTY”, so it is ready to be

loaded with another packet.

vNIC vNIC

packet pool
rxRing/
txRing

rxRing/
txRing

NIC

poll device to device

NIC

classifier

to pool from pool

EuropaKM

Figure 3: Diagram of EuropaKM.

3.5 Discussion

Security and Isolation: Although Europa shares mem-

ory spaces, i.e., packet pools, rxRings, and txRings, be-

tween virtual routers and OS kernel, one virtual router

can access only its own shared memory spaces. A vir-

tual router doing something wrong, such as writing a cor-

rupted packet in its packet pool, only affects the virtual

router itself. We can also implement some sanity check-

ing mechanisms in EuropaKM to enhance its security

and avoid jeopardizing the stability of an Europa server.

For example, before the EuropaKM accesses a packet in

a packet pool, it first checks whether the index of that

packet is legal, i.e., the index should be smaller than the

number of slots in that packet pool.

Overhead of polling packet state: Both the virtual router

and the EuropaKM adopt polling to check the state of

a packet. Polling inevitably introduces the CPU usage

overhead. Even there is no packet to process, a virtual

router still polls for packets and consumes CPU cycles.

We believe this CPU overhead should not be an issue for

a network virtualization platform. When certain amount

of CPU resource is allocated to a virtual router, the virtual

router should be entitled to use all its resource. The server

virtualization mechanism ensures that a virtual machine

does not exceed its CPU resource quota. Hence, even a

virtual router uses all its CPU resource, it should not af-

fect other virtual routers hosted in the same Europa server.

Besides, polling as fast as possible ensures the next packet

to be promptly processed. One possible compromise to

reduce the polling overhead is dynamically changing the

polling frequency according to the packet incoming rate.

Overhead of packet classification: A packet must be

classified after being transferred to main memory via

DMA. Then EuropaKM moves it to the packet pool of

a virtual router. There is one extra copying operation for

each packet. Using virtual queues and classifying pack-

ets in NIC hardware can avoid extra packet copying [11].

However, NICs with virtual queues are significantly more

expensive. More importantly, those NICs can only clas-

sify packets according to MAC address or VLAN tag [11],

but other fields in a packet head can be used to indicate

which virtual router owns a packet [1,2,12]. Although the

scheme used in Europa has one more copying operation

for each packet, we believe it is a better tradeoff among

performance, flexibility, and cost in building network vir-

tualization substrate at this time.

4 Experimental Evaluation

This section evaluates the data plane performance of

Europa. Our experiments show that the packet forward-

ing speed of Europa is much better than conventional user

mode packet forwarding schemes and can match the best

known forwarding speed of software router running in

commodity hardware.

4.1 Experiment Setting

Figure 4 shows the testbed used in our experiments.

The middle machine in Figure 4 runs software routers to

forward packet between the sender and receiver machines.

All machines are identical commodity desktop PCs. Each

one has a 2.66GHz Intel Core2Duo CPU, 4G memory,

and two Intel PRO/1000 Gbit NICs. The software router

machine runs a customized 2.6.18 Linux kernel. We first

apply the OpenVZ patch to a vanilla Linux 2.6.18 ker-

nel and then manually change the source code to include

the Click kernel patch. Hence, our kernel supports both

OpenVZ and kernel mode Click.

sender
software

router
receiver

NIC A

NIC B

Figure 4: Experiment testbed.

When testing the performance of Europa, we create

one or multiple virtual routers in an Europa server. Each

virtual router has two virtual NICs, mapped to the two

physical NICs of the server, and the Europa virtual router

4

forwards packets between those two virtual NICs. The

default packet pool size of each Europa virtual router is

128 packets. We compare the performance of Europa vir-

tual router with two other software routers, i.e., kernel

mode Click and user mode Click software routers. Kernel

mode Click provides a baseline of the best known packet

forwarding speed of software routers running in com-

modity hardware. User mode Click, on the other hand,

presents the forwarding performance of conventional soft-

ware routers running in user mode, which can be safely

customized.

4.2 UDP Experiments

We first use UDP traffic to test the forwarding speed of

virtual routers hosted in Europa. The packet forwarding

speed is measured in terms of packets per second (pps).

Minimal length packets (64-byte) are used to stress the

virtual routers.

4.2.1 Single virtual router

To understand the raw packet forwarding speed of Eu-

ropa, we configure the Europa server to host only one vir-

tual router, which is loaded with an IP router configura-

tion with only two entries in its forwarding table. One is

to the sender and the other is to the receiver. We also use

similar configuration to test the forwarding speed of ker-

nel mode Click and user mode Click running in the same

machine. Figure 5(a) plots the forwarding speed results

in our experiments. We see that as the packet input speed

increases, user mode Click quick reaches a saturation for-

warding speed of about 200 Kpps. Kernel mode Click

achieves close to 1000 Kpps peak forwarding speed. Eu-

ropa virtual router can forward packets at about 820 Kpps,

which is more than four times the speed of user mode

Click router.

 0

 200

 400

 600

 800

 1000

 0 200 400 600 800 1000

fo
rw

a
rd

 s
p
e
e
d
 (

K
p
p
s
)

input speed (Kpps)

kernel Click
user Click

Europa

(a) small forwarding table

 0

 200

 400

 600

 800

 1000

 0 200 400 600 800 1000

fo
rw

a
rd

 s
p
e
e
d
 (

K
p
p
s
)

input speed (Kpps)

kernel Click
user Click

Europa

(b) large forwarding table

Figure 5: UDP packet forwarding speed.

Next, we test Europa in a more realistic configura-

tion. We extract about 170K IP prefixes from a Route-

Views [13] BGP table and install them in the forwarding

table of an Europa virtual router. The sender machine gen-

erates 64-byte UDP packets with random class-C destina-

tion IP addresses. The Europa virtual router forwards all

incoming packets to the receiver machine. Kernel mode

Click and user mode Click routers are also evaluated in

similar setting with the large forwarding table. The for-

warding speed results are shown in Figure 5(b). We see

that Europa still matches the speed of kernel mode Click

and is much faster than user mode Click. Figure 5(b)

also shows that the forwarding speed gap between ker-

nel mode Click and Europa is smaller than that shown in

Figure 5(a). As more CPU cycles are consumed by com-

putational tasks such as IP address lookup, the advantage

of kernel mode Click becomes less noticeable, because

running those computational tasks in kernel space or user

space does not make too much difference in terms of CPU

cycle consumption.

4.2.2 Multiple virtual routers

We evaluate the scalability of Europa in terms of host-

ing multiple virtual routers in one server. The number of

concurrent Europa virtual routers is varied from 1 to 10

when measuring the speed of forwarding 64-byte UDP

packets. Because section 4.2.1 shows that the perfor-

mance trends of Europa, kernel Click, and user Click are

similar in both small forwarding table and large forward-

ing table configurations, here we present only the small

forwarding table experiment results.

 0

 200

 400

 600

 800

 1000

 1 2 3 4 5 6 7 8 9 10

fo
rw

a
rd

 s
p

e
e

d
 (

K
p

p
s
)

of virtual routers

aggregrate speed of VRs
average speed of a VR

Figure 6: UDP forwarding speed vs. # of virtual routers.

Figure 6 plots the average forwarding speed of each vir-

tual router and the aggregate forwarding speed of all vir-

tual routers hosted in an Europa server. We see that the

forwarding speed of a virtual router is inversely propor-

tional to the number of current virtual routers hosted in the

Europa server, because multiple virtual routers are com-

peting for CPU and bandwidth resources. As there are

more concurrent virtual routers, the aggregate forward-

ing speed becomes smaller. The reason is that the CPU

needs to more frequently switch between different virtual

routers to run their data plane processes when there are

more virtual routers. The CPU context switching over-

head lowers the aggregate forwarding speed of multiple

Europa virtual routers. However, we expect that the con-

text switching overhead can be alleviated with the increas-

ing popularity of CPUs with more cores.

4.3 TCP Experiments

Next, we evaluate the TCP performance of Europa.

The iperf tool is used to generate TCP traffic between

the sender and receiver machines in Figure 4. We do

not change any TCP-related parameters of iperf but use

the default values. Again, only the experiment results of

small forwarding table are presented here.

4.3.1 Single virtual router

We test the TCP throughput of a single Europa virtual

router, kernel mode Click, and user mode Click. Fig-

ure 7(a) plots the experiment results. Europa virtual router

achieves almost the same TCP throughput as kernel mode

Click. Compared with user mode Click, the throughput

5

of Europa virtual router is about 22% higher. Because

TCP always tries to use large packets, the number of pack-

ets forwarded per second is small even the throughput is

small to one Gbps line speed. Hence, the advantage of Eu-

ropa virtual router as compared with user mode Click is

not as significant as the UDP experiment results shown in

section 4.2. However, we can expect that if faster NICs

are used in our experiments, e.g., 10 Gbps NICs, Eu-

ropa virtual router will show more significant advantage

as compared with user mode Click.

 400

 500

 600

 700

 800

 900

 1000

user Click Europa kernel Click

th
ro

u
g
h
p
u
t
(M

b
p
s
)

(a) one virtual router

 0

 200

 400

 600

 800

 1000

 1 2 3 4 5 6 7 8 9 10

th
ro

u
g

h
p

u
t

(M
b

p
s
)

of virtual routers

aggregrate speed of VRs
average speed of one VR

(b) multiple virtual routers

Figure 7: TCP throughput.

4.3.2 Multiple virtual routers

We also evaluate the TCP throughput when multiple

concurrent virtual routers are hosted in one Europa server.

Figure 7(b) shows the average throughput of one virtual

router and the aggregate throughput of all virtual routers,

when the number of concurrent virtual routers varies from

1 to 10. Not unexpectedly, the average TCP throughput of

each Europa virtual router shows inversely proportional

property to the number of virtual routers; and the aggre-

gate TCP throughput lowers as more virtual routers are

hosted in an Europa server. However, because TCP uses

large packets, the aggregate throughput gets about 13%

lower only as the number of virtual routers increases from

1 to 10.

 400

 500

 600

 700

 800

 900

 1000

2
1

2
2

2
3

2
4

2
5

2
6

2
7

2
8

fo
rw

a
rd

in
g

 s
p

e
e

d
 (

K
p

p
s
)

packet pool size (# of pkts)

(a) UDP

 400

 500

 600

 700

 800

 900

 1000

2
1

2
2

2
3

2
4

2
5

2
6

2
7

2
8

th
ro

u
g

h
p

u
t

(M
b

p
s
)

packet pool size (# of pkts)

(b) TCP

Figure 8: UDP/TCP performance vs. packet pool size.

4.4 Forwarding Performance and Packet Pool Size

Europa uses packet pool to share packets between Eu-

ropaKM and a user mode virtual router. The packet pool

implicitly works as a buffer to cache packets. To study

how the size of packet pool affects the forwarding perfor-

mance of Europa, we run two virtual routers in one Eu-

ropa server and change the packet pool size of these vir-

tual routers from 2 slots to 256 slots. We measure aggre-

gate 64-byte UDP packets forwarding speed and aggre-

gate TCP throughput for each packet pool size. Figure 8

presents the experiment results. We see that for both UDP

and TCP experiments, the forwarding performance of Eu-

ropa shows little sensitivity to packet pool size larger than

4, because the input traffic in our experiments is close to

constant rate.

5 Conclusion
This paper presents EUROPA, a customizable and high-

speed network virtualization platform. An EUROPA vir-

tual router runs its data plane in isolated user mode virtual

environment. Hence, the data plane of an EUROPA virtual

router can be safely customized. In addition to the flexi-

bility of customizing, EUROPA also provides good packet

forwarding performance to virtual routers hosted in the

platform by adopting an efficient user mode packet for-

warding scheme. Unlike existing schemes, Europa uses

shared memory to avoid copying packets between user

space and kernel and adopts “packet polling” to avoid in-

voking expensive systems calls. Experiment results show

that Europa can closely match the best known software

router forwarding speed for both TCP and UDP traffic.

Acknowledgments

This work is partially supported by NSF grants CNS-

066618 and CNS-0626617. Dong Yin was a visiting

student at UMass, supported by China State Scholarship

Fund CSC-2008629080, when this work was performed.

References
[1] A. Bavier and et al, “In VINI veritas: realistic and con-

trolled network experimentation,” in Proceedings of SIG-

COMM ’06, 2006.

[2] S. Bhatia and et al., “Trellis: A platform for building flexi-

ble, fast virtual networks on commodity hardware,” in Pro-

ceedings of ROADS 2008/CoNEXT 2008, 2008.

[3] P. Druschel and L. L. Peterson, “Fbufs: a high-bandwidth

cross-domain transfer facility,” in Proceedings of SOSP

’93, 1993.

[4] “Click Modular Router,” http://read.cs.ucla.edu/click/.

[5] K. Argyraki and et al, “Can software routers scale?” in

Proceedings of PRESTO ’08, 2008.

[6] N. Egi and et al., “Towards high performance vir-

tual routers on commodity hardware,” in Proceedings of

CONEXT ’08, 2008.

[7] “Intel 64 and IA-32 architectures software developer’s

manual volume 2B: Instruction set reference, N-Z,”

Sep. 2009, http://developer.intel.com/design/processor/

manuals/253667.pdf.

[8] S. Soltesz and et al, “Container-based operating system

virtualization: a scalable, high-performance alternative to

hypervisors,” in EuroSys ’07, Mar. 2007.

[9] J. Corbet, A. Rubini, and G. Kroah-Hartman, Linux Device

Drivers, 3rd Edition. O’Reilly Media, Inc., 2005.

[10] “OpenVZ,” http://www.openvz.org/.

[11] S. Chinni and R. Hiremane, “Virtual machine device

queues,” 2007, Intel white paper, http://software.intel.com/

file/1919.

[12] Y. Liao, D. Yin, and L. Gao, “PdP: Parallelizing data

plane in virtual network substrate,” in Proceedings of SIG-

COMM VISA 2009 workshop, Aug. 2009.

[13] “Routeviews,” http://www.routeviews.org/.

6

