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Abstract

Many large storage systems use approximate-
membership-query (AMQ) data structures to deal with
the massive amounts of data that they process. An AMQ
data structure is a dictionary that trades off space for a
false positive rate on membership queries. It is designed
to fit into small, fast storage, and it is used to avoid I/Os
on slow storage. The Bloom filter is a well-known exam-
ple of an AMQ data structure. Bloom filters, however,
do not scale outside of main memory.

This paper describes the Cascade Filter, an AMQ data
structure that scales beyond main memory, supporting
over half a million insertions/deletions per second and
over 500 lookups per second on a commodity flash-
based SSD.

1 Introduction

Many large storage systems employ data structures that
give fast answers to approximate membership queries
(AMQs). The Bloom filter [2] is a well-known exam-
ple of an AMQ.

An AMQ data structure supports the following dic-
tionary operations on a set of keys: insert, lookup, and
optionally delete. For a key in the set, lookup returns
“present.” For a key not in the set, lookup returns “ab-
sent” with probability at least1− ε, whereε is a tunable
false-positive rate. There is a tradeoff betweenε and the
space consumption.

To understand how an AMQ data structure such as a
Bloom filter is used, consider Webtable [6], a database
table that associates domain names of websites with
website attributes. An automated web crawler inserts
new entries into the table while users independently per-
form queries. The system optimizes for a high insertion
rate by splitting the database tables into smaller subta-
bles.

When a user performs a search, this search is repli-
cated on all subtables. To achieve fast lookups, the sys-
tem assigns a Bloom filter to each subtable. Most subta-
bles do not contain the queried element, meaning that the
system can avoid I/Os in those subtables. Thus, searches
are usually satisfied with one or zero I/Os.
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Similar workloads to Webtable, which also require
fast insertions and independent searches, are grow-
ing in importance [7, 11, 15]. Bloom filters are also
used for deduplication [24], distributed information re-
trieval [20], network computing [4], stream comput-
ing [23], bioinformatics [8, 18], database querying [19],
and probabilistic verification [12]. For a comprehensive
review of Bloom filters, see Broder and Mitzenmacher’s
survey [4].

Bloom filters work well when they fit in main mem-
ory. Bloom filters require about one byte per stored data
item. Counting Bloom filters—those supporting inser-
tions and deletions [10]—require 4 times more space [3].

What goes wrong when Bloom filters grow too big to
fit in main memory? On disks with rotating platters and
moving heads, Bloom filters choke. A rotational disk
performs only100–200 (random) I/Os per second, and
each Bloom filter operation requires multiple I/Os. Even
on flash-based solid-state drives, Bloom filters achieve
only hundreds of operations per second in contrast to the
order of a million per second in main memory.

One way to improve insertions into Bloom filters for
flash is to employ buffering techniques [5]. The idea is
to use an in-memory buffer to collect writes destined for
the same flash page, executing multiple writes with one
I/O. Buffering helps to some degree, achieving over a
factor of two improvement over a simple Bloom filter
in [5]. With larger buffers and data sets, we measured
that buffering can give an 80-fold improvement.

However, buffering scales poorly as the Bloom-filter
size increases compared to the in-memory buffer size,
resulting in only a few buffered updates per flash page
on average.

This paper demonstrates that AMQ data structures can
be efficient, scalable, flexible, and cost-effective for data
sets much larger than main memory. We describe a
new data structure, called theCascade Filter,designed
to scale out of RAM onto flash.

In our experiments an Intel X25-M 160GB SATA II
SSD using a Cascade Filter was able to perform
670,000 insertions per second and 530 lookups per sec-
ond on a data set containing more than 8.59 billion ele-
ments. The Cascade Filter supports insertions at rates 40
times faster than a Bloom filter with buffering and 3,200
times faster than a traditional Bloom filter. Lookup
throughput is 3 times slower than that of a Bloom filter
or about the cost of 6 times random reads on flash.

To put these numbers in perspective, on the Intel X25-
M, we measured 5,603 random 4K block writes per sec-



ond (21.8 MB/sec) and 3,218 random 4K block reads per
second (12.5 MB/sec). Random bit reads/writes have
comparable speeds. Sequential writes run at roughly
110MB/sec.

The Cascade Filter can be implemented cost effec-
tively. For example, given a data center holding 1PB of
512 byte keys, our results indicate that one can construct
a Cascade Filter with a less than 0.04% false positive rate
using 10TB of consumer-grade flash disks. This Cas-
cade Filter would be relatively inexpensive, costing less
than $35,000, a small fraction of the data-center cost.

Our three contributions are as follows: (1) We in-
troduce the Quotient Filter (QF), which supports inser-
tions and deletions, as well as merging/resizing of two
QFs. A QF is an in-memory AMQ data structure that is
functionally similar to a Bloom filter, but lookups incur
a single cache miss, as opposed to at least two in ex-
pectation for a Bloom filter. QFs are 20% bigger than
Bloom filters, which compares favorably with the4×
blowup associated with counting Bloom filters. (2) We
introduce the Cascade Filter (CF), an AMQ data struc-
ture designed for flash. The CF comprises a collection
of QFs organized into a data structure inspired by the
Cache-Oblivious Lookahead Array (COLA) [1]. (3) We
theoretically analyze and experimentally verify the per-
formance of the CF. The CF performs insertions and
deletions fast enough to keep pace with Cassandra [17],
TokuDB [21], and other write-optimized indexing sys-
tems, as well as systems such as Vertica [22] and Inn-
oDB [13], that use insertion buffers.

The remainder of this paper is organized as follows.
Section 2 describes the QF and CF data structures and
presents a theoretical analysis. Section 3 presents our
experiments. Section 4 offers some concluding remarks.

2 Design and Implementation
This section presents the CF data structure and gives a
brief theoretical analysis of its performance. The CF
comprises a collection of quotient filters organized into a
data structure resembling a Cache-Oblivious Lookahead
Array (COLA) [1]. The COLA-like CF achieves its fast
insertion performance by merging and writing QFs onto
disk in an I/O-efficient manner. The section describes
the QF, and then shows how to combine QFs into a CF.

The QF storesp-bit fingerprints of elements. The
QF is a compact hash table similar to that described by
Cleary [9]. The hash table employsquotienting, a tech-
nique suggested by Knuth [16, Section 6.4, exercise 13],
in which the fingerprint is partitioned into theq most sig-
nificant bits (the quotient) and ther least significant bits
(the remainder). The remainder is stored in the bucket
indexed by the quotient. Figure 1 illustrates a quotient
filter.

If the quotients of two stored fingerprints are equal
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Figure 1: An example quotient filter and its representation.
This filter contains valuesA throughH. The table on the right
shows, for each value, the corresponding quotient and remain-
der. The top of the figure shows a chained hash table stor-
ing the valuesA throughH by storing a list of remainders in
a bucket identified by the quotient of the values. The bottom
of the figure shows how the remainders are stored in the QF.
Each bucket contains three bits in addition to the remainder.
The three bits are theis occupied, is continuation,
andis shifted values, in that order. In this example,C,
D, and E have all the same quotient, so together they form
a run. ValueC is stored in its canonical position, so it is the
beginning of a cluster. AlthoughF should have been stored in
bucket 4, it is pushed forward byD andE to bucket 6. Values
C throughH together form a cluster.

then we say we have asoft collision. The QF em-
ploys linear probing as a collision-resolution strategy,
and stores the remainders in sorted order. Thus, a re-
mainder may end up shifted forward and stored in a sub-
sequent slot. The slot in which a fingerprint’s remainder
would be stored if there were no collisions is called the
canonical slot. All of the remainders with the same quo-
tient are stored contiguously, and are called arun.

A cluster is a maximal sequence of occupied slots
whose first element is the only element of the cluster
stored in its canonical slot. A cluster may contain one or
more runs.

The first element of the cluster acts as an anchor that,
in combination with three additional bits in each slot,
allows us to recover the full fingerprint of each stored
remainder in the cluster.

The three additional bits in each slot are as follows:

is occupied specifies whether a slot is the canonical
slot for some value stored in the filter.

is continuation specifies whether a slot holds a
remainder that is part of a run (but not the first).

is shifted specifies whether a slot holds a remain-
der that is not in its canonical slot.

Whenever we insert a fingerprint we mark as occupied
the slot indexed by its quotient and shift any remainders
forward as necessary, updating the bits accordingly.

There is a design that uses two indicator bits instead
of three, and which identifies an empty bucket by stor-
ing dummy data in reverse sorted order. However, our
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Figure 2: Merging QFs. Three QFs of different sizes are shown
above, and they are merged into a single large QF below. The
top of the figure shows a CF before a merge, with one QF
stored in RAM, and two QFs stored in flash. The three QFs
above have all reached their maximum load factors (which is
3/4 in this example). The bottom of the figure shows the same
CF after the merge. Now the QF at level 3 is at its maximum
load factor, but the QFs at levels 0, 1, and 2 are empty.

implementation of this scheme is more CPU intensive,
and we opted for a three-bit scheme instead in our ex-
periments.

A false positive can occur only when two elements
map to the same fingerprint. For a good hash function,
let the load factor of the hash table beα = n/m, where
n is the number of elements, andm = 2q is the number
of slots. Then the probability of such ahard collisionis
approximately1 − e−α/2

r

≤ 2−r.
The space required by a QF is comparable to that of

a Bloom filter, depending on parameter choices. For a
QF and a Bloom filter that can hold the same number of
elements and with the same false positive rate, a QF with
α = 3/4 requires 1.2 times as much space as a Bloom
filter with 10 hash functions.

The QF supports several useful operations efficiently.
One can merge two QFs into a single QF efficiently in
a manner analogous to a merge of two sorted arrays be-
cause the fingerprints are stored in ascending order. One
can also double or halve the size of a QF without rehash-
ing the fingerprints because the fingerprints can be fully
recovered from the quotients and remainders.

Since lookups, inserts, and deletes in a quotient filter
all require decoding an entire cluster, we must argue that
clusters are small. If we assume that the hash function
h generates uniformly distributed independent outputs,
then an analysis using Chernoff bounds shows that, with
high probability, a quotient filter withm slots has all
runs of lengthO(log m); most runs have lengthO(1).

From QF to CF

Updating a QF that fits in main memory is fast. If the
QF does not fit, then updates may incur random writes.
Although the I/O performance is better than a traditional
Bloom filter with the same false-positive rate and max-
imum number of insertions, we can do better by using
several QFs to build a CF.

The overall structure of the CF is loosely based on a
data structure called the COLA [1], and is illustrated in
Figure 2. The CF comprises an in-memory QF, called
QF0. In addition, for RAM of sizeM , the CF comprises
ℓ = log

2
(n/M)+O(1) in-flash QFs of exponentially in-

creasing size, QF1,QF2 . . .QFℓ stored contiguously. For
simplicity, we explain here the case for insertions (dele-
tions can be handled with tombstones at the cost of a
fourth tombstone bit). In the case of insertions-only,
each in-flash QF is either empty or has reached its max-
imum load factor. Insertions are made into QF0. When
QF0 reaches its maximum load factor, we find QFi the
smallest empty QF, and merge QF0 . . .QFi−1 into QFi.
To perform a CF lookup, we examine all nonempty QFs,
fetching one page from each.

The theoretical analysis of CF performance follows
from the COLA: a search requires one block read per
level, for a total ofO(log(n/M)) block reads, and an
insert requires onlyO((log(n/M))/B) amortized block
writes/erases, whereB is the natural block size of the
flash. Typically,B ≫ log(n/M), meaning the cost of
an insertion or deletion is much less than one block write
per element.

Like a COLA, a CF can be deamortized to provide
better worst-case bounds [1]. This deamortization re-
moves delays caused by merging large QFs.

The false positive rate of the CF is similar to its com-
ponent QFs. The CF is a multiset of integers, each of
width p bits. If the largest level is configured to store
α2q−1 elements, then the entire CF can storeα2q ele-
ments; by the same argument as for the component QF,
the expected false positive rate is1 − e−α/2

r

≤ 2−r.

3 Evaluation

This section evaluates the insertion and lookup through-
put of the QF and CF. We compare a QF to a traditional
Bloom filter (BF) in RAM, and we compare a CF with a
traditional BF and an elevator BF on flash.

We ran our experiments on a quad-core 2.4GHz Xeon
E5530 with 8MB cache and 24GB RAM, running Linux
(CentOS 5.4). We booted the machine with 0.994GB
of RAM to test out-of-RAM performance. We used a
159.4GB Intel X-25M SSD (second generation). To en-
sure a cold cache and an equivalent block layout on disk,
we ran each iteration of the relevant benchmark on a
newly formatted file system, which we zeroed out first
with /bin/dd. We ensured that there was no swap-
ping. The partition size was fixed at 90GB, or 58%
of the drive’s capacity which is nearly optimal for the
SSD [14]. The CF was configured to use 256MB of
RAM. The elevator BF was configured to use 256MB
worth of keys in RAM, but due to memory fragmenta-
tion this algorithm used close to 512MB. The remainder
of RAM was used for file system caching. The tradi-
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Figure 3: CF Insertion Throughput. Thex axis shows elapsed
time and they axis shows the number of insertions performed
up to that point. Due to periodic compactions, there are long
periods of time in which no insertions take place. The sus-
tained throughput averages 670,000 insertions per second.

tional BF used all of RAM for buffer caching. All filters
had the same false positive rate of 0.04%. The tradi-
tional and elevator BFs were configured to use 11 hash
functions, and CF was configured with 11r-bits in the
lowest level.

QF insertion throughput. We compared the in-RAM
performance of the QF and a BF with the optimal
number of hash functions for the same number of ele-
ments and false-positive rate. For inserts, the cumulative
throughputs of BF and QF were 690,000 and 2,400,000
inserts per second, respectively. Although the perfor-
mance of QF deteriorated as the number of elements in-
creased, it was always significantly better than that of
BF. For lookups, the behavior of both BF and QF was
stable throughout the benchmark. The BF performed
1,900,000 lookups per second on average, whereas the
QF performed 2,000,000.

CF insertion throughput. We inserted 8.59 billion
64-bit keys into the CF. Figure 3 shows that the CF sus-
tained an average of 670,000 insertions per second even
taking into account the time during which long merges
stalled insertions. The largest stall was in the middle,
where all but one of the QFs were merged into the largest
QF of the CF. Deamortization techniques, which we did
not implement, can remove the long stalls [1]. We per-
formed the largest merge at 8.4MB/s, well below flash’s
serial write throughput (110MB/s). We found that the
system was CPU-bound, spending its time on bitpacking
operations within the QF. In fact, it was so CPU-bound
that the disk subsystem ran at only a few percent of ca-
pacity even at high insertion rates.

For comparison, we evaluated two other data struc-
tures: (1) a traditional BF and (2) a large elevator BF.
The traditional BF uses the target disk as storage and
hashes keys into this storage, though its writes are al-

lowed to use the file cache. The elevator BF has the
following optimization: it maintains a large buffer of lo-
cations it has recently written to, and when this buffer is
full, it flushes each bit to storage in order of offset.

The traditional BF achieved an insertion throughput
of 200 insertions per second, whereas the elevator BF
achieved an insertion throughput of 17,000 per second,
which is a considerable improvement, but far less than
that of our CF. The performance for both algorithms
was constant as the data structures filled because it was
bounded by the flash’s random-write throughput.

Lookup throughput. We compare the lookup
throughput of the traditional BF and CF with each
other as well as with a theoretical prediction of their
performance.

In our setup, the CF has at most 6 levels on flash. The
CF performs one read at each level when searching for
keys that are not in the CF (6 I/Os). Our drive’s random-
read throughput is 3,218 4KB pages per second, and so
the read throughput of the CF should have been about
530 lookups per second. A BF with an equivalent false-
positive rate of 0.04% requires 11 hash functions and
16GB of space. In order to predict its lookup throughput,
note that in an optimally configured BF, each bit is set to
1 with probability 1/2. A lookup on a BF uses one hash
function after another until it finds a 0, meaning that the
expected number of I/Os per negative lookup is2. Thus,
the expected lookup throughput is half the random read
throughput of the flash drive, which in this case is 1600
lookups per second.

When measured, the actual BF lookup performance is
1609 lookups per second, which is what the model pre-
dicts. Negative CF lookups run at 530 per second, which
matches what the model predicts (6 reads per lookup).

CF with tombstone bit. We re-ran the CF throughput
experiments with an identical experimental setup, ex-
cept we used 4 bits per element instead of 3 to measure
the overhead of supporting deletes. We found that the
insertion throughput dropped from 670,000 insertions
per second to 630,000 insertions per second. Lookup
throughput remained unchanged.

Evaluation summary. The CF trades a 3 fold slow-
down in lookup throughput on flash in exchange for a
40x speedup in insertion throughput over a BF optimized
to use all of its buffer for queueing random writes. Un-
like the traditional BF, the CF is CPU bound and not I/O
bound.

4 Conclusions and Future Work
We designed two efficient data structures: aQuotient
Filter (QF) and aCascade Filter (CF), specifically
to utilize the best features of modern flash drives. We
designed them to have high throughput for insertions,



queries, and deletions. Our analytical results, coupled
with our evaluations, demonstrate superior performance,
beating optimized implementations of traditional Bloom
filters by over two orders of magnitude.

The relative cost of I/O compared to CPU operations
has increased by orders of magnitude over the past sev-
eral decades, and with the advent of multicore, that trend
is likely to continue. Most storage systems underuse
their CPUs while waiting for I/O. In contrast, our data
structure makes efficient use of I/O and is CPU-bound
for insertions. The merge operation is parallelizable, po-
tentially offering additional performance.

Future work. We will explore applications to traf-
fic routing, deduplication, replication, write offloading,
load balancing, and security in a data center or large net-
work. The Cascade Filter is currently CPU bound; a par-
allel implementation could potentially perform upwards
of 50 million inserts and updates per second with a drive
performing 400MB/s serial writes. An efficient imple-
mentation could potentially be made very cost-effective
by utilizing parallel GPU programming. The Cascade
Filter is capable of a variety of read/write optimized con-
figurations, and can dynamically shift between them at
run-time. We will explore application of the Cascade
Filter to write-optimized indexing.
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