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Abstract 
 With the shift in general purpose computing to 
increasingly parallel architectures comes a need for 
clever architectures to achieve high parallelism on 
previously sequential or poorly parallelized code.  In 
order to fully utilize the many-core systems of the 
present and future, a shift must occur in architecture 
design philosophy to understanding how the parallel 
programming process affects design decisions. 
 Parallel patterns provide a way to create 
parallel code for a wide variety of algorithms.  
Additionally they provide a convenient classification 
mechanism that is both understandable to 
programmers and that exhibit similar behaviors that 
can be architecturally exploited.  In this work we 
explore the capabilities of pattern driven dynamic 
architectures as well as detection mechanisms useful 
for dynamic and static parallel pattern recognition. 
 
1. Introduction 
 The past decade has brought about a major shift 
in the primary architecture for general purpose 
computing.  As single-threaded performance 
becomes increasingly more power intensive, there is 
a significant shift towards multi-/many- core 
architectures.  These architectures provide the benefit 
of lower power with high performance for highly 
parallel applications.  However, in order to fully 
utilize many cores, a shift must occur in architecture 
design philosophy through new programming 
paradigms and an increased understanding of the 
parallel program behavior. 
 Classifying parallel code in a way that is both 
understandable to the programmer and useful to low-
level designers is a non-trivial task.  Recent works in 
parallel programming patterns [1-3] provide great 
potential for program classifications that maintain 
common behaviors exploitable by architects.  These 
patterns span many layers of the design process [1]; 
however, the algorithmic level patterns provide a 
good median between the program structure and its 
low level behaviors.  Algorithmic parallel patterns 
refer to the basic code structure in terms of sharing 
behavior and thread behavior.  For example, many 
scientific applications such as n-body simulations 
employ the pattern of geometric decomposition, 
which takes a set of data and splits it up among 
processing threads.  These threads still communicate 

but sparingly enough to allow speedup from the 
parallelization. 
 As parallel programming becomes more well-
understood, the method of programming via patterns 
is becoming increasingly popular [3, 4].  Therefore, it 
is highly reasonable that parallel programmers will 
have natural insights into the algorithmic structure of 
their code.  Moreover, architects can leverage the 
properties of these patterns to create adaptable 
architectures tuned to the various patterns.  For 
example, in a pipeline pattern, data migrates between 
stages, as opposed to an embarrassingly parallel 
problem where data largely remains private to each 
thread.  Therefore, in the case of a pipeline pattern, 
the architecture with knowledge that the program is 
using a pipeline may choose to perform optimizations 
such as running the program on a streaming 
processor or using a more optimal coherence protocol 
such as MI. 
 In this work we will lay the groundwork for a 
novel method for detecting parallel patterns statically 
through the use of programmer “insights” as well as 
dynamically through run-time performance counters.  
Our results will show that for a set of micro-
benchmarks our detection mechanisms are successful 
in finding patterns in un-annotated parallel code.  
These results will demonstrate that our current set of 
metrics provide potential for a robust pattern 
detection system that could drive many architectural 
optimizations. 
 
2. Algorithmic Parallel Patterns 
 

 
Figure 1 - Algorithmic Parallel Patterns 

 
 Several efforts have been made to standardize 
parallel programming patterns [1, 2].  These efforts 
codify the standards and characteristics in a manner 
similar to the programming patterns used in the 
software engineering community for object-oriented 
programming.  What these standards reveal are six 
main patterns, defined in [1] and are shown in Figure 
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1, each with unique architectural characteristics to 
exploit. 
 The parallel programming patterns are grouped 
based on the type of conceptual parallelization 
performed.  When the problem consists of a group of 
independent tasks or task groups to be run in parallel, 
the parallel pattern employed is task parallelism.  
Task parallelism has limited to no sharing, and a 
embarrassingly parallel problems are a large 
subclass of this group.   When there is a problem task 
that naturally subdivides into several smaller tasks 
that can be done in parallel, then the divide and 
conquer pattern is applied.  Divide and Conquer 
splits tasks until a work “threshold” is met and the 
subtask works on a subset of the data serially. 
 Many parallel problems are solved through the 
decomposition of data by creating threads to work on 
the data in parallel.  The two standard patterns for 
data parallelization are geometric decomposition and 
recursive data.  The geometric decomposition pattern 
operates on data in a regular structure, such as an 
array, that is split into sub-structures operated on in 
parallel.  This pattern is typically characterized by 
sharing between threads, particularly threads with 
neighboring data. If the data is not in a regular 
structure, but rather a structure such as a graph, data 
decomposition parallelization is done via the 
recursive data pattern.  This pattern creates 
parallelism by doing redundant work to decrease 
communication between threads.  For example, an 
algorithm to find every node’s root requires a full 
graph traversal.  A recursive data approach would 
create a thread for every node in the graph and 
perform a graph-climbing algorithm independently 
for each node.  This causes some nodes’ depths to be 
calculated more than once, but has performance gains 
due to the enhanced parallelism.  
 As programmers continue to shift legacy 
sequential code to a parallel domain, an increasingly 
common parallel pattern used is the pipeline pattern 
[4, 5].  This pattern is performed by taking a flow of 
data through tasks and splitting it into pipeline stages.  
The parallelism is achieved by keeping all stages full 
with data such that each stage can operate 
simultaneously. Moreover, not all pipeline parallel 
workloads are completely feed-forward pipelines.  
Simulations, such as discrete event simulations, 
leverage the pipeline pattern but with more complex 
interactions between stages.  This style of freeform 
pipeline is sometimes referred to as event-based 
coordination, but can also be thought of as a 
generalized pipeline. 
 
 
 

3. Architectural Implications of Parallel 
Patterns 

 
 Understanding the parallel pattern used in an 
application can be very useful for performance 
improvement.  Although the algorithms and details of 
programs of the same pattern may differ, each pattern 
has some unique behaviors that have distinct 
architectural implications. 
 Recently, thread scheduling and balancing has 
become an increasingly hot topic in architecture 
conferences [6-10].  The main research thrust is to 
estimate thread criticality and either provide extra 
resources to the critical thread or save power by 
reducing resources for non-critical threads.  In [11] 
we showed how patterns exhibit unique thread 
behaviors that lend themselves to different criticality 
metrics.  We found that some patterns are more 
amenable to task balancing based on computational 
complexity, others prefer to use the raw instruction 
counts, and some applications want little task 
balancing except when threads spawn and exit.  
When parallel patterns were used to determine the 
optimal thread balancing mechanism, our results 
showed significant gains over prior non-pattern based 
selection schemes. 
 In addition to thread balancing, patterns could be 
used to guide coherence protocol design and network 
design.  In patterns with a heavy amount of migratory 
data, such as the pipeline pattern, it is likely to be 
more beneficial to use a simpler protocol such as MI 
to reduce message counts.  The reason is that as data 
moves through the parallel pipeline it may be first 
read by the next pipeline stage then written which 
would require coherence messages to transition the 
block to S then M in an M(O)(E)SI protocol.   
 Other recent works have proposed asymmetric 
networks that have varying buffer widths throughout 
the chip [12] or using network latency slack to 
prioritize packets [13].  Patterns with high degrees of 
inter-thread communication such as geometric 
decomposition would benefit more from intelligent 
thread placement such as placing high 
communication threads on the higher bandwidth 
nodes.  Additionally, in some patterns, different data 
classifications should have different priority (e.g. 
migratory data is highly important in the pipeline 
pattern). 
 Finally, heterogeneous architectures are an 
increasingly popular architectural paradigm [6, 8, 14-
16].  Some techniques such as thread balancing target 
single-ISA asymmetry.  But in heterogeneous 
architectures there may exist multiple architectures 
and multiple ISAs.  By understanding the pattern of 
the running application, one could conceivably 
optimize a compiler or run-time to place the 
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workload on the optimal architecture [17].  For 
example, task parallel workloads with many threads 
would be more suitable for a GPU; whereas a 
pipeline would be better served on a general 
streaming processor. 
 
4. Parallel Pattern Detection Techniques 
 
As has been shown, parallel pattern detection enables 
many architectural optimizations.  This section will 
define some metrics of interest that are useful for 
parallel pattern detection.  Solutions for dynamic and 
static collection and analysis are also explored. 
 
4.1. Metrics of Interest 
 Sharing patterns have been used in past studies 
for hardware optimization [18].  Additionally, 
parallel design patterns each tend to use a unique set 
of sharing patterns.  This is both useful for detection 
and optimization.  Researchers have defined many 
classes of sharing patterns; however, in this study we 
focus primarily on read-only, producer/consumer, 
migratory, and private. Figure 2 illustrates the parallel 
pattern tendencies for each sharing pattern.  

 
Figure 2 - Parallel Pattern Sharing Behaviors 

 
 Private data is common to patterns without much 
sharing, such as task parallel and recursive data.  In a 
task parallel application the algorithm is typically 
embarrassingly parallel, which means each thread is 
largely independent.  Recursive data reduces sharing 
by performing redundant work in each thread. 
Migratory data is common to pipeline and event 
based coordination.  In these patterns, threads are 
pinned to various stages in a process and data 
migrates between threads.  Finally, producer / 
consumer sharing is common in patterns with widely 
shared data such as geometric decomposition. 
 For pattern detection, sharing behavior is 
observed for each address in the system. On a “write 
permission” request, the system records the address 
as being produced by a thread, a “read permission” is 
recorded as a consumption.  The classification rules 
for each address are shown in Figure 3. 
 In addition to sharing behavior, patterns are also 
defined by their thread behavior.  Patterns such as 
divide and conquer or recursive data have unique 
thread behaviors that provide a signature pattern.  
Divide and conquer is characterized by a rising 

number of threads during the divide phase, some 
period of leveling for computation, followed by a 
declining phase as the results are joined.  Recursive 
data, however, begins with many threads and slowly 
ramps down as the different threads finish execution.  
 

 
 In order to measure thread behavior we monitor 
thread creation and suspension/exit events.  Over the 
course of a phase or program the average absolute 
slope of the active threads over time is calculated.  In 
addition the number of rising and falling events are 
counted and added to the evaluation. 
 In addition to thread spawn/exit behavior, thread 
imbalance is unique between patterns.  For example, 
geometric decomposition is typically SIMD or 
SPMD programming that is more balanced than a 
recursive data pattern. To measure the imbalance, the 
number of dynamic instructions per thread is 
measured to calculate the average number of 
instructions per thread.  If most of the threads have 
dynamic instruction counts within one standard 
deviation of the mean, the workload is considered 
balanced.  Otherwise it is considered unbalanced.  
 We also investigated the PC (Program Counter) 
uniqueness between threads.  This test looks at 
whether a SPMD or SIMD style programming 
method was used.  The PCs accessed by each thread 
are counted, and if most PCs are unique this suggests 
a non-SPMD style pattern such as pipeline.  This is 
measured by measuring for each PC accessed how 
many threads used that PC.  Patterns such as pipeline 
will have unique PCs for each thread, whereas 
geometric decomposition will share PCs with most 
threads.  
 The final metric investigated in this work is 
thread complexity.  In [11] we leveraged the 
differences in thread complexity to perform thread 
balancing for some patterns.  In addition to thread 
balancing, these metrics also provide a good 
indication of the program’s pattern.  These metrics 
include the average dependence depth and length of 
the dynamic instructions.  [11] discusses the 
algorithms and hardware structures for calculating 
these metrics.  
 
4.2. Online Detection Mechanisms 
 The analysis and metrics in Section 4.1 have 
been collected using a detailed architecture simulator.  
Some of the data such as a global count of all PCs 
and a count of producers/consumers for all addresses 
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would be very costly to directly implement in 
hardware.  In this section we will discuss some ideas 
for how these metrics could be translated into real 
hardware mechanisms. 
 Since sharing behavior is measured using 
permission requests via the coherence protocol a 
logical place to measure the producer/consumer 
relationship is at the directory.  For a 32-core 
machine, 6 bits per entry could be added to maintain 
the producer/consumer count.1  The information 
would be lost on evicted entries, but as long as the 
working set largely remains on chip, a directory only 
measurement would provide accurate results. 
 Thread behavior metrics require a repository of 
information on thread spawn/exit and balance 
information.  Rather than providing hardware 
counters an alternative is to instrument the threading 
code such as pthread_create() in order to monitor this 
behavior through a run-time monitor. The run-time 
monitor will then collect all metrics and provide 
feedback to the hardware on optimizations to enable 
or disable based upon the pattern detected.  
Additionally, in future research, the monitor will 
include the ability to detect program phases so as to 
reset the pattern detection process. 
 
4.3. Program Invariants for Detection 
 Understanding the pattern and performance 
implications cannot be confined to the knowledge 
available at runtime, as some of the information may 
be too difficult to detect or otherwise obscured by 
program behaviors.  By extending our scope of 
usable inputs to include the program’s source itself, 
we can consider the insights that are lost between 
source and execution.  Thus, insights can provide a 
static mechanism to enhance parallel pattern 
detection. 
                                                             
1 To maintain a range of -32 to +32 

 Programmer insights are notionally a 
combination of asserts, pragmas, and invariants.  By 
encompassing these distinct notations in the term 
“insight”, we are able to leverage both the properties 
that must be true as well as the properties that may be 
true.  The intention is not an attempt to statically 
analyze the raw code, but rather leverage what the 
programmer says the code should be doing.  This 
again allows two usages: first, to verify that the 
application is behaving how the programmer 
intended.  And second, to further optimize the final 
application by using the insights for pattern detection. 
In this work, parallel insights are split into four 
categories: data sharing, thread communication, 
general threading and synchronization / concurrency.  
The first three strongly relate to the parallel pattern 
metrics in Section 4.1 and can aid in the detection 
and implementation of patterns. The last category is a 
look at some insights from past work focused on 
concurrency bugs that could possibly be leveraged 
for pattern detection. 
 In parallel programs, the developer has insight 
into how the data is intended to be shared.  Providing 
this insight to the compiler / runtime is therefore 
reasonable and in fact some of these notations are 
already present in existing frameworks.  We consider 
four sharing types: read-only, migratory, shared, and 
private.  With these, a programmer can express how 
individual allocations are used within the parallel 
patterns. 
 OpenMP [19] provides notations for some of 
these types with data sharing attribute clauses that 
can specify data as shared or private.  However, the 
OpenMP clauses do not extend to general data 
allocations.  We propose extending variable 
classification insights to include specifying data as 
migratory or read-only. 
 Data sharing also relates to communication 
patterns between threads.  So beyond determining 

Figure 4 - Results of Parallel Pattern Detection 



 5 

what data are shared, we can also have insight as to 
with whom each datum is shared.  While a 
programmer may have trouble expressing exactly 
which threads will be in communication, sometimes 
the degree of sharing is clear.  Overall, the level of 
communication may be of several categories: none 
(terminal thread or minimal communication), few 
(algorithmically defined), and many (data 
dependent).  Furthermore, knowing the direction of 
communication is also valuable, whether it be in, out, 
or bidirectional.  These insights could be as simple as 
specifying for a variable not only if it is shared, but 
with how many threads and through labels specifying 
thread ids.  Also when specifying a shared variable, 
certain threads can be labeled as receivers or senders 
for that variable.  
 As discussed earlier, another aspect of pattern 
detection is measuring the number of active threads 
over time.  This can be done by statically analyzing 
insights such as thread creation or join (i.e. 
pthread_create() or pthread_join()).  Additionally, if 
insights are made available to the programmer to 
specify task interaction, a static task graph can be 
created and analyzed for thread behavior.  Combining 
all of these proposed static insights with the dynamic 
approaches enhances the accuracy of overall pattern 
detection. 
 Past work on parallel insights has focused on 
finding and addressing potential concurrency bugs.  
While the focus of this paper has been on the 
performance of correct algorithms, these works are 
nonetheless related in a notational sense.  In [20], 
Burnim et al., proposes deterministic sections that are 
then checked by the run-time for whether different 
thread interleavings have different results.  DeFuse 
[21] proposes several types of determinism invariants 
that are leveraged for finding concurrency bugs. 
 One trade-off in concurrency is between 
different lock types.  In past experience, a 
programmer would potentially instrument a lock or 
just “know” the level of contention and types of 
access required for an individual element of shared 
data.  However, as the platform changes 
(architecture, core count, etc.), the optimal lock type 
might also change.  Therefore, the compiler / runtime 
can also benefit from a series of common lock 
insights like level of contention, types of access 
(reader versus writer), and relation to other critical 
sections.  Future work will investigate leveraging 
existing insights to also better understand the 
relationship to pattern behavior. 

5. Experiments 
 To show how pattern detection can be effective, 
experiments have been run to investigate detection 
accuracy.  First a set of representative 
microbenchmarks was created that are considered 
“golden copies” of the pattern behavior.  These 
benchmarks are short programs that consist of the 
basic structure of the parallel pattern.  Simulations 
were run to collect the metrics discussed in 
Section 4.1 for these microbenchmarks that revealed 
a set of diverse characteristics for each benchmark.  
For example, pipeline was characterized by using 
largely migratory data, whereas geometric 
decomposition uses producer/consumer relationships.  
Divide and Conquer was unique mostly in thread 
behavior such as its spawn/exit events. 
 After collection of results for the 
microbenchmarks, some real benchmarks were 
evaluated to detect their parallel pattern.  The same 
metrics from Section 4.1 were collected and a 
weighted comparison to the results of the 
microbenchmarks was performed. Repeated 
experiments were used to determine the weightings. 
Figure 4 illustrates some detailed results of the 
weighted comparisons.   
 In this figure a rating is achieved for each of the 
benchmarks similarity to each pattern.  Blackscholes 
from the PARSEC suite [22] is shown to be mostly 
task parallel.  This coincides with what was expected. 
Blackscholes simply performs stock option pricing 
on many independent stocks in parallel, which is task 
parallel.  A second geometric decomposition 
workload written by another programmer with 
another algorithm was detected easily as the correct 
pattern.  Barnes from the SPLASH-2 benchmark set 
[23] is a geometrically decomposed n-body 
simulation using the Barnes-Hut algorithm.  Our 
detection mechanism is able to correctly find the 
geometric decomposition in this workload.  Future 
work such as extending the use of static analysis 
discussed in Section 4.3 will assist in detection for 
the Combined benchmark.  In this benchmark a 
pipeline algorithm was combined with a divide and 
conquer which resulted in a mixed result. Table 1 
summarizes the results of using pattern detection for 
the full PARSEC benchmark suite.  We found that 
using this technique we can achieve 50% accuracy in 
pattern detection.  Through the use of phase detection 
and boundaries from static and dynamic analysis, 
these results will improve with future work. 
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