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Abstract
Motivated by recent papers comparing CPU and GPU
performance, this paper explores the questions: Why do
we compare microprocessors and by what means should
we compare them? We distinguish two distinct perspec-
tives from which to make comparisons: application de-
velopers and computer architecture researchers. We sur-
vey the distinct concerns of these groups, identifying es-
sential information each group expects when interpret-
ing comparisons. We believe the needs of both groups
should be addressed separately, as the goals of applica-
tion developers are quite different from those of com-
puter architects.

Reproducibility of results is widely acknowledged as
the foundation of scientific investigation. Accordingly, it
is imperative that platform comparisons supply enough
detail for others to reproduce and contextualize results.
As parallel processing continues to increase in impor-
tance, and parallel microprocessor architectures con-
tinue to proliferate, the importance of conducting and
publishing reproducible microprocessor platform com-
parisons will also increase. We seek to add our voice to
the discussion about how these comparisons should be
conducted.

1 Introduction
Several recent papers, including [Lee et al., 2010] and
[Vuduc et al., 2010] examine widespread claims of 10
to 100-fold performance improvements for applications
running on Graphics Processing Units (GPUs) compared
to applications running on traditional Central Process-
ing Units (CPUs). These papers note that when com-
paring well optimized CPU and GPU implementations
of throughput oriented workloads, for which GPUs are
designed, GPUs hold a much more modest performance
advantage, on the order of 2.5×. The 10-100× perfor-
mance improvements quoted for GPU processing there-
fore arise from comparing against sequential, poorly op-
timized CPU code. Accordingly, [Lee et al., 2010] sug-
gests that future studies comparing CPUs and GPUs
should compare against thread and SIMD-parallelized
CPU code in order to avoid misleading comparisons.
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We agree that GPU-CPU comparisons, and particu-
larly speedup numbers, are often taken out of context
and used inappropriately. We also agree that many pub-
lished comparisons are not sufficiently clear about the
meaning of the comparisons they provide, which is in-
compatible with basic scientific methodology. The is-
sues raised by recent papers provide the community with
an opportunity to revisit the goals of and methodologies
for performing comparisons.

We wish to add our voice to this discussion. We begin
by examining why comparisons between processor ar-
chitectures are complicated by the rise of non-traditional
parallel architectures. We then investigate the motiva-
tions behind conducting such comparisons. We find two
distinct points of view which hold particular importance.
The first is the viewpoint of the application developer,
who is focused on advancing the state of the art in a par-
ticular application domain, given implementation con-
straints. The second is the viewpoint of the computer
architect, who is primarily concerned with assessing the
strengths and weaknesses of various architectural fea-
tures. Since researchers have different objectives, it is
natural that their perspectives and methodologies should
differ. It is not feasible for every cross-platform com-
parison to conduct experiments to satisfy all audiences.
However, it is feasible, and should be expected, that ev-
ery comparison should include or reference information
which allows the comparison to be reproduced and con-
textualized.

2 Revisiting Comparisons
Cross-platform comparisons depend critically on a host
of details. Everything from the data structures used in
a benchmark to specifics of silicon implementation can
strongly affect the results of a comparison. This has al-
ways been the case, but we now have an additional hur-
dle to deal with: the complexities of parallel program-
ming.

Concerns about algorithms and datasets used in
comparisons have historically led to the creation
of well defined benchmark suites. For parallel
CPU benchmarking, examples include as PARSEC
[Bienia et al., 2008], SPEComp [Aslot et al., 2001], and
SPLASH-2 [Singh et al., 1995]. These benchmark



suites have very well defined inputs, outputs, and im-
plementations, which makes it easier to normalize the
software side of a cross-platform comparison.

However, today we are faced with a diverse array of
hardware platforms which we may wish to compare,
such as the Cell Broadband Engine [Chen et al., 2007],
NVIDIA GPUs [Lindholm et al., 2008] and AMD GPUs
[Owens et al., 2008], Intel’s Many Integrated Core Ar-
chitecture [Seiler et al., 2008], as well as multi-core
CPUs from a host of vendors. This diversity in parallel
architectures, especially due to SIMD and memory sub-
system configuration, is exposed in low-level program-
ming models. Accordingly, different hardware platforms
require different source code to efficiently perform the
same computation. This makes it much harder to de-
fine benchmark suites which can be efficiently targeted
across this diverse array of hardware architectures. Re-
cent efforts such as OpenCL [Khronos Group, 2010] are
a step towards source code portability. However, the
widely divergent characteristics of various parallel archi-
tectures require architectural consideration even at the
algorithmic level, if efficiency is a primary concern. And
efficiency is always a strong concern when evaluating
parallel architectures: without the drive for increased
performance, the software complexity required for uti-
lizing parallel architectures is an unjustified expense.

Since efficient parallelized source code is not gener-
ally portable, it is difficult to form a benchmark suite
comprised of a body of code which can be reused across
parallel architectures. Consequently, it is likely that fu-
ture benchmark suites will include functional specifica-
tions for the computations being tested, but allow for a
wide variety of implementations. This further compli-
cates reader comprehension of cross-platform compar-
isons, since optimized reference implementations may
not be widely available.

In addition to the complexities of performing cross-
platform comparisons, it is also important to differenti-
ate between the concerns of application developers and
those of architecture researchers. We examine these con-
cerns in the following sections.

3 Concerns of Application Developers
Application developers work to advance the state of the
art in their application domain, under a set of imple-
mentation constraints. These cost constraints may in-
clude developer time and skill, the freedom to rethink
algorithms (or not), deployment costs - including hard-
ware budgets in both dollars, joules and watts, as well
as the need to interoperate with large legacy codebases,
to name a few. Accordingly, when application develop-
ers are presented with new technologies, such as SIMD
instruction set expansions, on-chip multiprocessing, or
programmable GPUs, they evaluate these technologies

for their potential to provide qualitative advancements
in a particular domain, given their particular set of im-
plementation constraints. For example, medical imag-
ing researchers strive to improve the kind of imaging
which can be practically performed in a clinical setting.
Increased computing capabilities make more advanced
algorithms for image reconstruction feasible, which are
interesting to medical imaging researchers because they
provide new capabilities, such as quicker image acquisi-
tion time or greater resolution.

To application developers, platform characteristics,
such as performance, price, power consumption, and so
forth, are useful in a qualitative sense, to answer the
question: Does a particular computing platform enable
an advance in the application domain, given my imple-
mentation constraints? Consequently, when application
researchers publish comparisons between technologies,
they naturally focus on application capabilities, and do
not normally carry out architectural comparisons with
careful performance characterizations. Application de-
velopers seeking to demonstrate new application capa-
bilities naturally focus their energy on computing plat-
forms that best showcase their application, and compare
against the established code bases which form the state
of the art in their domain.

As we noted earlier, there are many potential com-
puting platforms beyond the Intel CPUs and NVIDIA
GPUs considered in [Lee et al., 2010], ranging from
AMD CPUs and GPUs, to Sun Niagara 2, IBM Power
7, Cell and BlueGene, as well as FPGA implementa-
tions, among others. Although each computing platform
has unique performance characteristics, fully examining
the implementation space to make architectural compar-
isons is outside the scope of application developers’ con-
cerns. There are too many potential choices to consider.
In particular, documenting precisely how far behind one
architecture lags behind another is of little value to ap-
plication developers, since such experiments generally
do not improve the state of the art in their domain of
expertise.

Consequently, when application developers report
10×-100× speed up numbers from using a GPU, these
speedup numbers should not be interpreted as architec-
tural comparisons claiming that GPUs are 100× faster
than CPUs. Instead, they illustrate a return on invest-
ment: starting from a legacy, usually sequential, code
base that performed at some level x, the application de-
veloper was able to take the application to some new
level y, with an overall gain of y/x. The reported
speedup number merely quantifies the improvements
yielded by this effort; it says nothing about the archi-
tectural merits of the platforms used to implement the
computations being compared.

If application developers had no implementation con-



straints, it would be feasible to expect them to make
detailed comparisons in order to answer the question:
Which architecture is optimal for my problem, and by
how much? However, as we have explained, these
comparisons provide the application developer with lit-
tle value, because the information discovered in such
an exercise is only incidental to advancing the state of
the art in an application domain. Stated differently, to
application developers, 10-100× speedups from using
GPUs are not mythical, in fact they are commonplace
and realistic: they come from porting well-established
and commonly used sequential applications to GPUs,
often after a clean-sheet redesign of the computations
in the application and significant algorithmic rework-
ing. The fact that application developers could have also
achieved large performance improvements by rewriting
their legacy code to target parallel CPU implementations
is an orthogonal issue - one that justifiably falls outside
the scope of their concerns. Although it is unrealistic to
expect application developers to do the implementation
work necessary for complete architectural comparisons,
we can and should expect them to contextualize their re-
sults: such 10-100× speedups should never be claimed
as architectural comparisons between CPUs and GPUs,
but only as an advancement over the previous implemen-
tation to which comparison is being made. If the previ-
ous implementation was important to an application do-
main, this 10-100× speedup will have a significant im-
pact on those who use it, and so the speedup provides
value to application developers, particularly if it can be
shown to improve application accuracy or capabilities.

4 Concerns of Architecture Researchers
Computer architects face a different set of problems and
concerns than application developers. While application
developers can focus on an application, even changing
an algorithm to fit a particular processor architecture,
most computer architects must make engineering trade-
offs to optimize their designs for a wide variety of ap-
plications which may run on their devices, and consider
the workloads they use to test their architectures as fixed.
For example, architects working on x86 microarchitec-
tures focus on extracting performance from the x86 ISA,
scaling across a broad variety of workloads and design
constraints from Mobile Internet Devices all the way to
the datacenter. Instead of focusing on a particular ap-
plication domain, computer architects must design ar-
chitectures which perform efficiently across a variety of
application domains.

Consequently, computer architects often evaluate ar-
chitectures based on benchmark suites which sample a
broad range of application domains, where each bench-
mark is simple enough to be well characterized and op-
timized for the architectures being compared. However,

conducting these comparisons is challenging, since it is
difficult to normalize away implementation artifacts. For
example, when comparing implementations of two dif-
ferent architectures, it is difficult to control for the fact
that the implementations may have been carried out on
different semiconductor processes, with different design
budgets, targeting different customer price points, dis-
sipating different amounts of power, etc. Although it
is difficult to normalize these factors away, it is impor-
tant for comparisons to present salient information about
the implementations being performed, so that the reader
may contextualize the results of the comparison.

More specifically, when computer architects make
comparisons between architectural features, there are
a number of elements which must be carefully con-
sidered. The first is the specifics of silicon imple-
mentation, which includes the style of logic imple-
mentation, such as standard-cell versus full or cus-
tom design styles. These details may lead to an or-
der of magnitude performance difference, irrespective
of the inherent value of a microarchitectural feature
[Chinnery and Keutzer, 2002]. The silicon process used
for implementation and its particular characteristics, as
well as die size and power consumption figures may also
materially impact the comparison being made.

Comparisons made for computer architects should in-
clude information about these details, so that the audi-
ence can contextualize the results. It would have been
useful, for example, if [Lee et al., 2010] had devoted
some space to these details in their comparison - as
it stands, the paper does not mention that it compares
a 65nm GPU released to market in June 2008 with a
45nm CPU released in October 2009, a 16 month gap
which represents almost a full generation of Moore’s
law. Other important details such as die size and power
consumption are also omitted, which makes it difficult
for architecture researchers to understand the compari-
son being presented.

Additionally, in order to reproduce results from a
comparison, the benchmarks and datasets used to cre-
ate the comparison must be clearly defined. For
example, consider Sparse Matrix Vector Multiplica-
tion, a well studied kernel on both CPUs and GPUs,
e.g. [Williams et al., 2009], [Bell and Garland, 2009],
which serves as one of the 14 benchmarks used in
[Lee et al., 2010] to compare a CPU and a GPU.

It is well known that Sparse Matrix Vector Mul-
tiplication performance varies widely when multiply-
ing a given matrix, depending on the data struc-
ture used to represent the matrix. For example,
[Bell and Garland, 2009] found a 35-fold performance
improvement when using a DIA representation com-
pared to the Compressed Sparse Row format (CSR), on
single-precision three-point Laplacian matrices, when



running both computations on the same GPU. Even
among CSR formats, there are multiple implementa-
tions, each of which has certain advantages for par-
ticular datasets. Concretely, [Bell and Garland, 2009]
found that a vector CSR implementation was faster on
the whole than a scalar CSR representation - in the
extreme up to 18 times faster, while running on the
same hardware. However, [Bell and Garland, 2009] also
found that there were certain matrices where the scalar
CSR implementation was 6 times faster than the vec-
tor CSR implementation, again running on the same
hardware. The choice of Sparse Matrix representation
and Sparse Matrix Vector Multiplication implementa-
tion, and Sparse Matrix dataset used for benchmarking
critically impacts observed performance.

In fact, given an absolute performance target, it is
possible to construct a dataset which achieves that tar-
get performance, as long as the desired target is feasi-
ble with respect to the extremes in Sparse Matrix Vec-
tor multiplication performance which have been ob-
served on a target platform. Since the extremes are
widely separated, like the 35-fold range observed in
[Bell and Garland, 2009], absolute performance num-
bers are not interpretable without knowing more about
the datasets and implementations used to generate such
numbers.

Unfortunately, [Lee et al., 2010] does not detail the
datasets or implementations used to perform their com-
parison. Besides Sparse Matrix Vector Multiplica-
tion, other benchmarks used for comparison, such as
ray-casting, collision detection, and solvers for col-
lision resolution, also exhibit strong workload- and
implementation-dependent performance characteristics.
Without access to details of the benchmark suite which
underlies a comparison, readers are not able to inter-
pret, contextualize or reproduce performance results,
since so much of the observed level of performance de-
pends on those details. We encourage those conduct-
ing cross-platform comparisons to make details of their
work available.

5 Example Comparisons for Application
Research

To give some positive examples of cross-platform com-
parisons for application researchers, we cite two exam-
ples.

[You et al., 2009] discussed algorithmic issues which
arise in parallelization of Automatic Speech Recognition
(ASR). ASR takes audio waveforms of human speech
and infers the most likely word sequence intended by
the speaker. Implementing ASR on parallel platforms
presents two challenges to the application developer: ef-
ficient SIMD utilization and efficient core level synchro-
nization. The authors explored four different algorithmic

variations of the computation on two parallel platforms
- Intel Core i7 CPU and NVIDIA GTX280 GPU.

The sequential baseline was implemented on a single
core of a Core i7 quad-core processor. The authors noted
that the platform characteristics of the CPU yielded dif-
ferent algorithmic tradeoffs than the GPU, meaning that
the most efficient algorithm for parallel ASR was differ-
ent for the two platforms. Overall, compared to the se-
quential baseline implementation, the authors achieved
a 3.4X speedup on the quad-core Intel Core-i7, and a
10.5X speedup on the GTX280. As illustrated by this
example, application developers use their freedom to
change algorithms and data structures to suit a particular
platform. Therefore, using a benchmark suite with fixed
algorithms and data structures does not provide compar-
isons which are useful to application developers.

[Feng and Zeng, 2010] is another example which il-
lustrates the concerns of application researchers when
performing comparisons. The authors proposed paral-
lelizing chip-level power grid analysis on modern GPUs.
The power grid analysis problem requires computing the
voltage at all nodes of a circut as a function of time.
It can be solved by formulating the problem into a lin-
ear system Gx = b, with G representing the resistance
between nodes, and b representing the voltage sources.
Traditionally, these problems have been solved by direct
methods such as LU or Cholesky decomposition. How-
ever, memory access patterns for the direct methods are
not very efficient. As a result, [Feng and Zeng, 2010]
proposed multi-grid preconditioned conjugate gradient
(MGPCG) method to solve the linear system. The con-
jugate gradient method is highly data parallel, and ac-
cording to the experimental results, Feng achieved 25x
speedup on GPU using the MGPCG method against the
serial implementation using the Cholesky decomposi-
tion method.

The authors of [Feng and Zeng, 2010] are primarily
concerned with advancing power grid analysis by intro-
ducing a faster solver. Their paper details several differ-
ent algorithms and their parallelism implications. To get
better data access patterns, they decided not to use tradi-
tional direct solvers, but instead use an iterative method
better suited to the architecture of the processor they tar-
geted. The authors detail significant algorithmic explo-
ration, including a pure CG solver, a preconditioned CG
solver, a multigrid solver, and finally the multigrid pre-
conditioned CG solver. The 25x speedup number comes
from exploring the algorithm space and parallelizing the
algorithm. Although they are comparing their paral-
lelized GPU iterative solver with a serial CPU direct
solver, the comparison is still valid and of value to those
using the serial direct solver. The experimental results
are not meant as an architectural comparison of CPUs
versus GPUs. Instead, they show how application re-



searchers advance the state-of-the-art by exploring the
algorithm space and introducing parallelism.

6 Example Comparisons for Architecture
Research

We also cite two examples of useful cross-platform com-
parisons which contain details useful for architecture re-
searchers.

[Kozyrakis and Patterson, 2002] evaluates their pro-
totype vector processor with the EEMBC benchmarks
and compares their results to five existing processor ar-
chitectures. The authors mention that the processors
were implemented by different design teams, using dif-
ferent process technology, at different clock frequencies,
and with differing power consumption. The results for
the embedded processors are normalized to clock fre-
quency and code size comparisons are also made. The
authors performed a multi-architectural comparison and
provided in-depth analysis for the embedded applica-
tions running on the 6 different platforms. The EEMBC
benchmark suite is well known and characterized, and
results are publically available, making it possible for
readers to reproduce the experiments, given the avail-
ability of the appropriate hardware platforms.

[Williams et al., 2009] evaluates Sparse Matrix Vec-
tor Multiplication across multicore processors from In-
tel, AMD and Sun, as well as the Cell Broadband en-
gine. Although not specifically targeted at architecture
researchers, this comparison does provide details of the
hardware platforms being compared, describes the dif-
ferent optimizations which were applied to achieve high
performance on each of the various architectures under
consideration, as well analyzes the impact of various mi-
croarchitectural features for each platform with respect
to the optimizations they employ. Additionally, they de-
scribe in detail the benchmark datasets and data struc-
tures they employ, as well as justify why the datasets
constitute a good sampling of the space of sparse matri-
ces. These details allow others to reproduce their work
and build on it.

7 Conclusion
As parallel architectures continue to diverge, cross-
platform comparisons will be increasingly important.
Conducting such comparisons is inherently difficult:
there is a wide spectrum of implementation concerns,
ranging from silicon implementation to algorithmic
choices, all of which critically influence the results of
such comparisons. Additionally, these comparisons are
conducted for widely different purposes, based on the
needs and motivations of the researchers conducting the
comparisons.

We have outlined two important, yet divergent view-
points for conducting comparisons: the viewpoint of ap-

plication developers, as well as the viewpoint of archi-
tectural researchers. Application developers focus on al-
gorithmic innovation, co-designing algorithms for a par-
ticular domain to perform efficiently on parallel hard-
ware, given a set of implementation constraints. Com-
puter architects attempt to extract maximal performance
from the architectures being compared on a particular
benchmark suite, in order to compare architectural fea-
tures. Although it is not realistic to expect all compar-
isons to include all the information necessary to satisfy
all potential audiences, it is crucial that researchers con-
ducting cross-platform comparisons choose a particular
audience and attempt to provide enough information for
that audience. Additionally, the results of such a com-
parison should be reproducible.

Papers like [Lee et al., 2010] and [Vuduc et al., 2010]
raise important points; we agree that many papers which
compare CPUs and GPUs, find a 100× speedup by using
a GPU compared to a sequential CPU implementation,
and then claim that GPU architecture is more suited to
that computation, are taking their results far out of con-
text. Without performing the work necessary to under-
stand a workload at an architectural level across plat-
forms, these claims are unsupportable. However, the
narrower claim, that a GPU implementation was 100×
faster than the legacy sequential implementation, is still
valid and potentially of great interest to application de-
velopers using the legacy sequential implementation.

If a comparison is being made for architecture re-
searchers, information needs to be presented about the
silicon implementation of the processors being com-
pared. Additionally, the benchmark suite being used
needs to be fully documented, so that the audience
can interpret and reproduce the results. We recognize
that space in publications is highly constrained, which
presents an obstacle to communicating complex details
of cross-platform comparisons. We suggest the use of
expanded technical reports or websites with freely avail-
able datasets and source code in order to communicate
these details, since without them, the comparisons are
impossible to interpret.

As parallel computing continues to mature, we be-
lieve that cross-platform comparisons will play an im-
portant role in helping both architecture researchers as
well as application developers understand the landscape
of parallel computing. Although conducting these com-
parisons can be complicated and at times contentious,
the discussion they engender is essential to advancing
our collective understanding of parallel architectures and
applications.
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