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Abstract only slowly will not be able to leverage these hardware

The rise of multicore processors has lead to techniques that fRAtUres.

namically vary the set and characteristics of cores or threadd/Ve argue that to support these future processors, oper-
available to the operating system. For example, Core Fusiiing systems must become much more dynamic in how
merges multiple cores for faster processing. While the mechdihey treat the set of processors. Existing hotplug mech-
ics of the change, such as merging two cores into a more panisms assume reconfigurations are rare, and that when
erful core, can be handled by a virtualization layer, operatifigey occur, they are fairly permanent. In a dynamic
systems still have an interest in the exact set of cores availallgstem, though, processors may disappear temporarily

For example, the read-copy-update mechanism in Linux Myghan running a single task, and return soon after. Rather
contact all cores to complete an update. Thus, the OS must be[

in assuming that the set of processors is static most of
formed when the set of CPUs changes. We demonstrate thro H% . gt b L

. . . time, operating systems should accept that it might
an analysis of a recent Linux kernel that (i) there are over

subsystems - each subsystem can have multiple callbacks regi inge. .
tered — that depend on knowing the set of cores, and (ii) the ex-V& present a case study Qf the Linux kernel to demon-
isting hotplugmechanism is poorly suited to handling dynamigtrate how a modern operating system depends on the set
processors due to its poor performance and scalability. BagdcBvailable processors. We find that there are at least 15
on this analysis, we propose two mechanispnsgessor proxies subsystems with 35 callbacks that must be notified every
andparallel and deferred hotplutp provide low-latency recon- time the available processors change. Furthermore, we
figuration. In initial gxperi_mer_wts, we show that we can redugghalyze the existing hotplug mechanism and find that it
the latency of reconfiguration in Linux by 95 percent. takes over 100 ms to add and 25 ms remove a CPU, and
1 Introduction that latency increases. as more processors are added or re-
. . moved. Thus, the existing mechanism is not suitable to
The rise of multlcqre processors has lead to many PQipport dynamically reconfigurable processors.
posals that dynamlcally vary the seF of processors availgased on this analysis, we propose two changes to how
able. For example, with Core Fusiofl, speculative oheating systems manage physical processors. First, we
muItl-threadmg 17,.6, 19,12, 14], and speculative subordl—propose a new abstraction, thecessor proxywhich is
nate microthreadingg], two or more processors or thread, yirty | stand-in for a processor. When a processor that
contexts combine to improve performance. Similar teCRag peen disabled is needed for a global operation, a vir-
niques combine multiple contexts dynamically t0 IMProvg 5| stand-in takes over its role, responding to messages
reliability through redundant executiob, [16]. on its behalf. From the perspective of other processors,
~ Furthermore, other trends may also lead to a vanye gisabled processor is thus still available. Second, we
ing set of processors. With virtualization, thg hypervbropose modifications to the hotplug mechanistpéal-
sor may dynamically change the number of virtual prsji;e hotplug, allowing multiple cores to be added or re-
cessors available to an operating system as worklogg§ed at a time, and wefernotification of processor-set
change 24, 23]. Current Intel Nehalem processors caghanges; to avoid reconfiguring when the change is only
boost the performance of one core by disablingark- ansient. with these changes, processors can be stopped
ing other cores4, 10]. or started on the timescale of a single scheduling quan-

The critical fe_ature of th_ese architectures is ttia tum, allowing for more reliable, higher performing, and
number of physical execution contexts may change gy iant systems.

namically As a result, operating systems built with the | the remainder of this paper, we first discuss moti-
assumption that the set of processors is static or chang&s,y hardware features and analyze the existing Linux
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prove reliability. For example, redundant execution tech-
Core Core Core Core niques run a thread simultaneously on multiple cores and
automatically recover from failures when outputs dif-
fer [1, 20, 25]. When surplus cores are available these
techniques promise inexpensive error detection and fault
tolerance.
. Third, future processors may lmver provisionedin
| Fused that they may contain more processing elements than can
Fused Care be simultaneously powered o8][ Furthermore, proces-
Core | sors may disable cores to save power or to transfer power
| Core Core to the remaining cores4]. As a result, a system may
switch between a single large, fast core and a smaller
(b) Fused cores number of more fiicient and slower cores when paral-
lelism is available.
Figure 1:Example dynamically reconfiguration. The homo- _ Finally, virtualization may lead to varying numbers of
geneous cores shown in (a) can be reconfigured, for examplevirtual processors. When competing workloads are light,
into a 4-core unit and a 2-core unit shown in (b). a virtual machine could use more virtual processors to get
more work done, and when workloads are heavy, drop
mechanisms for adding and removing processors. \&wn to a single processor.
then discuss the design of our proposed changes, followe@hese mechanisms all vary the set of processors avail-
by a brief discussion of our initial implementatiofi@ts. able to an operating system over time on short time scales.
A Thus, operating systems must support changing the num-
2 Motivation ber of available processing cores. While virtual machines
While most computers have a static set of processatan implement reconfiguratiod,[27], we next show that
hardware trends indicate that future computers may Sperating systems are dependent on knowing the set of
port adynamically variableset of processors, either foravailable processors.
performance, reliability, or powefléciency.

Core Core Core Core

(a) Homogeneous cores

2.2 0OS Dependence on Processors

2.1 Dynamically Reconfigurable Processors The challenge arising when the set of available processors

Most current processors are packaged as multicore chigitanges is that many parts of modern operating systems
with multiple processor cores on a single package and afighend on either the identity of a particular processor or
or more threads per core. Despite the fixed numberrefuire cooperation of all or most processors.
cores in a processor socket, we see at least four reasonge examined the Linux 2.6.31-4 kernel to discover the
why the number of CPUs exposed to an operating systemient to which it depends on knowing the current set of
may vary. processors. We examine three facets of the Linux: (i) what
First, many researchers have demonstrated singiertions of the OS have per-CPU data structures, (i) what
thread performance increases from combining sevepaktions of the OS must be notified when the set of pro-
processing cores into a single more powerful processiggssors change, and (i) how frequent are operations that
element. Core Fusion increases performance by comhigquire all processors? These three factors determine the
ing core resources, such as functional units, into a largeist and complexity of dynamically changing the set of
core that can achieve higher ILR1]. Similarly, spec- available processors. We answer these questions by ex-
ulative multi-threading executes loop iterations or fungmining the Linux kernel source code and by dynamically
tion calls in parallel 8, 22]. Slipstream processin®] measuring its behavior on a 2.5 GHz Intel Core2-Quad
improves performance through prefetching. These tegystem running a mix of Unix command line utilities.

niques aid the mountains of single-threaded code left t%?ér-CPU Data Structures. A subsystem may declare
hind by multicore processors. a variable to beger-CPU meaning that it has a flierent

o e et Fifress an vl on ey G Curent uses of per
9 Y ' P U variables include counter variablesfteus, callback
shows how cores can be fused together to act as more

S . . . We f 44 iabl
powerful cores. This is representative of core fusion aﬁg cues arT d run ?juc;:.uez e found 6;6}? aratl)tg variables
speculative multithreading, I Linux that are defined as per-CPU. Taeh subdirec-

Second, processing cores may be combined to iF%D/ defines 294 variables, which mostly refer to hardware



Subsystem | Callbacks

ond per processor. Thus, if the set of CPUs changes, these

arch 7 RCU operations could be delayed.

kernel 5 Based on these observations, we find that the Linux ker-

memory manage 5 nel is intimately aware of the set of available processors.

scheduler 3 If this set were to change rapidly, numerous subsystems

lib 2 would have to be notified and many per-CPU structures

net 2 updated. Furthermore, operations that require all proces-

reu 2 sors can only execute when the set has quiesced, either

?Smer i delaying these operations or blocking frequent reconfigu-

ring bufer 1 ration.

workqueue 1 3 Hotplug

cpuset 1 . .
Operating systems currently support the dynamic change

block 1 - )

acpl 1 of processors through botplug mechanism. On Win-

o dows, it is only possible to add processor or replace pro-

pology 1 i i
Total 35 cessor, but not remove them@]]. Solaris and Linux

support both adding and removing of processors dynami-
Table 1:Callbacks registered by each subsystem. cally [13, 17].
Hotplug targets two uses: maintenance, to remove a
failing processor or dynamically add capacity; and virtu-
structures. Of the remaining 149 variables, 70 are usggration, to change the allocation of processors to a vir-
in the core kernel routines, 32 in drivers, 16 in networkga| machine. These are both infrequent events, so hotplug
ing, 12 in memory management and 4 in file systems. jiplementations optimize for low overhead in the com-

the number or set of processors change, these per-GRsh (no reconfiguration) case, rather than for frequent
data structures must be updated or initialized to reflect ganges.

change.
g Hotplug Implementation. The Linux hotplug imple-

Processor Change Notification. A subsystem that mentation provides two operations accessible from the
wants to maintain state aboutidirent processors can regommand line: filining a processor and onlining a pro-
quest notifications through theotplugmechanism when cessor. To filine a processor, the kernel follows the steps
the set of processors change. When a processor is adfefhple2. When a CPU is brought online, the process
or removed, the kernel calls all registered callback fung reversed. The key features of this implementation are
tions with the identity of the processoifected. that: (i) it is a lengthy, time-consuming process, (ii) it re-
We profiled our system and recorded the set of funggires quiescing the system globally to update the mask
tions the kernel invokes when a processor is added or g¢-ayailable CPUs, and (iii) it assumes that processors,

moved. We found 35 callbacks split across 15 subsysice dfiined, never come online again by unnecessarily
tems, shown in Tabl@. Most of these callbacks are tqemoving all references to them.

although not all. These callbacks delay reconfigurati%rpocessorsy these three features make hotplug inappropri-
because the kernel must invoke many functions when ke First, reconfiguration could occur frequently, for ex-
configuring. ample every time a process is scheduled. Thus, a slow
All-processor Operations. Several operations withinhotplug process could prevent performance gains from
the Linux kernel require communication with all procegeconfiguration. Second, hotplug requires quiescing the
sors. For example, the read-copy update (RCU) mechdstem, which becomes expensive as the number of pro-
nism [15] is used to update read-mostly global data strugessors grows. Furthermore, it prohibits separate portions
tures. It ensures quiescence of data structure updateobyhe chip reconfiguring simultaneously, again limiting
making the update only after all the CPUs have undergo#@lability. Finally, a reconfigurable processor may only
at least one context switch. TLB shootdowns similargmporarily disable a core, so hotplug performs unneces-
require communication with all processors on which &&ry cleanup and initialization.

address space has been mapped. To gauge the frequeR¥lug Performance. We measure the performance of
of global operations, we measured the frequency of RGihux hotplug by adding or removing one or more proces-
operations. They occur approximately 90 times per S&gys on a four-core system while no applications are run-
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Grab a global lock to serialize hotplug events. figuration is stable.

Check correctness (at least one CPU remains, €tc.). processor proxies address short-term reconfiguration,
Notify interested subsystems a CPU is 90'”9de N while deferred and parallel hotplug reduces the fre-
Migrate processes, interrupts, tlmers_, ottom quency and latency of long-term reconfiguration opera-
halves, and tasklets away from the outgoing CPU. h o . .
tions. These are initial steps at fully supporting dynamic

5. Schedule a separate thread on every processor in the fi . hich K dditi |
system to disable interrupts and freeze the system. recontiguration, which may take many additional steps.

While the system is frozen, take the CPU outof 4.1 Processor Proxies

cpu_online_mask. .
6. Disables interrupts for the CPU and cleanup We observe that much of overhead of hotplug operations

processor-related state. is notifying other processors and initializiteeaning up
7. Put outgoing CPU in idle to prevent other tagks Software data structures. However, if other processors are

PwnNPE

from being scheduled on it. not notified, they may block waiting for global operations
8.  Disablghalt the outgoing CPU. to complete.
9.  Notify interested subsystems that the CPUfikire. We therefore create a container, calletpb@cessor
10.  Release the global lock. proxy, for the OS data structures referring to a proces-

sor. When a physical CPU is unavailable, a processor
proxy is created for it on another CPU and takes its place
when necessary. The kernel moves its communication

Table 2:Steps to take a CPU dline.

HOtplug Cores | Native Par | Proxy endpoints, such as interrupts, to that CPU. Any operations
Operation (msec) | (msec) | (msec) .
that require the presence of a core, such as a TLB shoot-
1 25 25 1.7 : . . "
down or an RCU operation, can continue without waiting
OFFLINE | 2 60 60 4 for th lable CPU
3 137 130 6.5 or the unavaila e - _ . .
1 106 106 12 Processor proxies are similar to mult.|plexmg wrtgal
ONLINE | 2 214 111 28 CPUs (VCPUs) on a single processor with a hypervisor.
3 331 131 6 However, processor proxies only virtualize the external

interface to a processor, such as interrupts and RCU op-
Table 3:Native hotplug, parallel hotplug, and proxy latency erations. Thus, a processor proxy does not schedule or
to take 1-3 CPUs diline and online. run general code. In contrast, a VCPU may run any code
. _ and forces the hypervisor to schedule or timeslice multiple
ning (a best case scenario). TaBlehows the latency of cpyys on a single physical CPU. Furthermore, because the
offline and online operations in column 3. Overall, takings controls processor proxies, it can prevent preemption
a processorftline is much faster than bringing one onling, e holding spinlocksZ6].
because it need not probe for processor characteristics Qi 5dd a new execution context to the 0S, beyond pro-
initialize hardware structures. In addition to these latefzoq context and interrupt context, termemiaxy context
cies, we measured that all other processors in the system; . context exists on a CPU for each of the proces-
are halted for 2.6 ms wherflbning a processor. Thus, as;y s it proxies and executes only when the proxying CPU
systems get larger, a significant amount of time is 10St p&eiyes inter-processor interrupts (IPIs) on behalf of the

unrelated cores. , proxied CPU and performs the required operation. No
While the pe;rformance is very fa}st c_ompared to.th.e fréreads are scheduled on a Processor proxy.

guency of maintenance or v!rtua}hzatlon events, it is t?? The key challenge is ensuring that all the per-CPU state

slow to be used when reconfiguring hardware for Specifi;yajlaple to code executing in a proxy context. Our de-

processes on a system. sign leverages the Linux implementation of per-CPU vari-

4 Design ables, which are accessed through segments on x86 pro-

. : o . cessors. A segment in the GDT (Global Descriptor Table)
Operating systems gain great scalability benefits by ths\'nii/nts to the memory segment holding the per-CPU struc-

awareness of processors and per-CPU data structures.turgs_ Since each CPU has its own GDT, each processor

seek to retain those benefits yet improve reconfiguratigg htains a dferent GDT entry that points to its private

spleegr;vcl?;svg? Tg;gi?:nrgsﬁ] for processors when thesegment. Linux loads this GDT entry into the FS regis-
' are gfline P P Yer when in kernel mode, and access to per-CPU variable
’ . : use segment-based addressing with this register. When

2. Parallel and deferredallow multiple simultaneous switching to a processor proxy, we load the proxy’s per-

hotplug operations and to defer hotplug until a copsp, segment into the proxying processor's GDT, and set



the FS register to the proxy’s segment. 4.3 Preliminary Evaluation

An additional complication arises in code making USge have begun the implementation of processor proxies
of thethread_info variable, which refers to the CPU statg g deferregparallel hotplug in Linux. We have verified

T _ , execute bottom halves, and allow RCU opera-
which is not changed when executing in a proxy contexf,s 1o complete while proxying a CPU. Furthermore, the

We modify the macro for accessingread,;nfo to redi- system can run arbitrarily long while proxying.
rect accesses from proxy context to the ”_ght data. We evaluate our changes with same configuration re-
Processor proxies speed reconfiguration because tBS%ed previously in Sectiof. The results are shown in
remove much of the work to change the set of procegspie 3" columns 4 and 5. For parallel hotplug, we find
sors. Instead, the major task is to reprogram the interrupt -1 benefit when taking multiple CPUSlime. For
controller. To set up @ Processor proxy, Interrupts mun?ﬁnging CPUs online, though, we find there is little over-
be routed from the existing processor 1o its proxy. TheRgad to bringing multiple CPUs online at once, leading to
fall into two cat_ego_nes. device mterrgpts, which must bé?GO percent reduction in time for the reasons noted earlier.
rerouted or redistributed to other online CPUs, and IP{S;ocessor proxies provide much larger benefit, reducing
which must be sent to the proxying CPU. time for reconfiguring a single processor by 95%. We find
4.2 Parallel and Deferred Hotplug these results encouraging, but do not yet reach our goal of

Our second goal is to make hotplug more scalable whef§EONfiguring faster than a scheduling quantum. We con-
is used. It is likely that reconfigurable processors will giue to Ioo_k "’_‘t how other par_ts of the hotplug mechanism
reconfigured en masse, for example when four cores 578 P€ optimized for dynamically reconfigurable proces-

fused into a single more powerful core. Sors.
We parallelize the implementation of hotplug by allows  Conclusions

ing muitiple CPUs to change state simultaneously. th‘%e rise of multicore processors leads to new opportu-

current implementation of the hotplug grabs a global IO%ITties for improving performance, reliability, and power
while notifying subsystems of the change in processors, mp g pertorn ' Y, and p

o consumption by reconfiguring the set of running proces-
thereby serializing changes to the processor set. We par- " )
sors. Existing operating systems cannot react to changes

allelize this implementation by adding a new interface f?ést enough to fully utilize these mechanisms. We pro-

adding removing a set of processors at once. This allows ; :
Qse two mechanisms to make operating systems more

the local operations to initialize or cleanup a processor OnamiC' rocessor proxies to temporarily stand in for
proceed in parallel, and ensures that notification to sul- - P P b y

. AD unavailable processor, and parallel and deferred hot-
systems occur once with a mask or processors, rather t ﬁjn 10 reduce the latency of reconfiauration operations
once per CPU. When bringing a CPU online, this grea 9, y 9 P '

improves performance because multiple CPUs can be i rthermore, newfinity mechanisms, such as pair-wise
nity of threads 18] are also needed. With these mech-

tialized in parallel. . : )

. gnisms, the bulk of the operating system can remain un-
Deferred hotplug leverages processor proxies to Ot anged while the set of physical CPUs available changes
execute hotplug operations when a reconfiguration is Iorn idlg phy 9
lasting. We modify the hotplug subsystem to allow re- Y-

motely dilining a CPU, by executing on a separate physhcknowledgements
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