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Abstract
The rise of multicore processors has lead to techniques that dy-
namically vary the set and characteristics of cores or threads
available to the operating system. For example, Core Fusion
merges multiple cores for faster processing. While the mechan-
ics of the change, such as merging two cores into a more pow-
erful core, can be handled by a virtualization layer, operating
systems still have an interest in the exact set of cores available.
For example, the read-copy-update mechanism in Linux must
contact all cores to complete an update. Thus, the OS must be in-
formed when the set of CPUs changes. We demonstrate through
an analysis of a recent Linux kernel that (i) there are over 15
subsystems - each subsystem can have multiple callbacks regis-
tered – that depend on knowing the set of cores, and (ii) the ex-
isting hotplugmechanism is poorly suited to handling dynamic
processors due to its poor performance and scalability. Based
on this analysis, we propose two mechanisms,processor proxies
andparallel and deferred hotplugto provide low-latency recon-
figuration. In initial experiments, we show that we can reduce
the latency of reconfiguration in Linux by 95 percent.

1 Introduction
The rise of multicore processors has lead to many pro-
posals that dynamically vary the set of processors avail-
able. For example, with Core Fusion [11], speculative
multi-threading [7, 6, 19, 12, 14], and speculative subordi-
nate microthreading [3], two or more processors or thread
contexts combine to improve performance. Similar tech-
niques combine multiple contexts dynamically to improve
reliability through redundant execution [1, 16].

Furthermore, other trends may also lead to a vary-
ing set of processors. With virtualization, the hypervi-
sor may dynamically change the number of virtual pro-
cessors available to an operating system as workloads
change [24, 23]. Current Intel Nehalem processors can
boost the performance of one core by disabling orpark-
ing other cores [4, 10].

The critical feature of these architectures is thatthe
number of physical execution contexts may change dy-
namically. As a result, operating systems built with the
assumption that the set of processors is static or changes

only slowly will not be able to leverage these hardware
features.

We argue that to support these future processors, oper-
ating systems must become much more dynamic in how
they treat the set of processors. Existing hotplug mech-
anisms assume reconfigurations are rare, and that when
they occur, they are fairly permanent. In a dynamic
system, though, processors may disappear temporarily
when running a single task, and return soon after. Rather
than assuming that the set of processors is static most of
the time, operating systems should accept that it might
change.

We present a case study of the Linux kernel to demon-
strate how a modern operating system depends on the set
of available processors. We find that there are at least 15
subsystems with 35 callbacks that must be notified every
time the available processors change. Furthermore, we
analyze the existing hotplug mechanism and find that it
takes over 100 ms to add and 25 ms remove a CPU, and
that latency increases as more processors are added or re-
moved. Thus, the existing mechanism is not suitable to
support dynamically reconfigurable processors.

Based on this analysis, we propose two changes to how
operating systems manage physical processors. First, we
propose a new abstraction, theprocessor proxy, which is
a virtual stand-in for a processor. When a processor that
has been disabled is needed for a global operation, a vir-
tual stand-in takes over its role, responding to messages
on its behalf. From the perspective of other processors,
the disabled processor is thus still available. Second, we
propose modifications to the hotplug mechanism toparal-
lelizehotplug, allowing multiple cores to be added or re-
moved at a time, and todefernotification of processor-set
changes, to avoid reconfiguring when the change is only
transient. With these changes, processors can be stopped
or started on the timescale of a single scheduling quan-
tum, allowing for more reliable, higher performing, and
efficient systems.

In the remainder of this paper, we first discuss moti-
vating hardware features and analyze the existing Linux
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Figure 1:Example dynamically reconfiguration. The homo-
geneous cores shown in (a) can be reconfigured, for example
into a 4-core unit and a 2-core unit shown in (b).

mechanisms for adding and removing processors. We
then discuss the design of our proposed changes, followed
by a brief discussion of our initial implementation efforts.

2 Motivation
While most computers have a static set of processors,
hardware trends indicate that future computers may sup-
port adynamically variableset of processors, either for
performance, reliability, or power efficiency.

2.1 Dynamically Reconfigurable Processors

Most current processors are packaged as multicore chips,
with multiple processor cores on a single package and one
or more threads per core. Despite the fixed number of
cores in a processor socket, we see at least four reasons
why the number of CPUs exposed to an operating system
may vary.

First, many researchers have demonstrated single-
thread performance increases from combining several
processing cores into a single more powerful processing
element. Core Fusion increases performance by combin-
ing core resources, such as functional units, into a larger
core that can achieve higher ILP [11]. Similarly, spec-
ulative multi-threading executes loop iterations or func-
tion calls in parallel [8, 22]. Slipstream processing [9]
improves performance through prefetching. These tech-
niques aid the mountains of single-threaded code left be-
hind by multicore processors.

Figure1 shows an example of these architectures. Part
(a) shows a homogeneous multicore system, and part (b)
shows how cores can be fused together to act as more
powerful cores. This is representative of core fusion and
speculative multithreading.

Second, processing cores may be combined to im-

prove reliability. For example, redundant execution tech-
niques run a thread simultaneously on multiple cores and
automatically recover from failures when outputs dif-
fer [1, 20, 25]. When surplus cores are available these
techniques promise inexpensive error detection and fault
tolerance.

Third, future processors may beover provisioned, in
that they may contain more processing elements than can
be simultaneously powered on [2]. Furthermore, proces-
sors may disable cores to save power or to transfer power
to the remaining cores [4]. As a result, a system may
switch between a single large, fast core and a smaller
number of more efficient and slower cores when paral-
lelism is available.

Finally, virtualization may lead to varying numbers of
virtual processors. When competing workloads are light,
a virtual machine could use more virtual processors to get
more work done, and when workloads are heavy, drop
down to a single processor.

These mechanisms all vary the set of processors avail-
able to an operating system over time on short time scales.
Thus, operating systems must support changing the num-
ber of available processing cores. While virtual machines
can implement reconfiguration [1, 27], we next show that
operating systems are dependent on knowing the set of
available processors.

2.2 OS Dependence on Processors

The challenge arising when the set of available processors
changes is that many parts of modern operating systems
depend on either the identity of a particular processor or
require cooperation of all or most processors.

We examined the Linux 2.6.31-4 kernel to discover the
extent to which it depends on knowing the current set of
processors. We examine three facets of the Linux: (i) what
portions of the OS have per-CPU data structures, (ii) what
portions of the OS must be notified when the set of pro-
cessors change, and (iii) how frequent are operations that
require all processors? These three factors determine the
cost and complexity of dynamically changing the set of
available processors. We answer these questions by ex-
amining the Linux kernel source code and by dynamically
measuring its behavior on a 2.5 GHz Intel Core2-Quad
system running a mix of Unix command line utilities.

Per-CPU Data Structures. A subsystem may declare
a variable to beper-CPU, meaning that it has a different
address and value on every CPU [5]. Current uses of per-
CPU variables include counter variables, buffers, callback
queues and run queues. We found 446 separate variables
in Linux that are defined as per-CPU. Thearch subdirec-
tory defines 294 variables, which mostly refer to hardware

2



Subsystem Callbacks

arch 7
kernel 5
memory manager 5
scheduler 3
lib 2
net 2
rcu 2
timer 2
fs 1
ring buffer 1
workqueue 1
cpuset 1
block 1
acpi 1
topology 1
Total 35

Table 1:Callbacks registered by each subsystem.

structures. Of the remaining 149 variables, 70 are used
in the core kernel routines, 32 in drivers, 16 in network-
ing, 12 in memory management and 4 in file systems. If
the number or set of processors change, these per-CPU
data structures must be updated or initialized to reflect the
change.

Processor Change Notification. A subsystem that
wants to maintain state about different processors can re-
quest notifications through thehotplugmechanism when
the set of processors change. When a processor is added
or removed, the kernel calls all registered callback func-
tions with the identity of the processor affected.

We profiled our system and recorded the set of func-
tions the kernel invokes when a processor is added or re-
moved. We found 35 callbacks split across 15 subsys-
tems, shown in Table1. Most of these callbacks are to
the subsystems described above that store per-CPU data,
although not all. These callbacks delay reconfiguration
because the kernel must invoke many functions when re-
configuring.

All-processor Operations. Several operations within
the Linux kernel require communication with all proces-
sors. For example, the read-copy update (RCU) mecha-
nism [15] is used to update read-mostly global data struc-
tures. It ensures quiescence of data structure update by
making the update only after all the CPUs have undergone
at least one context switch. TLB shootdowns similarly
require communication with all processors on which an
address space has been mapped. To gauge the frequency
of global operations, we measured the frequency of RCU
operations. They occur approximately 90 times per sec-

ond per processor. Thus, if the set of CPUs changes, these
RCU operations could be delayed.

Based on these observations, we find that the Linux ker-
nel is intimately aware of the set of available processors.
If this set were to change rapidly, numerous subsystems
would have to be notified and many per-CPU structures
updated. Furthermore, operations that require all proces-
sors can only execute when the set has quiesced, either
delaying these operations or blocking frequent reconfigu-
ration.

3 Hotplug
Operating systems currently support the dynamic change
of processors through ahotplug mechanism. On Win-
dows, it is only possible to add processor or replace pro-
cessor, but not remove them [21]. Solaris and Linux
support both adding and removing of processors dynami-
cally [13, 17].

Hotplug targets two uses: maintenance, to remove a
failing processor or dynamically add capacity; and virtu-
alization, to change the allocation of processors to a vir-
tual machine. These are both infrequent events, so hotplug
implementations optimize for low overhead in the com-
mon (no reconfiguration) case, rather than for frequent
changes.

Hotplug Implementation. The Linux hotplug imple-
mentation provides two operations accessible from the
command line: offlining a processor and onlining a pro-
cessor. To offline a processor, the kernel follows the steps
in Table2. When a CPU is brought online, the process
is reversed. The key features of this implementation are
that: (i) it is a lengthy, time-consuming process, (ii) it re-
quires quiescing the system globally to update the mask
of available CPUs, and (iii) it assumes that processors,
once offlined, never come online again by unnecessarily
removing all references to them.

However, in the case of dynamically reconfigurable
processors, these three features make hotplug inappropri-
ate. First, reconfiguration could occur frequently, for ex-
ample every time a process is scheduled. Thus, a slow
hotplug process could prevent performance gains from
reconfiguration. Second, hotplug requires quiescing the
system, which becomes expensive as the number of pro-
cessors grows. Furthermore, it prohibits separate portions
of the chip reconfiguring simultaneously, again limiting
scalability. Finally, a reconfigurable processor may only
temporarily disable a core, so hotplug performs unneces-
sary cleanup and initialization.

Hotplug Performance. We measure the performance of
Linux hotplug by adding or removing one or more proces-
sors on a four-core system while no applications are run-
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1. Grab a global lock to serialize hotplug events.
2. Check correctness (at least one CPU remains, etc.).
3. Notify interested subsystems a CPU is going down.
4. Migrate processes, interrupts, timers, bottom

halves, and tasklets away from the outgoing CPU.
5. Schedule a separate thread on every processor in the

system to disable interrupts and freeze the system.
While the system is frozen, take the CPU out of
cpu online mask.

6. Disables interrupts for the CPU and cleanup
processor-related state.

7. Put outgoing CPU in idle to prevent other tasks
from being scheduled on it.

8. Disable/halt the outgoing CPU.
9. Notify interested subsystems that the CPU is offline.
10. Release the global lock.

Table 2:Steps to take a CPU offline.

Hotplug Cores Native Par Proxy
Operation (msec) (msec) (msec)

OFFLINE
1 25 25 1.7
2 60 60 4
3 137 130 6.5

ONLINE
1 106 106 1.2
2 214 111 2.8
3 331 131 6

Table 3:Native hotplug, parallel hotplug, and proxy latency
to take 1-3 CPUs offline and online.

ning (a best case scenario). Table3 shows the latency of
offline and online operations in column 3. Overall, taking
a processor offline is much faster than bringing one online,
because it need not probe for processor characteristics or
initialize hardware structures. In addition to these laten-
cies, we measured that all other processors in the system
are halted for 2.6 ms when offlining a processor. Thus, as
systems get larger, a significant amount of time is lost on
unrelated cores.

While the performance is very fast compared to the fre-
quency of maintenance or virtualization events, it is too
slow to be used when reconfiguring hardware for specific
processes on a system.

4 Design
Operating systems gain great scalability benefits by their
awareness of processors and per-CPU data structures. We
seek to retain those benefits yet improve reconfiguration
speed with two mechanisms:

1. Processor proxiesstand in for processors when they
are offline.

2. Parallel and deferredallow multiple simultaneous
hotplug operations and to defer hotplug until a con-

figuration is stable.
Processor proxies address short-term reconfiguration,
while deferred and parallel hotplug reduces the fre-
quency and latency of long-term reconfiguration opera-
tions. These are initial steps at fully supporting dynamic
reconfiguration, which may take many additional steps.

4.1 Processor Proxies

We observe that much of overhead of hotplug operations
is notifying other processors and initializing/cleaning up
software data structures. However, if other processors are
not notified, they may block waiting for global operations
to complete.

We therefore create a container, called aprocessor
proxy, for the OS data structures referring to a proces-
sor. When a physical CPU is unavailable, a processor
proxy is created for it on another CPU and takes its place
when necessary. The kernel moves its communication
endpoints, such as interrupts, to that CPU. Any operations
that require the presence of a core, such as a TLB shoot-
down or an RCU operation, can continue without waiting
for the unavailable CPU.

Processor proxies are similar to multiplexing virtual
CPUs (VCPUs) on a single processor with a hypervisor.
However, processor proxies only virtualize the external
interface to a processor, such as interrupts and RCU op-
erations. Thus, a processor proxy does not schedule or
run general code. In contrast, a VCPU may run any code
and forces the hypervisor to schedule or timeslice multiple
CPUs on a single physical CPU. Furthermore, because the
OS controls processor proxies, it can prevent preemption
while holding spinlocks [26].

We add a new execution context to the OS, beyond pro-
cess context and interrupt context, termed aproxy context.
A proxy context exists on a CPU for each of the proces-
sors it proxies and executes only when the proxying CPU
receives inter-processor interrupts (IPIs) on behalf of the
proxied CPU and performs the required operation. No
threads are scheduled on a processor proxy.

The key challenge is ensuring that all the per-CPU state
is available to code executing in a proxy context. Our de-
sign leverages the Linux implementation of per-CPU vari-
ables, which are accessed through segments on x86 pro-
cessors. A segment in the GDT (Global Descriptor Table)
points to the memory segment holding the per-CPU struc-
tures. Since each CPU has its own GDT, each processor
contains a different GDT entry that points to its private
segment. Linux loads this GDT entry into the FS regis-
ter when in kernel mode, and access to per-CPU variable
use segment-based addressing with this register. When
switching to a processor proxy, we load the proxy’s per-
CPU segment into the proxying processor’s GDT, and set
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the FS register to the proxy’s segment.
An additional complication arises in code making use

of thethread info variable, which refers to the CPU state
of the task currently running on the processor. The kernel
provides access to this structure through the stack pointer,
which is not changed when executing in a proxy context.
We modify the macro for accessingthread info to redi-
rect accesses from proxy context to the right data.

Processor proxies speed reconfiguration because they
remove much of the work to change the set of proces-
sors. Instead, the major task is to reprogram the interrupt
controller. To set up a processor proxy, interrupts must
be routed from the existing processor to its proxy. These
fall into two categories: device interrupts, which must be
rerouted or redistributed to other online CPUs, and IPIs,
which must be sent to the proxying CPU.

4.2 Parallel and Deferred Hotplug

Our second goal is to make hotplug more scalable when it
is used. It is likely that reconfigurable processors will be
reconfigured en masse, for example when four cores are
fused into a single more powerful core.

We parallelize the implementation of hotplug by allow-
ing multiple CPUs to change state simultaneously. The
current implementation of the hotplug grabs a global lock
while notifying subsystems of the change in processors,
thereby serializing changes to the processor set. We par-
allelize this implementation by adding a new interface for
adding removing a set of processors at once. This allows
the local operations to initialize or cleanup a processor to
proceed in parallel, and ensures that notification to sub-
systems occur once with a mask or processors, rather than
once per CPU. When bringing a CPU online, this greatly
improves performance because multiple CPUs can be ini-
tialized in parallel.

Deferred hotplug leverages processor proxies to only
execute hotplug operations when a reconfiguration is long
lasting. We modify the hotplug subsystem to allow re-
motely offlining a CPU, by executing on a separate physi-
cal CPU from the one taken offline. We accomplish this by
changing thetake cpu down function to take an additional
parameter identifying the CPU to take offline. This is safe
becausetake cpu down, which normally shuts down the
CPU by disabling interrupts, now disables the proxy for
the CPU instead, so it similarly does not receive inter-
rupts.

The benefit of parallel and deferred offline is that transi-
tions between configurations occur with lower latency and
lower total overhead. In conjunction with processor prox-
ies, these mechanisms support rapid reconfiguration that
allows different processes to use unique processor config-
urations.

4.3 Preliminary Evaluation

We have begun the implementation of processor proxies
and deferred/parallel hotplug in Linux. We have verified
that processor proxies correctly delivery inter-processor
interrupts, execute bottom halves, and allow RCU opera-
tions to complete while proxying a CPU. Furthermore, the
system can run arbitrarily long while proxying.

We evaluate our changes with same configuration re-
ported previously in Section2. The results are shown in
Table3, columns 4 and 5. For parallel hotplug, we find
a small benefit when taking multiple CPUs offline. For
bringing CPUs online, though, we find there is little over-
head to bringing multiple CPUs online at once, leading to
a 60 percent reduction in time for the reasons noted earlier.
Processor proxies provide much larger benefit, reducing
time for reconfiguring a single processor by 95%. We find
these results encouraging, but do not yet reach our goal of
reconfiguring faster than a scheduling quantum. We con-
tinue to look at how other parts of the hotplug mechanism
can be optimized for dynamically reconfigurable proces-
sors.

5 Conclusions
The rise of multicore processors leads to new opportu-
nities for improving performance, reliability, and power
consumption by reconfiguring the set of running proces-
sors. Existing operating systems cannot react to changes
fast enough to fully utilize these mechanisms. We pro-
pose two mechanisms to make operating systems more
dynamic: processor proxies to temporarily stand in for
an unavailable processor, and parallel and deferred hot-
plug, to reduce the latency of reconfiguration operations.
Furthermore, new affinity mechanisms, such as pair-wise
affinity of threads [18] are also needed. With these mech-
anisms, the bulk of the operating system can remain un-
changed while the set of physical CPUs available changes
rapidly.
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