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Abstract 

 
Computer systems are moving towards a heterogeneous architecture with a combination of one or more CPUs and one or more acce-

lerator processors. Such heterogeneous systems pose a new challenge to the parallel programming community. Languages such as 

OpenCL and CUDA provide a program environment for such systems. However, they focus on data parallel programming where the 

majority of computation is carried out by the accelerators. Our view is that, in the future, accelerator processors will be tightly 

coupled with the CPUs, be available in different system architectures (e.g., integrated and discrete), and systems will be dynamically 

reconfigurable. In this paper we advocate a balanced programming model where computation is balanced between the CPU and its 

accelerators. This model supports sharing virtual memory between the CPU and the accelerator processors so the same data structures 

can be manipulated by both sides. It also supports task-parallel as well as data-parallel programming, fine-grained synchronization, 

thread scheduling, and load balancing. This model not only leverages the computational capability of CPUs, but also allows dynamic 

system reconfiguration, and supports different platform configurations. To help demonstrate the practicality of our programming 

model, we present performance results for a preliminary implementation on a computer system with an Intel® Core™ i7 processor 

and a discrete Larrabee processor. These results show that the model’s most performance-critical part, its shared virtual memory im-

plementation, simplifies programming without hurting performance.  

 

1.  Introduction 

Computer systems are moving towards a heterogeneous 

architecture with a combination of CPUs and accelerator 

processors. Historically, CPUs often focused on general 

purpose computation while the accelerators were specia-

lized to speed up fixed functions such as graphics, au-

dio/video encoding/decoding, encryption [1], and packet 

processing. Today, however, systems are increasingly 

being designed to include general-purpose, programma-

ble accelerators like GPGPUs [2] and Intel’s Larrabee 

[3]. The accelerators are used to accelerate non-graphical 

computation in areas such as fluid dynamics, computa-

tional biology, and game physics. How to best program 

these heterogeneous systems remains a challenge for the 

parallel programming community.  

Most accelerators are currently programmed using a lan-

guage like CUDA [4] or OpenCL [5]. These languages 

are effective at solving a wide range of problems al-

though their current emphasis is on data-parallel compu-

tation since that is a good match for most contemporary 

accelerators. A number of trends are emerging, however, 

that suggest changes in the design of programming mod-

els appropriate for emerging heterogeneous systems:   

First, computing systems are being designed with inte-

grated accelerators. Communication between a CPU and 

an accelerator integrated onto the same die as in the up-

coming Intel Sandy Bridge [6] and AMD’s Fusion pro-

cessors [7] can be an order of magnitude faster than with 

a discrete part. Furthermore, integrated devices can share 

physical memory with the CPU (making copying data 

between the processors unnecessary) and benefit from 

hardware-provided coherency support. They also may be 

able to share locking structures like mutexes. All of these 

make practical acceleration of fine-grained computation 

such as SSL encryption. 

Some computing systems are also being designed that 

combine integrated and discrete accelerators. For exam-

ple, a system might have both a discrete Larrabee proces-

sor as well as an integrated GPU. Computation can be 

done on the higher-performance Larrabee device when 

sufficient power is available, or on the integrated GPU 

when power is limited (e.g., when running on batteries). 

Systems using ATI’s Hybrid CrossFireX technology [8] 

provide similar capabilities. We believe a heterogeneous 

programming model should support dynamic reconfigu-

ration so work can be scheduled on either the CPU, inte-

grated, or discrete accelerators. 

In addition, accelerators like Larrabee and NVIDIA’s 

next generation Fermi processors [9] are significantly 

more capable than the first-generation GPGPUs. They 



have, for example, large virtual address spaces, unified 

memory, and atomic instructions. Among other things, 

these features make them better at supporting task-based 

parallel programming. 

Finally, recent CPU designs are manycore processors 

with wide vector instruction sets such as Intel AVX [10]. 

This makes the CPUs excellent at data- as well as task-

parallelism. We believe demand is increasing for support 

of both task-parallelism and data-parallelism in a hetero-

geneous programming model. Programming languages 

like OpenCL need to better leverage the substantial com-

putational capability of these CPUs and improve how 

they balance a program’s work among the CPU and the 

accelerators. For example, they need fine-grained syn-

chronization models that fully support CPUs (e.g., 

OpenCL host threads) as well as accelerators, and they 

must ensure that API calls made by multiple CPU threads 

are thread-safe.  

In this paper, we propose a balanced programming model 

for these emerging heterogeneous systems. We describe 

our programming model as balanced, by which we mean 

that: 1) It balances work among the available CPU and 

accelerator processors according to workload, processor 

capabilities, and programmer direction. 2) It provides 

virtual memory sharing and global, fine-grained synchro-

nization primitives since we believe these are required for 

effectively making full use of accelerators and CPUs, as 

well as for allowing applications to be split across the 

different processors. We are currently designing and im-

plementing this model as an extension of the shared vir-

tual memory system described in [11].  

This paper makes the following contributions: 

• It describes trends emerging in the design of hetero-

geneous systems that indicate a need for improve-

ments in current programming models to support 

those systems. 

• It presents a new balanced programming model that 

leverages the computational power of modern CPUs 

and accelerators and supports shared virtual memory 

between them. It also allows dynamic reconfigura-

tion and supports different platform configurations. 

• It presents performance results for several workloads 

using shared memory in our preliminary implemen-

tation on a real (not simulated) computer system with 

an Intel® Core™ i7 processor and a discrete Larra-

bee processor. 

2.   Goals for our programming model 

Our goal is to simplify programming and to increase the 

range of applications that run efficiently on emerging 

heterogeneous systems. To achieve that, we envision a 

programming environment that dynamically balances 

fine-grained computation between the CPU and accelera-

tors. We argue that a programming model for future hete-

rogeneous systems should include several features that 

are missing or not well supported by existing languages 

like CUDA and OpenCL. 

Balanced use of both CPUs and accelerators 

Given the trend towards integrating cores onto the same 

die as CPU cores, it is increasingly important to use the 

computational capabilities of both in a better way.  

In today’s OpenCL 1.0 model, CPUs are used in two 

ways. The first way is to use a CPU to do setup and su-

pervisory work such as initialization or task management. 

This non-compute intensive use of a CPU may work well 

on a platform where the accelerator dominates computa-

tion, and especially when the CPU-accelerator communi-

cation latency is high, but it underutilizes the CPU, par-

ticularly in platforms with an integrated accelerator. The 

second way is to use CPUs as OpenCL devices on which 

kernels can be queued for execution. However, the capa-

bility of CPUs is still not fully utilized since kernels are 

limited in the operations they can do. For example, ker-

nels cannot do dynamic memory allocation. In addition, 

OpenCL always requires a host thread that occupies CPU 

resources. Overall, these problems make programming 

more difficult. 

To overcome these limitations, our balanced program-

ming model uses the computational capability of both the 

CPU and accelerators. Its dynamic scheduling support 

tries to make the best use of available processor capaci-

ties and the particular capabilities of each kind of proces-

sor. It does load balancing and attempts to schedule work 

on CPUs and accelerators that are the best match for the 

work required. This enables new applications, ones that 

are not well supported by OpenCL today, for example, a 

stream-oriented application which the CPU produces data 

that the accelerator consumes in a pipeline fashion. 

Support for shared virtual memory 

We argue that supporting shared virtual memory among 

CPU and accelerator cores is essential for effectively 

using heterogeneous systems, since it dramatically simpl-

ifies dividing up applications across the different types of 

cores. This makes it much easier to use the particular 

capabilities of each CPU and accelerators, and makes it 

possible to balance the load on the system. In addition, 

shared virtual memory significantly eases programming. 

It is tedious and error-prone for programmers to explicitly 

marshal, copy, and unmarshal data between different pro-

cessors; we want to directly share the same data struc-

tures, including ones that contain pointers. Moreover, 



shared virtual memory enables concurrent shared memo-

ry accesses from both CPUs and accelerators. Finally, we 

want to support partially-shared virtual memory to allow 

non-shared data to be stored privately in unshared por-

tions of the address space to reduce coherence traffic.  

OpenCL currently supports data sharing with explicit 

read and write commands that transfer data between a 

host CPU and a device. It supports sharing only “flat” 

data structures such as arrays that do not contain embed-

ded pointers. If a data structure such as a tree of objects is 

passed to, e.g., a physics engine on a GPU, that tree must 

be marshaled into a flat representation in a memory buf-

fer, written to the GPU, and then unmarshaled into a new 

data structure on the GPU. This requires multiple data 

representations and much error-prone programming.  

Support changes to platform configurations 

In OpenCL, the programmer must create command 

queues for the different devices and explicitly enter ker-

nels onto those queues. Changes to the number of devices 

or their configuration typically require changing the 

OpenCL program. 

In our view, it shouldn’t be necessary to rewrite a pro-

gram in order to run it on a system with a different ver-

sion of an accelerator processor, or on a system with an 

integrated accelerator instead of a discrete one. This re-

quires a dynamically-reconfigurable programming model 

and runtime. In addition, the model should view accelera-

tors as optional in the sense that they can be turned on or 

off on demand. The model should support dynamic sche-

duling to balance work among the CPU and available 

accelerators. This flexibility should also allow systems to 

better deal with devices failing during execution. 

Fine-grained synchronization and task parallelism 

OpenCL 1.0 provides an event model that can be used, 

with careful programming, to ensure that commands and 

memory updates are synchronized among devices sharing 

the same context. There is no support, however, for fine-

grained synchronizing between host threads executing on 

CPUs and kernels executing on devices. Besides events, 

OpenCL also provides work-item barriers. These barriers 

ensure all work items in a work group must execute the 

barrier before any continue on, but there is no mechanism 

to synchronize between different work groups.  

We believe a heterogeneous programming model should 

provide global, fine-grained synchronization primitives. 

These primitives include mutexes, condition variables, 

and barriers that are shared by the CPU and accelerator 

cores. Based on their experience trying to use a GPU to 

accelerate database query processing, Kaldewey et al [12] 

note that such global synchronization support is missing 

in current GPU programming environments. In addition, 

many existing and new parallel programs are naturally 

structured using task parallel model and fine-grained syn-

chronization. This makes support for task-based paral-

lelism necessary.  

3.  A Case study: programming on a discrete 

and integrated GPU system 

We are currently developing and prototyping our hetero-

geneous programming environment. It is an extension of 

the shared virtual memory system [11] that is fully im-

plemented and has been successfully used to ease the 

acceleration of such applications as the Bullet [13] phys-

ics engine running with Larrabee. Its virtual memory 

sharing and synchronization APIs form a basis for our 

programming model. At this time, we are enhancing our 

environment to support platforms with integrated accele-

rators such as ones with an integrated GPU.  

3.1.  Implementation overview 

The key challenge for designing a system like ours comes 

from the heterogeneity. CPUs and accelerators usually 

have different ISAs and run different operating systems. 

Some accelerators don’t have a full OS and some have 

none. In our design, we chose to create a daemon thread 

on the CPU and one on each accelerator. The daemon 

threads communicate to support functionality such as 

memory sharing and synchronization. 

Compiler and code generation 

We depend on the programmer adding annotations to 

their C or C++ code to identify code that should be run 

on an accelerator. The attribute, __attribute (<accelera-

tor>), marks functions that should be executed on a spe-

cific accelerator. By default, the compiler generates CPU 

code. Accelerator code is only generated if programmers 

request it, in which case the compiler generates both ac-

celerator and CPU versions of the code. It is the compi-

ler’s responsibility to optimize the code for the CPU and 

the accelerator since accelerators usually have different 

instruction sets than CPUs. Note that it is the runtime that 

decides which version, the CPU’s or the accelerator’s, to 

actually execute. This is based on various runtime situa-

tions such as the presence of the accelerator, how busy it 

is, and the load balance. 

The CPU binary contains code for all functions while 

each accelerator binary contains just the functions that 

execute on that accelerator. Our runtime library has CPU 

and accelerator components that are linked with the ap-

plication binaries to build the executables. When the CPU 

binary starts executing, it calls a runtime function that 

loads the accelerator executable. The CPU and accelera-



tor executables create the daemon threads used to com-

municate between CPUs and accelerators. 

Efficiently sharing virtual memory  

Virtual memory sharing enables seamless data sharing 

between CPUs and accelerators. It avoids explicit data 

movement among threads, which greatly enhances pro-

grammability. However, a poor implementation may de-

grade system performance. In this section, we describe 

our techniques and design choices that significantly re-

duce performance loss.   

We use release consistency in our model for several rea-

sons. First, it improves efficiency on certain platform 

configurations. For example, on discrete accelerators, 

local updates do not have to be transferred to the other 

processors until a release point, which makes better use 

of the limited bandwidth. Second, many applications 

have clear acquire and release points. In general, the 

points when computation transfers between a CPU and an 

accelerator are such acquire or release points. For exam-

ple, in a CPU-GPU platform, it is common for the CPU 

to set up a data structure, release it to the GPU for 

processing, and then afterwards acquire back the resulting 

data structure. Finally, the programming language com-

munity has settled on release consistency for the coheren-

cy model, as in the Java memory model [14]. 

To share memory between CPUs and accelerators, our 

runtime uses a common communication buffer between 

the daemon threads. This common buffer is typically 

smaller than the size of the partially-shared virtual memo-

ry area, and is implemented differently for discrete and 

integrated accelerators. For example, we use the PCI 

aperture as the common buffer on Larrabee, and we use a 

block of dedicated and pinned physical memory on an 

integrated Intel Integrated Graphics GPU. During initiali-

zation, we set up a task queue, a message queue, and 

copy buffers in the common buffer and map it into the 

user space of the application. When we need to copy pag-

es from, for example, the CPU to an accelerator, the run-

time copies the pages into the copy buffers and tags the 

buffers with the virtual address and the process identifier. 

On the accelerator side, the daemon thread copies the 

contents of the buffers into its address space by using the 

virtual address tag. Copies from the accelerator to the 

CPU are done in a similar way. This two-step approach 

allows asynchronous execution on both sides and user-

level communication, which is vastly more efficient than 

going through the OS kernel. We further optimize cohe-

rence traffic by sending only differences, not whole pages. 

Ownership rights as hints 

We use ownership rights in our shared memory model to 

help optimize coherence traffic. A CPU or an accelerator 

can claim ownership of a particular region of shared 

space at various points during execution. By knowing 

who owns a virtual memory region, the implementation 

can reduce otherwise necessary coherence traffic. For 

example, when the CPU sets up a data structure, it can 

claim exclusive ownership of the data. As a result, that 

shared memory does not have to be kept coherent on ac-

celerators. There is no need to send snoops to accelerators 

to monitor the data structure. In addition, having multiple 

shared virtual memory regions often avoids false sharing. 

We implemented ownership rights in our runtime inde-

pendent of the platform configuration. For each shared 

memory region, there is metadata to identify the memory 

pages that belong to it. The ownership rights work as 

hints in the sense that when an ownership violation hap-

pens, ownership will be automatically promoted to a 

shared state by both sides. 

Remote (between-processor) calls and synchronization 

When a CPU function (i.e. a non-annotated function) 

calls an annotated accelerator function, it starts a remote 

call from the CPU to the accelerator. Our language rules 

ensure that any function involved in remote calls is anno-

tated by users so that the compiler can generate correct 

accelerator-specific code for them. We implement remote 

calls using a combination of compiler and runtime tech-

niques. When compiling annotated functions, the compi-

ler inserts a call to register the function addresses at pro-

gram startup into a jump table that contains <func_name, 

func_addr> for each annotated function. 

For annotated functions called remotely (not from the 

same accelerator), the compiler generated code uses the 

jump table to look up the function’s address. It then packs 

the arguments into an argument buffer in the shared 

space, followed by a dispatch call to the accelerator pass-

ing the target function address and argument buffer poin-

ter. For a remote call to the CPU, the process is similar. 

The runtime also provides global synchronization opera-

tions such as mutexes and barriers to allow synchroniza-

tion between CPU and accelerators.  

3.2.  Performance results 

We evaluated our programming environment’s perfor-

mance on a system with an Intel® Core™ i7 processor 

running Windows Vista and a discrete Larrabee processor 

running the Larrabee Micro OS. A similar system was 

demonstrated at the 2009 Intel Developer Forum. These 

two processors are connected through PCI-Express 2.0. 

We used a number of non-graphical workloads to meas-

ure performance including a Black-Scholes financial 

workload, an Equake earthquake modeling program, and 



a Canny edge detector. All workloads were written using 

our programming constructs and compiled with our tools. 

Figure 1 shows how well the different workloads perform 

using our environment compared to an implementation 

using a device driver and programmer-written, hand-

optimized marshal/unmarshal code. Each workload is 

split between the CPU and Larrabee cores with compute-

intensive portions executed on Larrabee. The baseline 

used one CPU core and one Larrabee core. The graphs 

show system performance with one CPU core and a vary-

ing number of Larrabee cores. Performance was collected 

for three cases: 1) No Share where virtual memory isn’t 

shared between the CPU and Larrabee, and data struc-

tures are explicitly copied using the device driver. 2) 

Share w/ Ownership where virtual memory sharing is 

enabled and optimized with ownership rights. 3) Share 

w/o Ownership where sharing is enabled but ownership 

rights are not used.  

The results show our Share w/ Ownership performance is 

comparable to the No Share device driver case across all 

workloads. This is true across three workloads with dif-

ferent scaling characteristics: for example, Canny does 

not scale well due to the large amount of data transferred 

between the CPU and Larrabee. Note that ownership 

hints help by up to 13%. Note also that the gap between 

No Share and Share w/ Ownership tends to grow when 

the number of  Larrabee cores increases beyond 4 cores. 

This is largely due to the increased overhead of some 

memory protection and page fault handling primitives we 

use to implement sharing. We are developing new opti-

mizations to reduce this overhead. We expect an inte-

grated GPU to eliminate much of the data transfer, and 

are experimenting with this configuration. 

4.  Related work 

The most closely related programming models are 

OpenCL [5] and CUDA [4]. However, our work differs 

from them in several ways. First, we better leverage the 

CPU’s computational capability and better balance work 

between the CPU and accelerators. Second, our system 

allows dynamic changes to platform configuration and 

supports different platform configurations. Finally, our 

shared virtual memory model eases data sharing between 

the CPU and accelerators.  

Sequoia [15] is a portable, low-level programming lan-

guage for developing parallel programs that are memory-

hierarchy aware. It has constructs to allocate and transfer 

data in systems with multiple distinct memory spaces. 

Sequoia programs have been run on PC clusters as well 

as workstations with multiple Cell processors. While C-

like, Sequoia is relatively restricted. Its tasks operate in a 

private address space and can only access their arguments 

and local variables. Data movement is limited to task 

calls and the copy operator. Only C scalars and arrays of 

scalars may be transferred, not pointer-containing data 

structures. On the other hand, programmers can write 

multiple implementations for a task, and select which to 

use for each call. Our programming model supports only 

CPU or accelerator versions of procedures and the run-

time selects where accelerator-annotated procedures are 

actually run.  

The MAGMA project [16] is developing a dense linear 

algebra library for heterogeneous platforms. It splits algo-

rithms into tasks in a DAG form and schedules “critical 

tasks” to the CPU. MAGMA is a linear algebra library 

similar to LAPACK that dynamically balances work 

among CPUs and GPUs, but it does not provide a gener-

al-purpose programming model for a wide range of appli-

cations. It also does not support virtual memory sharing. 

Figure 1 Overall performance comparison 
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Ct [17] is a programming model focusing on throughput 

oriented applications. It supports data-parallelism over 

large structures representing vectors, hierarchies, hash 

tables, etc. Unlike our system, it still requires explicit 

data movement between the CPU and the accelerator Ct 

spaces. Moreover, our system has better support for task 

parallelism such as fine-grained synchronization. 

The Cell processor [18] is another heterogeneous plat-

form. The PPE (akin to a CPU) hosts operating systems 

and serves as a controller to establish a runtime environ-

ment for SPE (akin to an accelerator) programs. Howev-

er, in our model, the work is balanced between CPUs and 

accelerators. In addition, Cell programming involves ex-

plicit DMA between the PPE and SPE while our model 

supports virtual memory sharing. 

5.  Conclusions 

Systems from netbooks to servers are increasingly being 

designed as heterogeneous computing platforms that have 

a combination of CPUs and accelerator processors. While 

languages like OpenCL and CUDA support programming 

data-parallel applications well on most contemporary 

accelerators, they don’t fully address the capabilities of 

emerging processors. They don’t support balancing work 

between CPUs and accelerators, and they don’t support 

sharing virtual memory so that pointer-containing data 

structures can be shared seamlessly. In this paper, we 

propose a heterogeneous programming model that bal-

ances computation between all available processors. 

Moreover, the model supports virtual shared memory 

across CPUs and accelerators. It also supports both task-

parallel and data-parallel programming with fine-grained 

synchronization, thread scheduling, and load balancing. 

Our model not only naturally leverages the substantial 

computational abilities of today’s CPU’s, but it also sup-

ports different platform configurations and allows dy-

namic reconfiguration. We implemented an initial proto-

type of our model on an Intel® Core™ i7-Larrabee plat-

form and show that it eases programming while providing 

comparable performance. 
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