
Synchronization Via Scheduling:
Managing Shared State in Video Games

Micah J Best, Shane Mottishaw, Craig
Mustard, Mark Roth, Alexandra Fedorova

Simon Fraser University, Canada
{mbest,smottish,cam14,mroth,fedorova}@cs.sfu.ca

Andrew Brownsword
Electronic Arts BlackBox, Vancouver, Canada

brownsword@ea.com

Abstract
Video games are a performance hungry application do-
main with a complexity that often rivals operating sys-
tems. These performance and complexity issues in com-
bination with tight development times and large teams
means that consistent, specialized and pervasive support
for parallelism is of paramount importance. The Cas-
cade project is focused on designing solutions to sup-
port this application domain. In this paper we describe
how the Cascade runtime extends the industry standard
job/task graph execution model with a new approach for
managing shared state. Traditional task graph models
dictate that tasks making conflicting accesses to shared
state must be linked by a dependency, even if there is
no explicit logical ordering on their execution. In cases
where it is difficult to understand if such implicit de-
pendencies exist, the programer would create more de-
pendencies than needed, which results in constrained
graphs with large monolithic tasks and limited paral-
lelism.

By using the results of off-line code analysis and in-
formation exposed at runtime, the Cascade runtime au-
tomatically determines scenarios where implicit depen-
dencies exist and schedules tasks to avoid data races.
This technique is called Synchronization via Scheduling
(SvS) and we present its two implementations. The first
implementation uses Bloom filter based ‘signatures’ and
the second relies on automatic data partitioning which
has optimization potential independent of SvS. Our ex-
periments show that SvS succeeds in achieving a high
degree of parallelism and allows for finer grained tasks.
However, we find that one consequence of sufficiently

[Copyright notice will appear here once ’preprint’ option is removed.]

fine-grained tasks is that the time to dispatch them ex-
ceeds their execution time, even using a highly opti-
mized scheduler/manager. Fine-grained tasks, however,
are a necessary condition for sufficient parallelism and
overall performance gains, so this finding motivates fur-
ther inquiry into how tasks are managed.

1. Introduction
Video games have become a multi-billion dollar in-
dustry and consequently a great deal of effort is ex-
pended producing the software that drives them. Pro-
ducing more and more compelling user experience im-
plies a need to wring out the maximum performance
possible. Video game engines, the core of the software,
encompass many different computational styles and can
rival operating systems in terms of complexity. The en-
vironment in which this software is produced further
complicates development with tight deadlines and large
development teams. This means that programmer pro-
ductivity and software performance are both of key im-
portance in the domain.

The switch from single to multi-core architectures
and the new emphasis on parallelism has profoundly af-
fected this domain. Parallel processing provides new op-
portunities for performance gains; however these gains
are difficult to realize due to the complexity of the sys-
tem. Currently, most parallelism is obtained by experts
who build specific solutions to particular problems. The
goal of our project, Cascade, is to take the techniques
and processes that are used in industry and combine
them in a cohesive and consistent platform and then to
augment this model and exploit its particular attributes
to realize significant parallelism and promote productiv-
ity.

In this paper we will illustrate the thrust of our
project by discussing one concrete problem: Conven-
tional task graph models are built on an assumption that
there is no shared state among tasks unless the tasks
are explicitly linked by a dependency. This puts the
burden on the programmer to understand often com-

1 2010/4/27

plex sharing patterns and usually results in creation of
large monolithic tasks, which prevent parallelism. To
remove this limitation on sharing, we apply unconven-
tional approaches to protect shared state between tasks
and as a result enable finer grained tasks and ultimately
increased parallelism.

1.1 Problem statement
A common approach to parallelization used by several
large companies, is to represent the computation using
the familiar task graph organization [2]. Tasks that de-
pend on each other for control or data are executed se-
quentially, but tasks without dependencies can be exe-
cuted in parallel. If any two tasks might access the same
global state, the programmer must explicitly link these
tasks via a dependency to avoid conflicts. In cases where
the exact state accessed depends on input to the task, the
dependency cannot be expressed at all in the task graph.

Given the difficulty in accounting for all implicit and
input-dependent task dependencies programmers often
tend to group tasks that might touch the same state into
large monolithic tasks [2], artificially restricting avail-
able parallelism. Using locks is not considered a practi-
cal option given the complexity of the system and diffi-
culty of lock-based programming. Adoption of software
transactional memory (STM) is still in question given its
high overhead and unpredictable performance [7]. As
a result, game engines today are only mildly parallel.
While this may be acceptable for today’s systems that
have only a handful of cores, in the future tasks will
have to become a lot more fine-grained to leverage the
hardware.

Our goal is to rethink shared state management in
task-graph systems. We propose a solution where ex-
plicit dependencies in the task graph are specified only
if there is a logical or a control-flow dependency and
any implicit data dependencies are managed automati-
cally without involvement of the programmer. For ex-
ample, consider two tasks in an animation system that
each update the bones of a character skeleton to blend
two different animations. One task blends walking and
and the other blends limping and there are no explicit
data or control dependencies between these two tasks.
However, since they may update the same bones in the
character skeleton, these tasks cannot run concurrently.
Another example is an animation system that produces
tuples of (BoneID, Animation) that are sent to a data-
parallel task for the blending computation, increasing
parallelism greatly. However, as before, two concurrent
tasks cannot be processing the same boneID. In this
case, it may not be possible to express these dependen-
cies in an offline task graph at all due to the input data
only available at runtime.

Our solution is a combination of offline and online
analysis. The implicit dependency in the first example

can be discovered offline and a dependency is automat-
ically added to the task graph at compile time. The po-
tential for conflicts in the second example is discovered
offline and resolved at run-time when the input data
is known. This solution allows a programmer to focus
solely on logical dependencies between parts of the pro-
gram, greatly increasing programmer productivity, and
allowing greater expression of parallelism.

We implemented this solution in the framework of
a new parallelization library, Cascade. In Section 2 we
provide a brief overview of the system, and in Section 3
we focus on the main problem it addresses: managing
shared state in task graph-based programs. We present
experimental results in Section 4, discuss related work
in Section 5 and conclude in Section 6.

2. Cascade
Our assessment of the current practices and unmet needs
in the video game domain lead us to create an efficient
parallel programming framework built to support the
task graph organization of programs, dataflow between
tasks and data-parallel tasks. C++ is the de facto lan-
guage in the domain and so it was used to write the Cas-
cade runtime. However, we discovered, as many others
in the field have, that C++ was too permissive in many
situations, allowing programmers to easily and unknow-
ingly violate the constraints necessary for correct paral-
lelization. Additionally, we wanted to add certain con-
structs for defining tasks that could not easily be ex-
pressed as classes or macros. To address this and sim-
plify experimentation with our ideas we needed a way to
quickly decompose programs into suitable tasks for the
runtime scheduler. Cascade programs are written in a
new language CDML (Cascade Data Management Lan-
guage). The syntax is very similar to C++ with a small
number of restrictions, such as forbidding pointers, and
extra constructs necessary for the definition of tasks. A
CDML program is translated into C++ using the Cas-
cade runtime library before compilation. Creating a new
language was not a primary goal of our research, but a
side effect born of necessity, and so we do not detail it
here.

3. Managing Shared State
Our system associates a set of data constraints with
each task, which represent that task’s read and write set.
These constraints are derived statically through sym-
bolic analysis and combined with programmer specified
control flow to derive the task graph off-line. If static
analysis determines that two tasks can touch the same
data a dependency is inserted into the graph. However,
static analysis can only determine the potential accesses
of a task when actual state accesses are dependent on
input data. When this potential set is greater than the

2 2010/4/27

actual set we refer to this as overconstraint. We use in-
formation exposed at runtime to make these constraints
more precise through a process of refinement. Using
this runtime analysis to drive scheduling decisions is re-
ferred to as synchronization via scheduling (SvS). We
developed two implementations of SvS: Signatures and
Partitioning. We now describe the static analysis per-
formed, give a more detailed description of both tech-
niques and discuss the limitations of SvS.

3.1 Static Analysis and Refinement
Use of single variables can be determined simply from
textual analysis. If a task contains x = y + 1; both
x and y will be added to the constraints as a write
and a read respectively. However, consider the difficulty
analyzing the expression z[i - 1] = y + 1 given
that we do not know the value of i until runtime. Adding
z to the write set results in overconstraint as the line
only refers to a single element of z. Without online
refinement this task would need to have exclusive access
to z and so could not be co-scheduled with any other
task that accessed z. There are additional examples of
overconstraint, but in our exploration of the domain we
have found the case of accessing indexible structures to
be pervasive. As our work continues we will identify
and address additional cases.

We can resolve overconstraints at runtime when vari-
ables (i in the example) are part of the input to the task
and are unmodified before that access. A variable is con-
sidered part of the input to a task if either the task is
a dataflow consumer and the variable is part of the re-
ceived data or if it is part of global state and part of the
task’s read set. At runtime the values of these inputs are
then used to determine the precise constraints of a task;
this process is called refinement. Refinement results in a
unique id for each state access and can be used to prop-
erly schedule tasks by avoiding concurrent execution of
tasks with overlapping id sets. Significant overhead is
avoided by only comparing id sets of tasks that have
been determined at compile time to possibly conflict.

3.2 Signatures
Signature-based SvS maintains constant length bit-
strings, signatures, to represent the set of refinement ids
for each possibly conflicting task. Each refinement id is
passed to a hash function to determine the bit to set in
the signature. Signature overlap is checked using simple
bit-wise operations. Note that signatures are effectively
Bloom filters [3] using a single hash function.

Cascade groups input data items into batches to ame-
liorate queueing overhead. A composite signature is cal-
culated for each batch. Groups of these batches are cre-
ated such that no two batches have overlapping sig-
natures; we call these groups generations. Batches are
added to a generation in order and when a new batch’s

signature would overlap with any other signature in the
current generation this batch is used to start a new gen-
eration. State access conflicts are prevented because the
tasks are never run concurrently with tasks in another
generation.

3.3 Partitioning
Under partitioning, each core has a unique queue from
which it executes tasks. The refined id of a task is used
to determine what queue the task will be placed in. In
this way, tasks with overlapping id sets are executed
serially. Note that this technique applies only to tasks
with a single id, whereas signatures applies to tasks
with one or many ids. However, this process has the
additional benefit of increasing data locality, and as with
signatures, each core’s queue uses batching to reduce
overhead.

3.4 Current Limitations
We do not expect SvS to emerge as a general-purpose
approach for managing shared state. Refinement is only
possible with input-dependent state accesses when the
input is left unchanged or only trivially modified by con-
stants. In our experiments we have had success refac-
toring many algorithms to conform to these constraints.
It remains to be seen if this refactoring is feasible in
all circumstances without overly encumbering the pro-
grammer. When refinement fails tasks will be overcon-
strained and the system will execute many tasks sequen-
tially. We do find that SvS is well suited for the partic-
ular application domain we are targeting. Our test im-
plementation is centered around arrays since game en-
gines often employ them for efficiency reasons. Expand-
ing the process of refinement to include other types of
data structures and determining the concrete limitations
of SvS are part of our ongoing work.

4. Experimental Results
4.1 Methodology
To demonstrate SvS’s viability we use the popular 3D
Character Animation Library (Cal3D) [1] : a skeletal
based animation library that operates by representing a
character model as a hierarchical set of bones. Realistic
motions are generated by mathematically blending mul-
tiple precomputed animations. Animations in Cal3D are
a sequence of transformations to be applied to specific
bones. If more than one animation is applied the results
are ‘blended’ together and so a bone may be modified
multiple times during the production of one pose. How-
ever, a bone is unique to a model and the processing
of a model is independent from the processing of other
models.

Our test application simulates an open world popu-
lated with several models. In order to establish a base-

3 2010/4/27

updateAnimation
Producer

updateSkeleton
CycleProducer

updateSkeletonCycle
MidConsumer

updateSkeleton
CycleConsumer

models animations bones

models
updateAnimation

Producer
updateSkeleton

updateSkeleton

Figure 1. Task graph for animation pipeline: restricted (left) and SvS (right)

Figure 2. Activity graphs with synthetic work

line for comparison, we first implemented a version of
our test application with only explicit dependencies pro-
viding state protection. As a result, this restricted ver-
sion is limited to processing models in parallel. Fig-
ure 1 (left) shows the task graph of this version, where
the task updateAnimationProducer sends model ref-
erences to a data-parallel consumer, (updateSkeleton),
which performs all computations. This version’s paral-
lelism is limited by the number of models.

SvS allowed us to safely increase the granularity of
tasks from the restricted version. Potential state con-
flicts are managed and so we can process bones in
parallel. The task graph for this version is shown in
figure 1 (right). Like before, updateAnimationPro-
ducer distributes models to a data parallel consumer,
updateSkeletonCycleProducer, which distributes the
updated animations to the updateSkeletonCycleMid-
Consumer which then iterates over the animation and
sends the associated bone ids to the updateSkeleton-
CycleConsumer. Finally, updateSkeletonCycleCon-

sumer updates the bones stored in an array indexed by
the bone ids.

4.2 Results
Figure 2 illustrates the assignment of tasks (shaded
boxes) to threads (x-axis) over time (y-axis, in millisec-
onds) in what we call an activity graph. Rectangles with
the same shading represent a data-parallel task. Note
that in the Cascade runtime threads are bound to cores.
The white gaps between rectangles represents the time
spent in the Cascade runtime waiting for new tasks to
execute, or dequeueing a data item to process.

Our experiments were run on a machine with 2 Intel
Xeon E5405 chips with 4 cores each. Two cores share
a 6 megabyte L2 cache for a total of 12 megabyte per
chip. For all our tests, we used 4 models and 8 anima-
tions running with 8 threads. These parameters repre-
sent the case where there are bountiful resources and
most reflects probable future conditions. The results for
a typical frame are presented in the upper 3 graphs of

4 2010/4/27

figure 2. The upper leftmost shows a frame of the re-
stricted version of our test application. We can see that
parallelism is limited to only 4 tasks, due to our chosen
parameters. The average execution time was 0.145ms
(with a standard deviation of 0.008). The upper middle
and rightmost activity graph shows an execution frame
using SvS with partition and signature based schedul-
ing. We can see that with SvS we are able to achieve
much more parallelism in the system. Note that the ex-
ecution times exceeds that of the restricted case with
average runtimes of 0.210ms and 0.673ms and standard
deviations of 0.029 and 0.093.

The increased execution times for SvS are a result of
overhead in the Cascade runtime. Notice that the fine-
grained tasks execute on the order of a few microsec-
onds, but have significant relative overhead. This is not
a failure to optimize the Cascade library, but reflects
the unavoidable fact that scheduling a task requires a
minimum amount of computation. SvS has allowed us
to achieve more parallelism than can actually be used.
These results underscore the necessity to rethink how
parallel computations are organized on this fine grained
level.

Other researchers have also pointed out the impor-
tance of supporting fine-grained tasks and proposed
hardware based solutions [9, 11]. Without hardware
support, efficiently executing fine grained tasks is only
possible by considering the effects of scheduling deci-
sions on the whole system. This makes previously mi-
nor performance factors such as cache contention very
important. Having a large number of tasks to possibly
execute means that the implications of executing a given
task must be taken into account. In certain cases it would
be advantageous for threads to do other work or even re-
main idle so as improve the performance of the system.
These kind of low-level optimizations have so far been
achieved by tuning applications for specific platforms.
Our goal with Cascade is to generalize these techniques
and apply them automatically. We have shown how to
use information unique to a task graph to protect shared
state and we plan to use this information to make better
scheduling decisions.

To confirm our assertions about the nature of the
overhead we added a small amount of synthetic work to
tasks in our experiments. This changed the scale of the
experiment without affecting the granularity. The lower
three graphs in figure 2 show the same test with this
additional work. The average execution times from left
to right are 4.15ms, 1.21ms and 2.52ms with standard
deviations of 0.209, 0.143 and 0.202. This helps confirm
that if sufficient scheduling techniques are developed
then techniques like SvS can be used to realize real-
world performance and productivity gains.

5. Related Work
A variety of new programming environments, languages
and paradigms have emerged in response to challenges
of parallel computing. Due to space constraints, we fo-
cus on two, Jade [10] and Prometheus [5], that most
closely relate to our key focus. Jade proposes a set of
parallel extensions to C. A programmer denotes blocks
of code as tasks and specifies their data constraints. Jade
does not explicitly support a task-graph model and tasks
are spawned dynamically. Although Jade also schedules
tasks based on their constraints there are fundamental
differences. In Jade the constraints are specified by the
programmer whereas in our system they are derived au-
tomatically, thus freeing the programmer from the need
to concentrate on implicit and hard to spot data depen-
dencies. In Jade, memory references are checked dy-
namically during execution for compliance with con-
straints. In Cascade, no such per-reference overhead is
incurred. A task’s constraints is based entirely on the
information available before the task runs. Prometheus’
Serialization Sets work similarly to Jade, but they are
applied to an object-oriented language and protect from
races within an object. Shared state protection in Cas-
cade is more general.

Software transactional memory (STM) may play a
role in Cascade’s future. The cases of overconstraint
in section 3.4 are cases where STM may be of use. If
there is a small probability of a conflict tasks could be
executed as transactions since costly aborts would be
rare. STM was applied in the domain of game engines
before [6] [7], but not considered as a fallback from
another synchronization method.

Traditional static techniques for extracting paral-
lelism rely on loop and subscript analysis[4, 8], but
are only valid when there are no dependencies between
iterations. Therefore these techniques cannot handle
dataflow with shared state.

6. Conclusion and Future Work
In this paper we proposed a new way of managing
shared state in task-graph based programming models.
We distinguished between explicit and implicit depen-
dencies and proposed a new approach to manage im-
plicit dependencies automatically, without programmer
involvement and without relying on traditional methods
for managing shared state, such as locks. While our ap-
proach, SvS, has limitations as a general approach, it
fits nicely for the game engine domain. Future work
includes further exploration of the applicability and
limitations of SvS and enhancing Cascade with other
optimizations such as data locality, GPU integration,
prefetching and other avenues that our explorations un-
cover.

5 2010/4/27

References
[1] Cal3d character animation library http://home.gna.

org/cal3d/.

[2] Andersson. Parallel futures of a game en-
gine http://repi.blogspot.com/2009/11/

parallel-futures-of-game-engine.html.

[3] Bloom. Space/time trade-offs in hash coding with allow-
able errors. Communications of the ACM, 13:422–426,
1970.

[4] Michael Burke and Ron Cytron. Interprocedural de-
pendence analysis and parallelization. SIGPLAN Not.,
21(7):162–175, 1986.

[5] Allen et al. Serialization sets: a dynamic dependence-
based parallel execution model. In PPoPP ’09, pages
85–96, 2009.

[6] Baldassin et al. Lightweight software transactions for
games. In HotPar ’09, 2009.

[7] Zyulkyarov et al. Atomic quake: using transactional
memory in an interactive multiplayer game server. In
PPoPP ’09, pages 25–34, 2009.

[8] Mary W. Hall, Saman P. Amarasinghe, Brian R. Murphy,
Shih-Wei Liao, and Monica S. Lam. Interprocedural
parallelization analysis in suif. ACM Trans. Program.
Lang. Syst., 27(4):662–731, 2005.

[9] Sanjeev Kumar, Christopher J. Hughes, and Anthony
Nguyen. Carbon: architectural support for fine-grained
parallelism on chip multiprocessors. In ISCA ’07: Pro-
ceedings of the 34th annual international symposium on
Computer architecture, pages 162–173, 2007.

[10] Martin. Rinard and Lam. The design, implementation,
and evaluation of jade. ACM Trans. Program. Lang.
Syst., 20(3):483–545, 1998.

[11] Daniel Sanchez, Richard M. Yoo, and Christos
Kozyrakis. Flexible architectural support for fine-
grain scheduling. In ASPLOS’10: Proceedings of the
Fifteenth International Conference on Architectural
Support for Programming Languages and Operating
Systems, 2010.

6 2010/4/27

