
make world

Christopher Smowton Steven Hand
University of Cambridge Computer Laboratory

15 JJ Thomson Avenue
Cambridge, United Kingdom

1 Introduction

The world is full of computers doing repetitive, redun-
dant work. Every computer which starts up enumerates
its hardware, just in case it’s changed. Every time you
start python it searches anew for extension modules, just
in case you’ve installed any since last time. Every time
you run your web browser it makes a similar check for
extensions, fonts, the widget toolkit you prefer...

The work happens every time, but the result is almost
always the same: your hardware is almost certainly the
same as it was yesterday, and the same goes for your web
browser configuration. It wouldn’t be difficult to produce
the result once, record it and use that on each subsequent
occasion. It would, however, be a tedious task for the
software’s maintainers. They have to write the code that
determines the state of the world and describes it as they
wish anyway, and they’d need to devote man-hours to
writing and debugging extra code that saves and restores
that description. So they don’t: they theorise that starting
your operating system, or web browser, doesn’t happen
that often, so we can live with taking the slow path, re-
examining the world from scratch, every time.

However, that’s not the whole story: assuming that the
world is in the same state as last time doesn’t just save the
time required to examine it. It also presents the opportu-
nity to specialise the rest of the program according to
those assumptions, producing a program which could be
orders of magnitude smaller [2], in terms of code size and
memory footprint, and faster at runtime. This accelera-
tion could stem from information about command-line
parameters, the environment, files on disk, other (possi-
bly remote) processes, or even runtime user input.

We argue that opportunities for specialisation have
not been maximally exploited because doing so on a
program-by-program basis is time-consuming, places a
high maintenance burden on programmers, and is diffi-
cult to get right. Therefore if repeated work like this is
to be eliminated it will have to be done using an auto-

mated or semi-automated tool: something which makes
it easier for developers to write code that does the least
possible work.

In this paper we describe an architecture in which op-
timisation is lifted beyond compile-time to encompass
knowledge about program-external system state, aim-
ing to eliminate both costly operations such as I/O from
the critical path, and to aggressively optimise programs
based on that state. We also describe a prototype im-
plementation that can entirely evaluate small programs
written in C using the standard Unix filesystem-related
system calls.

2 Pull and Push Dataflow

In a dataflow graph consisting of consumers and produc-
ers, where the consumers are interested in data yielded
by producers, there are two potential ways the system can
function: the consumers can pull information from pro-
ducers when they need it, or the producers can eagerly
produce results and push them to interested consumers
as they become available.

Pulling data makes sense when that data might never
be used, saving redundant computation, or when we can’t
predict what the consumers will need, saving needless
work. Pushing data makes sense when data is likely or
certain to be needed, and the producers can effectively
predict who needs what.

Contemporary operating systems contain many exam-
ples of both forms of data flow. In a typical GNU/Linux
OS we can see pull dataflow occurring whenever pro-
grams read from disk or perform IPC to check the system
state – for example, most utilities read an rc or conf file,
and may contact persistent daemons such as the X server
or gconf, in order to determine how they should func-
tion. Here the producer is the user or another program
which last wrote the file, or participates in IPC, and con-
sumer is the newly started program. Not only does the
consumer pull the desired information, but it often dis-

1

cards the results between runs and pulls again next time,
analogous to polling a device or remote service for its
state.

Examples of push dataflow include the lilo boot-
loader [7], which stores disk block offsets which must be
updated manually if a relevant kernel image moves on the
disk: the producer (the user or script which moved or up-
dated the kernel) must push that state into lilo’s desired
form. Other examples include TEX [12], which stores in-
dexes in certain key directories which must be manually
updated whenever those directories change, and SELinux
[16] policies, which can be specified in human readable
form and which are then compiled to machine-readable
form, doing the parsing work once per update rather than
per use. Note however that all these examples are both
manually executed by the user and do not push results to
the maximum extent: whilst, for example, we push from
a human readable lilo configuration to a machine read-
able list of disk blocks, we don’t precompute the menu it
shows on screen at boot time, or eliminate dead code our
configuration doesn’t need.

A more fully realised example of push dataflow oc-
curs in compilers. By performing compilation once per
source edit, rather than every time the program is run,
we potentially waste time if the program is never run,
but save time each time it is invoked. Systems for co-
ordination of compilers and compiler-like tools, such as
make, extend this push dataflow to a tree of dependen-
cies, performing each translation when its predecessors
have changed and storing the result long-term.

Many compilers and related tools also specialise the
program to its circumstances; for example to the par-
ticular instruction set available on the local machine, or
the availability of certain libraries. However, even this
doesn’t specialise programs, and therefore push informa-
tion, as far as possible: they could be specialised with
respect to other aspects of the state of the system on
which they will run, such as the versions of libraries dy-
namically available at runtime, the machine’s hardware
setup, or the contents of files controlling the program’s
behaviour.

There are two important reasons why programs are
typically not maximally specialised: firstly because if
it were specialised according to the version of some li-
brary, a user upgrading that library would need to re-
specialise the program – it might be less convenient to
use the specialised version. Secondly, it is often easier
to write code which pulls state from files, the hardware
setup or other processes than to write code-generating
scripts which would perform appropriate specialisation.

We propose an architecture for aggressive specialisa-
tion based on partial evaluation [5], a technique which
can automatically specialise programs with respect to ar-
bitrary facts known about the world. Because partial

evaluators can function automatically, this architecture
will permit maximal exploitation of push dataflow, which
we term pervasive specialisation, without significant cost
in developer man-hours.

3 Partial Evaluation

Partial evaluation is a program transformation technique
which simplifies programs in the light of known facts. As
a trivial example it could take a simple function of two ar-
guments, such as fn x, y -> if x then y else 5,
and given the known fact x = true could reduce that
into the simpler function of one argument fn y -> y.
In terms of push and pull dataflow it serves to push the
information that x is in fact true into the program, con-
verting zero-or-more tests of x at runtime to exactly one
test at specialisation time.

The core challenge of partial evaluation is to automat-
ically improve a program as much as possible given cer-
tain facts about its explicit or implicit parameters [5], in-
cluding persistent state which the program can access.
The basic techniques are commonly used in ordinary op-
timising compilers; they include unrolling and peeling
loops, inlining functions and performing constant propa-
gation [1] with the basic goal of executing program in-
structions once at specialisation time rather than each
time the program is run.

Early partial evaluators were able to specialise code
written in functional languages according to known-
constant parameters [6, 2], and later work could spe-
cialise imperative programs written in C according to
their explicit parameters [3, 1]. However, to our knowl-
edge whilst certain limited kernel specialisation has been
attempted [13, 14], particularly for embedded systems,
nobody has brought full partial evaluation to bear on im-
plicit program parameters derived from persistent system
state, and in particular the results of system calls. We ar-
gue that everyday systems should routinely and aggres-
sively use these techniques to improve their programs as
much as possible given the current state of the system
by detecting changes to state which programs use and
performing automatic respecialisation as and when it is
necessary.

Optimising compilers do their best when the maxi-
mum amount of information is available [10]: when pa-
rameters are known to be constant, array or allocation
dimensions are known, and when external functions’ ef-
fects are known. Partial evaluation with respect to known
results of system calls can help in all these ways: the
elimination of the calls themselves means that optimis-
ers no longer need to assume the worst about the call-
out’s memory effects. Meanwhile the known results can
feed other optimisations with more information: in par-
ticular constant propagation is likely to resolve branches

2

Original:
fd = open ("/etc/foo.conf")
for line in fd:

if line.contains ("bar"):
return true

return false

After replacing open calls:
fd = <"/etc/foo.conf", pos 0>
...

After peeling the loop once:
line1 = "baz"
fd = <"/etc/foo.conf", pos 4>
if line1.contains ("bar "):

return true
for line in fd:

...

Evaluating constant expressions ...:
fd = <"/etc/foo.conf", pos 4>
for line in fd:

...

Figure 1: Pseudocode example of simple partial evalua-
tion of a file-reading routine

in the program which depend on system state, leading
to dead code elimination of untaken branches and thus
opportunities for further optimisation downstream of the
branch. Figure 1 shows this process evaluating a simple
file access function: note that after the final transforma-
tion the function is now an ideal candidate for inlining,
permitting simplification of other functions.

One of the first consequences of partially evaluating
with respect to disk contents in particular is likely to
be the elimination of parsing work. Not only do pro-
grams often read configuration data each time they run,
but the data is often specified in a human-readable format
for convenient editing. The program will then parse the
file, storing interesting data in an internal format which
is useful at runtime. Partial evaluation with respect to
that file’s contents could perform the parse operation at
specialisation time, storing the configuration data in the
format actually required at runtime and thus effectively
compiling the configuration. This will be most effective
if the parse is expensive (perhaps because we’re using a
very general library like an XML parser), or only a subset
of the file’s information is retained at runtime.

If eliminating the parse turns out to be difficult due to
dependence on unknowns such as user input or random
numbers, partial evaluation can at least eliminate expen-
sive disk operations. Many programs start by reading
configuration data from several possible stores, such as
files in /etc, reading dot files in the current user’s home
directory, or consulting with a persistent configuration
daemon such as gconf. Even if the parse can’t be de-
cided, storing these as constants rather than external files
could subsume existing techniques that minimise seeks
by colocating programs and their data on disk.

If on the other hand the parse can be eliminated, then
the most important benefits are likely to come from im-
provements in hot functions which make reference to the
processed file data, rather than from eliminating the parse
itself. The former could speed up the entire program,
whereas the latter is likely to be limited to speeding up
startup.

We have written a simple prototype which evaluates
programs with respect to specified file contents, making
a start towards realising these benefits.

4 An LLVM Partial Evaluator

We base our partial evaluation system on the LLVM
compiler infrastructure [9] because it already possesses
a wealth of analysis and optimisation passes, designed
for use in an optimising compiler but equally useful in a
partial evaluator. Our design works by interposing upon
system calls, replacing them with userspace implemen-
tations with may implement the call or defer to the real
system call. Interposed open calls whose filename can
be statically determined are translated to symbolic file
descriptors which are propagated through the program
using ordinary constant propagation techniques. When a
known file descriptor reaches a read call, the call is re-
placed by a memcpy from a static string. Because other
LLVM passes understand the memcpy intrinsic they are
able to optimise the rest of the program much more ag-
gressively than for a read call.

By itself this mechanism for forwarding constants
struggles with typical filesystem code, as a read call is
frequently part of a loop body, and the symbolic file de-
scriptor includes the current file offset. This means that
the file descriptor reaching a read call is often overde-
fined, being derived of a fresh file descriptor coming
from the loop entry edge and a file descriptor with un-
known position coming from the loop’s back-edge.

However, the presence of a fake file descriptor pro-
vides a strong hint that the loop should be peeled – a
technique which precedes the loop with a copy of its own
body which is not part of the loop. The peeled body may
be statically evaluated, in part or in its entirety, providing
a cue to peel the loop again. Iterating this procedure can
effectively statically perform the complete reading of the
file. This technique in effect performs a path-sensitive
constant propagation, in which a function is re-analysed
per potential control flow.

On a similar basis the presence of an open call can
provide a strong hint to inline the containing function,
because this is likely to inline a generic file-handling rou-
tine and so concretise the name of the file being dealt
with. The same goes for functions containing read calls
– they’re likely to yield useful information because inlin-
ing is likely to reveal the file descriptor they’re operating

3

on. This is analogous to performing a context-sensitive
analysis, in which a function is analysed once per call-
site. Combining the two techniques of adaptive peel-
ing and adaptive inlining yields both path- and context-
sensitive analysis.

4.1 Results
To date this work is able to fully reduce simple pro-
grams which perform tasks such as counting occurrences
of a certain character within a statically named file. This
is performed non-adaptively, expanding loops and inlin-
ing functions exhaustively, and requires LLVM bitcode
available at specialisation time. Figure 2 shows the re-
sults of applying this prototype to a simple program that
counts occurrences of a given character in a file. The
same program was compiled with and without userspace
interposition on its system calls, with and without classi-
cal optimisation by LLVM, and finally using our partial
evaluator. We show results for the program at different
read buffer sizes in order to give an idea of the bene-
fits of optimisation and of partial evaluation for programs
with differing ratios of kernel-mode to user-mode execu-
tion time, with the left of the graph representing a typical
program that spends most of its time in the kernel, whilst
the right-hand side mostly runs in user mode, as it only
makes a system call every 1024 bytes. The results show
that for system call-heavy programs, simply executing
calls in userspace (termed “usercall” on the graph) yields
a 5x speedup. Here the open and read system calls have
been patched using stubs which mock up a file descrip-
tor table and provide data from a static array. These stubs
are available to LLVM’s optimisers, so classical optimi-
sation is able to offer a further 4x (optimised versions
are tagged “w/O3” on the graph). The system call vari-
ants are much less amenable to optimisation because the
optimiser assumes that the call has arbitrary side-effects.
When run with large buffer sizes the cost of computation
comes to dominate and the four approaches have sim-
ilar costs. The partial evaluator, meanwhile, is able to
completely eliminate the program; it consists of a single
return instruction and so has constant runtime.

5 Future Work

The partial evaluator we have developed so far realises
only a tiny fragment of the possibilities for speeding up
day-to-day program execution by eagerly pushing known
facts about the world.

A key implementation challenge will be automating
the re-specialisation process. For on-disk files it will
be easy to determine when we should re-specialise us-
ing file-watching APIs such as inotify. Monitoring
other sources of information such as IPC will be more

Figure 2: Runtime of a simple program counting a speci-
fied character in a file compiled with differing read buffer
sizes. See section 4.1 for label definitions and discussion.

difficult, and may mean instrumenting IPC producers. A
further challenge will be dealing with changes to file sub-
ject to specialisation whilst a consumer program is run-
ning; techniques permitting hot replugging of specialised
or optimised functions, used in both previous specialisa-
tion work [13, 15] and in JIT compilers [11], may prove
useful here.

Another challenge will be determining when partial
evaluation is likely to be profitable, both in terms of effort
invested at specialisation time vs. gains at runtime and in
terms of whether specific code transformations are likely
to accelerate the program at runtime. Existing compiler
infrastructures [9] (and previous partial evaluators [1])
typically use crude, conservative heuristics, but alterna-
tives include profiling and detailed system modeling.

In the long term we plan to investigate other, more
challenging sources of information. One important
source is inter-process communication. As we men-
tioned above, many programs obtain world state by con-
sulting with a persistent daemon such as gconf, nscd or
an X server. In order to effectively integrate this state
into a target program we will need to determine what
the current state is, possibly by analysing socket or pipe-
related calls in the server, before integrating the informa-
tion into the client by partially evaluating with respect to
pipe and socket calls similarly to our current treatment
of VFS calls. The most obvious challenge here is that
it is easy to determine when VFS results will change,
and therefore when specialised programs will need re-
specialising, simply by watching the file. It is harder to
determine when IPC results will change. Conventional
analysis could still help, however: if we are certain that

4

the server program listens on a given socket, and that we
have found the listening routine, we can conclude that it
will definitely write certain bytes to that socket on the
same grounds that we could conclude that certain bytes
would be written to memory. By employing LLVM’s ex-
isting analyses and transformations, which are already
bound to be conservative, we can inherit its safety prop-
erties.

Information might also come from remote servers.
This is similar to IPC, but with the constraint that the
source code of the remote service is not available for
analysis. However, by writing a model implementation
serving as a proxy sitting between the application we
wish to specialise and the server it may still prove pos-
sible to integrate common results, using the code of the
model implementation rather than the true server. The
model can then asynchronously spot when the server’s
response changes and cue the re-specialisation of the
client program. This is essentially the imposition of a
caching proxy taken to its logical extreme in which the
cached result is used to pervasively optimise the client.
This will complicate the procedure required when the
server’s response changes; however existing dynamic re-
specialisation techniques should be applicable.

The most challenging information comes from user
input. Naturally there will always be a limit to pro-
gram specialisation imposed by user input which cannot
be known in advance or other unpredictable sources of
information such as the time of day or a random num-
ber generator. However there are still routes to program
improvement despite this lack of knowledge. Firstly
we could profile the program to determine likely inputs
and generate guarded specialisations. These are opti-
mised based on suspected rather than known data, and
are guarded by checks that the input does in fact meet
required preconditions. Secondly we could use either
profile data or ordinary static analysis to determine prof-
itable routes for speculation. This would mean finding
program points at which a branch based on unknown data
leads to a block of expensive computation without further
reference to unknowns; effectively an analysis similar to
that investigating the profitability of loop peeling: one
which asks the question “if we knew X, how much work
could we statically perform?” Existing work has looked
at speculating ahead of both system calls [4] and user in-
put [8]; by employing extensive static analysis we could
improve on this with better informed speculation.

6 Conclusion

We have proposed that we should employ pervasive spe-
cialisation: the aggressive use of seldom-changing facts
about the entire system’s state to maximally specialise
programs to the current state of the world, and some of

its inherent challenges. We have also described a simple
prototype implementation. In future work we will extend
its scope to fully realise the possibilities of whole-system
specialisation.

Acknowledgements: We are indebted to the work-
shop reviewers for their comments on our work.

References
[1] ANDERSEN, L. O. Program Analysis and Specialization for the

C Programming Language. PhD thesis, 1994.

[2] BERLIN, A., AND WEISE, D. Compiling scientific code using
partial evaluation. Computer 23 (1990), 25–37.

[3] CONSEL, C., HORNOF, L., MARLET, R., MULLER, G.,
THIBAULT, S., AND VOLANSCHI, E.-N. Tempo: Specializing
systems applications and beyond. ACM Comput. Surv. 30, 3es
(1998), 19.

[4] FASER, K., AND CHANG, F. Operating system I/O speculation:
How two invocations are faster than one. In USENIX Annual
Technical Conference, General Track (2003), pp. 325–338.

[5] JONES, N. D. An introduction to partial evaluation. ACM Com-
put. Surv. 28 (September 1996), 480–503.

[6] JONES, N. D., SESTOFT, P., AND SØNDERGAARD, H. Mix:
A self-applicable partial evaluator for experiments in compiler
generation. Lisp and Symbolic Computation 2, 1 (1989), 9–50.

[7] KROAH-HARTMAN, G. Linux Kernel in a Nutshell. O’Reilly
Media, Inc., 2006.

[8] KROEGER, T. M., AND LONG, D. D. E. Predicting future file-
system actions from prior events. In USENIX Annual Technical
Conference (1996), pp. 319–328.

[9] LATTNER, C., AND ADVE, V. LLVM: A compilation frame-
work for lifelong program analysis & transformation. In Proc.
International Symposium on Code Generation and Optimization
(2004).

[10] MUTH, R., DEBRAY, S., WATTERSON, S., BOSSCHERE, K. D.,
AND INFORMATIESYSTEMEN, V. E. E. alto: A link-time opti-
mizer for the compaq alpha. Software - Practice and Experience
31 (1999), 67–101.

[11] PALECZNY, M., VICK, C., AND CLICK, C. The Java Hotspot
server compiler. In Proceedings of the 2001 Symposium on Ja-
vaTM Virtual Machine Research and Technology Symposium -
Volume 1 (Berkeley, CA, USA, 2001), JVM’01, USENIX Asso-
ciation, pp. 1–1.

[12] PARTL, T. O. H., HYNA, I., AND SCHLEGL, E. The not so short
introduction to Latex 2e.

[13] PU, C., AUTREY, T., BLACK, A., CONSEL, C., COWAN, C.,
INOUYE, J., KETHANA, L., WALPOLE, J., AND ZHANG, K.
Optimistic incremental specialization: Streamlining a commer-
cial operating system. In Symposium on Operating Systems Prin-
ciples (SOSP), Copper Mountain (1995), pp. 314–324.

[14] RAJAGOPALAN, M., PERIANAYAGAM, S., HE, H., ANDREWS,
G., AND DEBRAY, S. Binary rewriting of an operating system
kernel. In Proc. Workshop on Binary Instrumentation and Appli-
cations (2006).

[15] SHANKAR, A., SASTRY, S. S., BODÍK, R., AND SMITH, J. E.
Runtime specialization with optimistic heap analysis. In Proceed-
ings of the 20th annual ACM SIGPLAN conference on Object-
oriented programming, systems, languages, and applications
(New York, NY, USA, 2005), OOPSLA ’05, ACM, pp. 327–343.

[16] SMALLEY, S., VANCE, C., AND SALAMON, W. Implementing
SELinux as a linux security module. Tech. rep., 2002.

5

