
Computer Meteorology: Monitoring Compute Clouds

Lionel Litty H. Andrés Lagar-Cavilla

Dept. of Computer Science

University of Toronto

David Lie

Dept. of Elec. and Comp. Eng.

University of Toronto

Abstract

Cloud computing environments allow customers to ex-

ecute arbitrary code on hardware owned by a cloud

provider. While cloud providers use virtualization to en-

sure isolation between customers, they face additional

security challenges. Malicious customers may leverage

the provider’s hardware to launch attacks, either from

VMs they own or by compromising VMs from benign

customers. These attacks can damage the provider’s rep-

utation and ability to serve other customers. In this paper

we show that while cloud providers can use introspection

to monitor customer VMs and detect malicious activity, it

must be used with care since existing introspection tech-

niques are based on assumptions that do not hold in cloud

environments.

1 Introduction

A virtual machine monitor (VMM) decouples OS images

from the hardware they run on, enabling useful capa-

bilities such as moving virtual machines (VM) between

hosts, consolidating several underutilized VMs onto a

single host, and the ability to checkpoint/rollback VMs.

The availability of such capabilities has lowered data

center costs immensely. Recently, it has also made pos-

sible one of the many forms of cloud computing, some-

times referred to as Infrastructure as a Service, in which

customers execute their OS images on hardware rented

from cloud providers such as Amazon’s EC2 service,

GoGrid or Mosso. By shifting the burden of infrastruc-

ture ownership and maintenance to the provider, cloud

computing allows subscribers to scale their applications

and leverage large pools of resourceswhile only covering

costs proportional to their actual resource usage.

While enticing, there remain significant obstacles to

this vision. In a recent survey of 244 IT executives and

CIOs, security was ranked as the number one challenge

facing cloud computing [5]. Cloud computing introduces

unique security challenges for cloud providers. Most im-

portantly, the provider needs to guarantee isolation be-

tween customers. This means that a malicious customer

should not only be unable to access information about

other customers, she should also be unable to affect the

performance of other customers. This is the guarantee

virtual machine monitors aim to provide.

While cloud providers can rely on a properly designed

virtual machine monitor to isolate VMs from one an-

other, they also have to adopt some form of cloud mon-

itoring in order to prevent their infrastructure from be-

coming a haven for malicious activities. In addition

to hurting the provider’s reputation – and consequently

its business, malicious activities occurring on its cloud

have technical consequences. For example, spam e-mails

were discovered to have originated from IP addresses

belonging to Amazon’s EC2 service, which resulted in

the blacklisting of a large swath of Amazon’s IP ad-

dresses [7]. The IP addresses of the cloud provider are

a shared resource that can permit one misbehaving cus-

tomer to adversely affect other customers. The terms

of service of the aforementioned cloud providers have

broad language prohibiting illegal activities [1,4], but the

technical means that can be used to enforce these terms

of services are currently ill-defined. For example, a cloud

provider could implement network-level monitoring and

control in a way similar to that of an Internet Service

Provider (ISP). While this may detect some malicious

activities, it is not a panacea. To wit, deep inspection

of encrypted traffic is not possible. Moreover, even un-

encrypted malicious traffic can be made challenging to

detect via network monitoring – to hide a network scan

an attacker may use a botnet to perform a stealthy, dis-

tributed scan.

For these reasons, ISPs have had, for the most part,

a great deal of difficulty protecting their networks from

abuse using only network monitoring. However, cloud

providers have the advantage of being able to use intro-

spection to assist them in analyzing VMs. In this paper,



we explore to which extent VM introspection techniques

can be used to monitor cloud customer VMs for signs of

misbehavior. While introspection has been extensively

studied in the literature [2, 3, 6, 8, 9], previous introspec-

tion systems assumed that the guest VM and the VMM

were owned by the same principal, making it easier for

the administrator to use knowledge they have about the

guest VMs to tune VM introspection. This is not the case

for a cloud provider, who would ideally like to place as

few restrictions on the customer VMs as possible. The

cloud provider faces a significantly different introspec-

tion problem because it can make very few assumptions

about the operating system version and configuration of

its customer’s VMs. As a result, a cloud providermust be

very conservative about how it interprets its monitoring

state, for fear of incorrectly labeling a benign customer

as malicious.

To help map research opportunities, we propose a tax-

onomy of existing introspection techniques and examine

their limitations. We propose tamper-evident, architec-

tural monitoring as a first step towards improving the ap-

plicability of introspection to the cloud setting. How-

ever, other solutions exhibiting the same characteristics

are needed to provide a complete solution. Failing that,

introspection will be of limited use to cloud providers

and they will have to primarily resort to network moni-

toring for their monitoring needs.

2 Introspection

A VM typically contains an enormous amount of code

and data. To make introspection tractable, it makes sense

to adopt a reductionist approach that seeks to divide a

VM into smaller, manageable components and analyze

them individually. Since a running VM can naturally

be conceived of as a set of processes collaborating to

perform tasks, the process boundary is a natural way of

compartmentalizing events in a VM. This approach also

follows naturally from the OS’s attempt to isolate un-

trusting principals into separate processes. We will not

discuss here reverse-engineering running code to try to

determine its intent. Instead, we envision that the cloud

provider will rely on establishing the identity of the code

running in a process (e.g., Apache or MySQL) to formu-

late policies. Having identified individual processes, in-

trospection can then be used to observe unencrypted traf-

fic in the memory of the process. Likewise, distributed

port scanning can be detected by observing that known

malicious software is executing in a customer VM.

The capabilities of introspection are determined by the

nature of the VMs beingmonitored. In this paper, we dis-

tinguish between the two types of VMs: Non-malicious

VMs may be vulnerable to attacks, but have not yet been

compromised. Malicious VMs may either belong to ma-

licious customers or be originally non-malicious VMs

that have been taken over by a malicious attacker. While

the idea of a VM as a set of distinct processes that can

be analyzed separately is attractive, a malicious VM can

easily blur the boundaries between processes, defeating

a reductionist approach. Attackers who gain adminis-

trative privileges in a commodity OS are usually able to

circumvent the process-level protections implemented by

the OS. For example, an attacker can use the ptrace

debugging facility on Linux to manipulate the memory

and alter the behavior of another process. Nearly every

other operating system (including Windows) provides

such powers to an attacker who gains administrative con-

trol. As a result, a reductionist approach is only applica-

ble to non-malicious VMs and malicious VMs where the

attacker is able to exert only limited control over a single

process. However, before an attacker fully compromises

a VM, they initially control only a single process, afford-

ing the cloud provider a window of opportunity to detect

that the VM has transitioned from non-malicious to ma-

licious. This window will close once the attacker has

gained sufficient control of the VM to defeat monitoring.

Ideally, monitors that use introspection should be able

to detect this transition from a benign to a malicious

state. To do this, we require them to be tamper-evident,

meaning that the monitor will either report complete and

accurate information, or it will report that the informa-

tion is incomplete. This means that an attacker con-

trolling the VM cannot fool a tamper-evident monitor

into reporting misleading information. A tamper-evident

monitor is thus useful in its capability to detect transi-

tions to a potentially malicious state, and in its ability

to not be mislead by an attack. Monitors that are not

tamper-evident are still useful: they report accurate in-

formation for non-malicious VMs. In addition, they may

also report accurate information for compromised VMs

when the attacker is unaware of the existence of the mon-

itors, or when the attacker has only gained partial control

of the VM being monitored.

3 Introspection Approaches

Several approaches can be used to bridge the semantic

gap [2] and monitor the activity of cloud VMs. Below,

we examine four representative introspection approaches

and their limitations: host-based agent, trap and inspect,

checkpoint and rollback, and architectural monitoring.

We examine these approaches along three axes: power,

unintrusiveness and robustness.

We define the power of an approach as the scope of

VM events it can monitor as well as its ability to inter-

pose on specific events. The unintrusiveness of an ap-

proach characterizes how much disturbance it introduces

in the monitored VM. Lastly, the robustness of an ap-



Power Unintrusive- Robust-

ness ness

Host agent Good Poor Good

Host agent w/ driver Best Worst Poor

Trap/Inspect Best Good Worst

Checkpoint/Rollback Best Good Poor

Architectural Poor(?) Good Best

Table 1: Capabilities of introspection techniques

proach depends on the nature of the assumptions made

about the monitored VMs and how likely these assump-

tions are to hold. This includes robustness to different

versions of an OS or even different OSs, as well as ro-

bustness to OS modifications as a result of an update, the

introduction of new code in the form of a module or even

malicious changes aimed at evading the monitoring. Ta-

ble 1 summarizes the techniques studied in this section

in terms of these three properties.

3.1 Host-based Agent

A host-based agent is an application that runs within the

context of the monitored VM, either in user-space or as

a kernel module. The cloud provider can ask customers

to install the agent on all their VMs. Alternatively, the

provider can inject that agent in any VM that is instanti-

ated on the cloud. Since it runs in the VM context, the

agent can use the OS API to acquire information about

the VM. Furthermore, if the OS provides hooks to be no-

tified upon certain events, the agent can leverage them to

monitor changes in the VM. An agent can even extend

the kernel by adding its own hooks.

This is the most intrusive approach. It breaks the

boundary separating the provider realm from the cus-

tomer realm, thus creating undesirable coupling between

the two. Asking the customer to install an agent is bur-

densome and requires cooperation from a potentially in-

competent or undisciplined customer. It also hampers

cloud interoperability because it forces the customer to

install an agent for each cloud provider it uses. The al-

ternative, injecting an agent in an unknown VM, is unre-

liable. If the agent is injected in user space, its operation

could be hampered by access control mechanisms of the

customer VM, such as SELinux. Worse, it could trig-

ger the customer’s own security monitoring. Injecting

the code in kernel space may ensure that the agent is not

hampered by OS security mechanisms but adding code to

a running kernel (and removing it when the VM leaves

the cloud) is a daunting task.

Robustness and power depend on the design of the

agent and the features provided by the OS. Different OSs

are unlikely to provide compatible APIs for system mon-

itoring. Furthermore, if the API provided is not suf-

ficiently powerful, the agent will have to extend it by

adding kernel code via a driver or module. This will in-

crease the power of the approach at the cost of robust-

ness, potentially coupling the agent to a specific version

of the OS. Finally, the agent has to trust the OS to isolate

it from other applications.

3.2 Trap and Inspect

Trap and inspect is a less intrusive approach that con-

sists of examining the execution of a VM from the VMM

or from another VM with the help of the VMM. Com-

pared to an agent, it has the advantage of isolating the

introspection code from the introspected VM, preventing

tampering with the code and avoiding interference with

the execution context of the VM. It also does not inter-

fere with cloud interoperability, since it does not modify

the VM. With adequate support from the VMM, intro-

spection code is a powerful approach that is afforded full

visibility over the introspected VM. It can observe hard-

ware events such as disk accesses and network accesses,

as well as the content of memory, making it as powerful

as a host agent with a kernel component.

However, to be alerted on specific events, the moni-

tor needs to insert traps in the VM code, much like a

debugger. And like a debugger, this requires additional

information to locate which instructions in code mem-

ory should be replaced by traps, as well as a thorough

understanding of the code. Because this trap and in-

spect depends on knowing minute details about the code

being monitored, it is the least robust of all introspec-

tion techniques. Trap placement for access control has

been shown to be a complex problem that is hard to get

right [10, 11]. Moreover, bridging the semantic gap re-

quires inspecting data structures in memory, another task

that requires expert knowledge of the OS used by the

VM. The complexity of trap and inspect makes it brit-

tle in the face of skilled attackers, as we will show in

Section 4.1. As a result, trap and inspect is an engineer-

ing heavy task that is closely tied to a specific version of

an operating system, resulting in an approach with low

robustness.

3.3 Checkpoint and Rollback

To alleviate the need to understand the memory layout

of the data structures of the OS of the monitored VM,

checkpoint and roll back takes advantage of the VMM’s

ability to perform these operations on VMs. The intro-

spection monitor can checkpoint a VM, inject code that

can call any support function provided by the OS of the

monitored VM and then roll back the VM to the check-

point [6]. As a result, this approach subsumes trap and



inspect: it is similarly powerful while being more ro-

bust, since it can leverage OS APIs to perform queries as

opposed to reverse-engineer in-memory data structures.

However, checkpoint and roll back still relies on traps to

be invoked.

3.4 Architectural Introspection

Architectural introspection is a new approach first pro-

posed in [8] to increase the robustness of the previous

approaches in two ways. The principle behind architec-

tural introspection is to restrict monitoring to only well-

defined interfaces that are difficult or unlikely to change.

In this way, architectural monitoring achieves both ro-

bustness, because the interfaces are stable, and tamper-

evidence, because an attacker will have a difficult time

changing that interface. Architectural introspection is

both robust and unintrusive, since it only monitors sta-

ble, low-level interfaces through the VMM. For exam-

ple, it may rely on interfaces such as the processor in-

struction set, MMU protection, executable file formats

and file system layouts. These interfaces are either OS-

independent or OS version-independent, a property we

call OS-agnostic. Because monitoring is achieved by

making only minimal assumptions about the OS, archi-

tectural introspection is the only introspection technique

that can be tamper-evident as well. Architectural mon-

itoring does not insert traps into the OS image, but in-

stead relies on passively monitoring hardware events. As

a result, this suggests that architectural monitoring will

have weaker capabilities than other monitoring methods.

Nevertheless, we believe that the power of architectural

monitoring can be sufficient for cloud monitoring. We

will give some examples of architectural introspection in

Section 4.

4 Introspection Example

In this section, we give an example of an introspection

task and discuss the trade-offs between the introspection

techniques. The introspection task we examine is deter-

mining which applications are being run by a customer

VM, including which version of the application is be-

ing run. For example, a cloud provider could use this

knowledge to determine whether a customer is running

a vulnerable version of network facing software. The

cloud provider could also deploy vulnerability specific

network filters to protect these vulnerable applications

until they are patched, which the cloud provider can also

detect. Additionally, the provider could isolate VMs run-

ning only known good software with no publicly known

vulnerability from VMs running known vulnerable, ma-

licious, or/and unknown software, giving their customers

stronger privacy guarantees.

4.1 Execution monitoring

We begin by examining how introspection can be used to

identify all running binary code in a VM. This capability

is already natively provided by many operating systems.

For example, the Linux kernel reports the code loaded in

the address space of each process in /proc. Likewise,

tools such as Process Explorer can provide the same in-

formation in Windows. Requiring the customer to install

such tools and querying them from the VMM is an ex-

ample of host-based agent monitoring. Note that Process

Explorer requires a driver to be loaded in the Windows

kernel, meaning that it belongs to the host agent with

driver category. Numerous rootkits that hide the exis-

tence of entire processes have demonstrated that this ap-

proach is not tamper-evident.

Trap and inspect approaches also exist for execution

monitoring [9]. As discussed above, these approaches re-

quire expert knowledge of the monitored OS. Similar to

host-based monitoring, an attacker can circumvent trap

and inspect monitors. Trap and inspect relies on the exe-

cution of instrumented instructions to invoke the monitor.

If the attacker can insert code in the kernel (by loading

a module for example), she can create new code paths

that will not be monitored. We note that checkpoint and

rollback introspection will be equally vulnerable to such

an attacker since it also requires the execution of trap in-

structions to invoke the monitor.

In the case of execution monitoring, we have shown in

previous work that architectural introspection can be as

powerful as other introspection techniques [8]. Patag-

onix uses the processor MMU to receive notifications

whenever binary code is executed, and identifies the code

using the binary format specification. The Patagonix

monitor is tamper-evident, because it never misidentifies

code. If there is code that it does not recognize, either

because it is malicious or because it is in a form that it

cannot understand, it will report it as unidentified. The

approach is OS-agnostic: any OS can be monitored, and

if this OS uses an executable file format understood by

the monitor, the executed code will be identified.

4.2 File monitoring

Execution monitoring only tells the cloud provider what

binaries are executing, but does not provide any infor-

mation about interpreted or dynamically generated code.

For instance, Java may be used to run Eclipse or Tom-

cat, and the PHP interpreter may be used to run phpBB.

Once a process has been identified as an interpreter or

JIT, we want to determine which files it has read to allow

decision making based on the scripts or byte-code it is

executing.

Just as with execution monitoring, a variety of host



based introspection solutions already exist and are sup-

ported by most OSs. Examples of host-based agents

providing these features include filemon onWindows,

strace on Linux. Trap and inspect, as well as check-

point and rollback can also be used to obtain this infor-

mation. The difficulty with these techniques arises, just

as with execution monitoring, when the VM is malicious

or running an unknown OS.

We are currently exploring methods by which archi-

tectural introspection can be used to identify files that

are accessed by interpreters. The key idea is to interpret

data on disk using the file system specification to identify

blocks that belong to files of interest (for example a vul-

nerable JAVA class file). If information from such files

flows into the address space of a binary of interest (for

example a JAVA virtual machine), then we can detect the

misuse of a file. To make such information flow tracking

OS-agnostic, we again leverage the processor MMU and

virtual DMA engine to track when the block is read off

disk and into the buffer cache, and again subsequently

when the data is read from the buffer cache and copied

into the process address space. Mapping file accesses to

specific processes is essential because sensitive files may

be accessed by processes that are not interpreters, e.g.,

anti-viruses or file indexers. Flagging all accesses to a

sensitive file would result in false positives. Our current

prototype relies on two assumptions about the OS. First,

that data is only copied out of the buffer cache when the

process accessing the file is in context. Second, that data

from the disk is accessed via page sized blocks using

DMA.

5 Conclusion

In conclusion, we can now give the trade-offs between

the various introspection techniques that a cloud provider

can use to monitor their cloud. It is clear that architec-

tural introspection has the best properties in terms of un-

intrusiveness and robustness. By design, architectural

introspection allows the monitoring of a wide range of

OSs, an important concern in the cloud. In addition, be-

cause it makes the fewest assumptions about the VM and

its OS, it is the easiest technique to make tamper-evident.

The main drawback with OS-agnostic techniques is that

because architectural introspection restricts itself to mon-

itoring at fixed interfaces, there may be cases where it

is less powerful than other techniques because it can-

not make implementation-specific assumptions. Thus, so

long as architectural introspection reports enough infor-

mation for the cloud provider’s needs, it is the obviously

best choice.

In cases where architectural introspection is insuffi-

cient, the cloud provider faces a trade-off between ro-

bustness and unintrusiveness. If the customer can be

trusted to install the provider’s monitoring agent in each

of her VMs, then the agent will provide a more robust

solution, especially if the agent can operate using solely

APIs provided by the OS. Otherwise, when requiring

the installation of an agent is too burdensome, the cloud

provider must fall back to using checkpoint and rollback.

Finally, even if the cloud provider can tolerate the low-

ered robustness that comes with checkpoint and rollback,

or the provider’s customers can tolerate the installation

of a monitoring agent, these introspection solutions must

still be coupled with an architectural approach since they

are not tamper evident-and may fail silently if the cus-

tomer’s VM is or becomes malicious.

References

[1] Amazon. Amazon web services customer agreement, 2009.

http://aws.amazon.com/agreement/ Last accessed:

4/2/2009.

[2] P. M. Chen and B. D. Noble. When virtual is better than real.

In 8th Workshop on Hot Topics in Operating Systems (HotOS),

pages 133–138, May 2001.

[3] T. Garfinkel and M. Rosenblum. A virtual machine introspection

based architecture for intrusion detection. In 10th Symposium

on Network and Distributed System Security (NDSS), pages 191–

206, Feb. 2003.

[4] GoGrid. Gogrid cloud hosting: Acceptable use policy,

2009. http://www.gogrid.com/legal/aup.php Last

accessed: 4/2/2009.

[5] IDC Exchange. IT cloud services user sur-

vey, pt.2: Top benefits & challenges, Oct. 2008.

http://blogs.idc.com/ie/?p210 Last accessed:

1/10/2009.

[6] A. Joshi, S. T. King, G. W. Dunlap, and P. M. Chen. Detecting

past and present intrusions through vulnerability-specific predi-

cates. In 20th ACM Symposium on Operating Systems Principles

(SOSP), pages 91–104, Oct. 2005.

[7] B. Krebs. Amazon: Hey spammers, get off my cloud!, July

2008. http://blog.washingtonpost.com/secu-

rityfix/2008/07/amazon hey spammers get off-

my.html Last accessed: 1/10/2009.

[8] L. Litty, H. A. Lagar-Cavilla, and D. Lie. Hypervisor support for

identifying covertly executing binaries. In 17th USENIX Security

Symposium, pages 243–258, July 2008.

[9] N. L. Petroni, Jr., T. Fraser, A. Walters, and W. A. Arbaugh.

An architecture for specification-based detection of semantic in-

tegrity violations in kernel dynamic data. In 15th USENIX Secu-

rity Symposium, pages 289–304, July 2006.

[10] L. Tan, X. Zhang, X. Ma, W. Xiong, and Y. Zhou. AutoISES:

Automatically inferring security specifications and detecting vi-

olations. In 17th USENIX Security Symposium, pages 379–394,

July 2008.

[11] X. Zhang, A. Edwards, and T. Jaeger. Using CQUAL for static

analysis of authorization hook placement. In 11th USENIX Secu-

rity Symposium, pages 33–48, Aug. 2002.


