
Emmett Witchel

Krste Asanovi�

MIT Lab for Computer Science

Hardware Works, Software
Doesn�t: Enforcing Modularity

with Mondriaan Memory
Protection

HW Works, SW Doesn�t � Negative

• Hardware has a bozo cousin named
Software.

Hardware Software

• Hardware cooperates with software.
Each has their strengths.

Software
Hardware

HW Works, SW Doesn�t � Positive

• Hardware cooperates with software.
Each has their strengths.

HW Works, SW Doesn�t � Positive

Hardware
Software

Software is Growing, Becoming Modular

• Software complexity growing quickly.
� Faster processors, larger memories allow more

complicated software.
� Linux kernel growing 200,000 lines/yr.

• Debian Linux supports 253 different kernel
modules.
� A module is code + data, possibly loaded at

runtime, to provide functionality.

• Modules have narrow interfaces.
� Not usually as narrow as an API, some internals

are exposed.
� Enforced by programming convention.

Code

Data

Modular Software is Failing

• Big, complex software fails too often.
� Device drivers are a big problem.

• Big, complex software is hard to
maintain.
� Dependencies are tough to track.

Safe Languages (More SW) Not Answer

• Safe languages are slow and use lots of
memory.
� Restricts implementation to a single language.
� Ignores a large installed base of code.
� Can require analysis that is difficult to scale.

• Safe language compiler and run-time
system is hard to verify.
� Especially as more performance is demanded

from safe language.

• Doing it all in SW as dumb as doing it all in HW.

Both Hardware and Software Needed

• Modules have narrow, but irregular
interfaces.
� HW should enforce SW convention without

getting in the way.

• Module execution is finely interleaved.
� Protection hardware should be efficient

and support a general programming model.

• New hardware is needed to support
software to make fast, robust systems.

Current Hardware Broken

• Page based memory protection.
� A reasonable design point, but we need more.

• Capabilities have problems.
� Revocation difficult [System/38, M-machine].
� Tagged pointers complicate machine.
� Requires new instructions.
� Different protection values for different

domains via shared capability is hard.

• x86 segment facilities are broken
capabilities.
� HW that does not nourish SW.

Mondriaan Memory Protection

• Efficient word-level protection HW.
� <0.7% space overhead, <0.6% extra memory

references for coarse-grained use.
� <9% space overhead, <8% extra memory references

for fine-grained use. [Witchel ASPLOS �02]

• Compatible with conventional ISAs and
binaries.
� HW can change, if it�s backwards compatible.
� Let�s put those transistors to good use.

• [Engler �01] studied linux kernel bugs.
� Page protection can catch 45% (e.g., null).
� Fine-grained protection could catch 64% (e.g.,

range checking).

MMP In Action

Kernel ide.o

Kernel loader
establishes initial
permission regions
Kernel calls
mprotect(buf0, RO, 2);
mprotect(buf1, RW, 2);

1 2

Memory
Addresses

0xC00…

0xFFF…

mprotect(printk, EX, 2);

ide.o calls
mprotect(req_q, RW, 1);
mprotect(mod_init, EX, 1);

nfs.o ipip.o
3 4

No perm

Read-write

Read-only

Execute-read

Multiple protection domains

How Much Work to Use MMP?

• Do nothing.
� Your application will still work.

• Change the malloc library (any dynamic lib).
� You can add electric fences.

• Change the dynamic loader.
� You can have module isolation.

• Add vmware/dynamo-like runtime system.
� Many possibilities for fine-grained sharing.

• Change the program source.
� You can have and control fine-grained sharing.

Trusted Computing Base of MMP

• MMP hardware checks every load, store
and instruction fetch.

• MMP memory supervisor (software)
writes the permissions tables read by
the hardware.
� Provides additional functionality and

semantic guarantees.

MMP TCB smaller than safe language.

Memory Supervisor

• One protection domain (PD) to rule them all.
� Writes MMP tables for other domains.
� Handles memory protection faults.
� Provides basic memory management for domain

creation.
� Enforces some memory use policies.

• Memory supervisor is part of kernel.
� User/kernel distinction still exists.

M
M

P
S

up
er

vi
so

r

C
or

e
K

er
ne

l

M
em

or
y

A
llo

ca
to

rs

K
er

ne
l

M
od

ul
es

0 1 2,..,N N+1,…

Kernel Protection Domains
 (PD-IDs)

Memory Supervisor API

• Create and destroy protection domains.
� mmp_alloc_PD(user/kernel);
� mmp_free_PD(recursive);

• Allocate and free memory.
� mmp_alloc(n_bytes);
� mmp_free(ptr);

• Set permissions on memory (global PD-ID
supported).
� mmp_set_perm(ptr, len, perm, PD-ID);

• Control memory ownership.
� mmp_mem_chown(ptr, length, PD-ID);

Managing Data

• Heap data is owned by PD.
� Permissions managed with supervisor API.
� E.g., mmp_set_perm(&buf, 256, read-
only, consumer_PD-ID);

• Code is owned by PD.
� Execute permission used within a PD.
� Call gates are used for cross-domain calls,

which cross protection domain boundaries.

• Stack is difficult to do fast.

1 2

Call and Return Gates

• Procedure entry
is call gate, exit
is return gate.

• Call gate data
stored in
permissions
table.

• Return gate
returns &
restores original
PD.

call mi

ret

mi:

PD K PD M
Addr
Space

PD M

R

mov

add

jne

xor

push

Architectural Support for Gates

• Architecture uses protected storage, the
cross-domain call stack, to implement gates.

• On call gate execution:
� Save current PD-ID and return address on cross-

domain call stack.
� Transfer control to PD specified in the gate.

• On return gate execution:
� Check instruction RA = RA on top of cross-domain

call stack, and fault if they are different.
� Transfer control to RA in PD specified by popping

cross-domain call stack.

PD M

R

Are Gate Semantics Useful?

• Returns are paired with calls.
� Works for callbacks.
� Works for closures.
� Works for most implementations of

exceptions (not setjmp/longjmp).

• Maybe need a call-only gate.
� To support continuations and more exception

models.
� Allow cross-domain call stack to be paged

out.

Stack Headache

• Threads cross PDs, and multiple threads
allowed in one PD.
� So no single PD can own the stack.

• MMP for stack permissions work, but it
is slow.
� Can copy stack parameters on entry/exit.
� Can add more hardware to make it

efficient.
� Can exploit stack usage properties.

• How prevalent are writes to stack parameters?

Finding Modularity in the OS

• Let MMP enforce module boundaries
already present in software.

• Defining proper trust relations between
modules is a huge task.
� Not one I want to do by hand.

• Can we get 90% of the benefit from 5%
of the effort?

Using Symbol Information

• Symbol import/export gives information
about trust relations.
� Module that imports �printk� symbol will need

permission to call printk.

• Data imports are trickier than code
imports.
� E.g., code can follow a pointer out of a

structure imported via symbol name.
� Do array names name the array or just one

entry?

Measuring OS Modularity

• Is module interface narrow?
� Yes, according to symbol information.
� Measured the static data dependence

between modules and the kernel.

• How often are module boundaries
crossed?
� Often, at least in the boot.
� Measured dynamic calling pattern.

Size of Kernel Modules

• Modules are small and mostly code.

0
10

20
30
40

50
60
70
80

8
3
9
0

b
in
fm

t_

fl
op

p
y

id
e
-

id
e
-
m
od

id
e
-

is
a
-
p
np

lo
ck

d ne nf
s

rt
c

su
nr

p
c

un
ix

S
iz
e
 i
n

K
B

Bss (RW)

Data (RW)

Read-only

Execute

Number of Imported Call Gates

• 4,031 named entry points in kernel.

1.09%

0.59%

2.15%

0.44%

1.21%

0.59%
0.69%

1.11%

0.79%

0.32%

1.41%

1.21%

0.74%

0
10
20

30
40
50
60
70
80
90

100

83
90

bin
fm
t_
mis
c
flo
ppy

ide
-d
isk

ide
-m
od

ide
-p
rob
e-
mo
d

isa
-p
np
loc
kd ne nfs rtc

sun
rpc uni

x

Size of Imported Data (KB)

• Kernel has 551KB of static data.
• Block devices import arrays of structures.

0

10

20

30

40

50

60

83
90

bin
fm
t_
mis

c
flo
pp
y

ide
-d
isk

ide
-m
od

ide
-p
rob

e-
mo
d

isa
-p
np
loc
kd ne nfs rtc

sun
rpc uni

x

Measuring Cross-Domain Calls

• Instrumented bochs simulator to gather
data about module interactions in Debian
Linux 2.4.19.
� Enforce module boundaries: deal with module

loader, deal with module version strings in
text section, etc.

• 284,822 protection domain switches in
the billion instruction boot.
� 3,353 instructions between domain switch.
� 97.5% switches to IDE disc driver.

• This is fine-grained interleaving.

Additional Applications

• Once you have fine-grained protection,
exciting possibilities for system design
become possible.

• Eliminate memory copying from syscalls.

• Provide specialized kernel entry points.

• Enable optimistic compiler optimizations.

• Implement C++ const.

Conclusion

• Hardware should help make software
more reliable.
� Without getting in the way of the software

programming model.

• MMP enables fast, robust, and
extensible software systems.
� Previously it was pick two out of three.

