
1

Why Events Are A Bad Idea
(for high-concurrency servers)

Rob von Behren, Jeremy Condit and Eric Brewer
University of California at Berkeley

{jrvb,jcondit,brewer}@cs.berkeley.edu
http://capriccio.cs.berkeley.edu

The Stage
! Highly concurrent applications

! Internet servers (Flash, Ninja, SEDA)
! Transaction processing databases

! Workload
! Operate “near the knee” 
! Avoid thrashing!

! What makes concurrency hard?
! Race conditions
! Scalability (no O(n) operations)
! Scheduling & resource sensitivity
! Inevitable overload
! Code complexity

Ideal

Peak: some 
resource at max

Overload: some
resource thrashing

Load (concurrent tasks)

Pe
rf

or
m

an
ce



2

The Debate
! Performance vs. Programmability

! Current threads pick one
! Events somewhat better

! Questions
! Threads vs. Events?
! How do we performance and 

programmability?

Performance
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Our Position
! Thread-event duality still holds
! But threads are better anyway

! More natural to program
! Better fit with tools and hardware

! Compiler-runtime integration is key
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The Duality Argument
! General assumption: follow “good practices”
! Observations

! Major concepts are analogous
! Program structure is similar
! Performance should be similar

! Given good implementations!

! Event handler & queue
! Events accepted 
! Send message / await reply
! Wait for new messages

! Monitors
! Exported functions
! Call/return and fork/join
! Wait on condition variable
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“But Events Are Better!”
! Recent arguments for events

! Lower runtime overhead
! Better live state management
! Inexpensive synchronization
! More flexible control flow
! Better scheduling and locality

! All true but…
! No inherent  problem with threads!
! Thread implementations can be improved
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Runtime Overhead
! Criticism: Threads don’t perform 

well for high concurrency
! Response

! Avoid O(n) operations
! Minimize context switch overhead

! Simple scalability test
! Slightly modified GNU Pth
! Thread-per-task vs. 

single thread 
! Same performance!
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Live State Management
! Criticism: Stacks are bad for live state
! Response

! Fix with compiler help
! Stack overflow vs. wasted space

! Dynamically link stack frames

! Retain dead state
! Static lifetime analysis
! Plan arrangement of stack
! Put some data on heap
! Pop stack before tail calls

! Encourage inefficiency
! Warn about inefficiency

Live
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Synchronization
! Criticism: Thread synchronization is heavyweight
! Response

! Cooperative multitasking works for threads, too!
! Also presents same problems

! Starvation & fairness
! Multiprocessors
! Unexpected blocking (page faults, etc.)

! Compiler support helps

Control Flow
! Criticism: Threads have restricted 

control flow
! Response

! Programmers use simple patterns
! Call / return
! Parallel calls
! Pipelines

! Complicated patterns are unnatural
! Hard to understand
! Likely to cause bugs



7

Scheduling
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! Criticism: Thread schedulers are too generic
! Can’t use application-specific information

! Response
! 2D scheduling: task & program location

! Threads schedule based on task only
! Events schedule by location (e.g. SEDA)

! Allows batching
! Allows prediction for SRCT

! Threads can use 2D, too!
! Runtime system tracks current location
! Call graph allows prediction
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! Threads schedule based on task only
! Events schedule by location (e.g. SEDA)

! Allows batching
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! Threads can use 2D, too!
! Runtime system tracks current location
! Call graph allows prediction
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The Proof’s in the Pudding
! User-level threads package

! Subset of pthreads
! Intercept blocking system calls
! No O(n) operations
! Support > 100K threads
! 5000 lines of C code

! Simple web server: Knot
! 700 lines of C code

! Similar performance
! Linear increase, then steady
! Drop-off due to poll() overhead
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Our Big But…
! More natural programming model

! Control flow is more apparent
! Exception handling is easier
! State management is automatic

! Better fit with current tools & hardware
! Better existing infrastructure
! Allows better performance?

Control Flow
! Events obscure control flow

! For programmers and  tools

AcceptHandler(event e) {
struct session *s = new_session(e);
RequestHandler.enqueue(s);

}
RequestHandler(struct session *s) {

…; CacheHandler.enqueue(s);
}
CacheHandler(struct session *s) {

pin(s);
if( !in_cache(s) ) ReadFileHandler.enqueue(s);
else ResponseHandler.enqueue(s);

}
. . . 
ExitHandlerr(struct session *s) {

…;  unpin(&s);  free_session(s);  }

thread_main(int sock) {
struct session s;
accept_conn(sock, &s);    
read_request(&s);
pin_cache(&s);
write_response(&s);
unpin(&s);

}

pin_cache(struct session *s) {
pin(&s);
if( !in_cache(&s) )

read_file(&s);
}
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Control Flow
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CacheHandler(struct session *s) {
pin(s);
if( !in_cache(s) ) ReadFileHandler.enqueue(s);
else ResponseHandler.enqueue(s);

}
RequestHandler(struct session *s) {

…; CacheHandler.enqueue(s);
}
. . . 
ExitHandlerr(struct session *s) {

…;  unpin(&s);  free_session(s);  
}
AcceptHandler(event e) {

struct session *s = new_session(e);
RequestHandler.enqueue(s); }

thread_main(int sock) {
struct session s;
accept_conn(sock, &s);    
read_request(&s);
pin_cache(&s);
write_response(&s);
unpin(&s);

}

pin_cache(struct session *s) {
pin(&s);
if( !in_cache(&s) )

read_file(&s);
}

EventsThreads

! Events obscure control flow
! For programmers and  tools

Exceptions
! Exceptions complicate control flow

! Harder to understand program flow
! Cause bugs in cleanup code Accept
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CacheHandler(struct session *s) {
pin(s);
if( !in_cache(s) ) ReadFileHandler.enqueue(s);
else ResponseHandler.enqueue(s);

}
RequestHandler(struct session *s) {

…; if( error ) return; CacheHandler.enqueue(s);
}
. . . 
ExitHandlerr(struct session *s) {

…;  unpin(&s);  free_session(s);
}
AcceptHandler(event e) {

struct session *s = new_session(e);
RequestHandler.enqueue(s); }

thread_main(int sock) {
struct session s;
accept_conn(sock, &s);    
if( !read_request(&s) )

return;
pin_cache(&s);
write_response(&s);
unpin(&s);

}

pin_cache(struct session *s) {
pin(&s);
if( !in_cache(&s) )

read_file(&s);
}

EventsThreads
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State Management

CacheHandler(struct session *s) {
pin(s);
if( !in_cache(s) ) ReadFileHandler.enqueue(s);
else ResponseHandler.enqueue(s);

}
RequestHandler(struct session *s) {

…; if( error ) return;  CacheHandler.enqueue(s);
}
. . . 
ExitHandlerr(struct session *s) {

…;  unpin(&s); free_session(s);
}
AcceptHandler(event e) {

struct session *s = new_session(e);
RequestHandler.enqueue(s); }

thread_main(int sock) {
struct session s;
accept_conn(sock, &s);    
if( !read_request(&s) )

return;
pin_cache(&s);
write_response(&s);
unpin(&s);

}

pin_cache(struct session *s) {
pin(&s);
if( !in_cache(&s) )

read_file(&s);
}
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! Events require manual state management
! Hard to know when to free

! Use GC or risk bugs

Existing Infrastructure
! Lots of infrastructure for threads

! Debuggers
! Languages & compilers

! Consequences
! More amenable to analysis
! Less effort to get working systems
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Better Performance?
! Function pointers & dynamic dispatch 

! Limit compiler optimizations
! Hurt branch prediction & I-cache locality

! More context switches with events?
! Example: Haboob does 6x more than Knot
! Natural result of queues

! More investigation needed!

The Future:
Compiler-Runtime Integration

! Insight
! Automate things event programmers do by hand
! Additional analysis for other things

! Specific targets
! Dynamic stack growth*
! Live state management
! Synchronization
! Scheduling*

! Improve performance and decrease complexity

* Working prototype in threads package
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Conclusion
! Threads ≈ Events

! Performance
! Expressiveness

! Threads > Events
! Complexity / Manageability

! Performance and Ease of use?
! Compiler-runtime integration is key
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