
1

Why Events Are A Bad Idea
(for high-concurrency servers)

Rob von Behren, Jeremy Condit and Eric Brewer
University of California at Berkeley

{jrvb,jcondit,brewer}@cs.berkeley.edu
http://capriccio.cs.berkeley.edu

The Stage
! Highly concurrent applications

! Internet servers (Flash, Ninja, SEDA)
! Transaction processing databases

! Workload
! Operate “near the knee”
! Avoid thrashing!

! What makes concurrency hard?
! Race conditions
! Scalability (no O(n) operations)
! Scheduling & resource sensitivity
! Inevitable overload
! Code complexity

Ideal

Peak: some
resource at max

Overload: some
resource thrashing

Load (concurrent tasks)

Pe
rf

or
m

an
ce

2

The Debate
! Performance vs. Programmability

! Current threads pick one
! Events somewhat better

! Questions
! Threads vs. Events?
! How do we performance and

programmability?

Performance

Ea
se

 o
f

Pr
og

ra
m

m
in

g

Current
Threads

Current Threads

Current Events

Ideal

Our Position
! Thread-event duality still holds
! But threads are better anyway

! More natural to program
! Better fit with tools and hardware

! Compiler-runtime integration is key

3

The Duality Argument
! General assumption: follow “good practices”
! Observations

! Major concepts are analogous
! Program structure is similar
! Performance should be similar

! Given good implementations!

! Event handler & queue
! Events accepted
! Send message / await reply
! Wait for new messages

! Monitors
! Exported functions
! Call/return and fork/join
! Wait on condition variable

EventsThreads

Accept
Conn.

Write
Response

Read
File

Read
Request

Pin
Cache

Web Server

Exit

The Duality Argument
! General assumption: follow “good practices”
! Observations

! Major concepts are analogous
! Program structure is similar
! Performance should be similar

! Given good implementations!

! Event handler & queue
! Events accepted
! Send message / await reply
! Wait for new messages

! Monitors
! Exported functions
! Call/return and fork/join
! Wait on condition variable

EventsThreads

Accept
Conn.

Write
Response

Read
File

Read
Request

Pin
Cache

Web Server

Exit

4

The Duality Argument
! General assumption: follow “good practices”
! Observations

! Major concepts are analogous
! Program structure is similar
! Performance should be similar

! Given good implementations!

! Event handler & queue
! Events accepted
! Send message / await reply
! Wait for new messages

! Monitors
! Exported functions
! Call/return and fork/join
! Wait on condition variable

EventsThreads

Accept
Conn.

Write
Response

Read
File

Read
Request

Pin
Cache

Web Server

Exit

“But Events Are Better!”
! Recent arguments for events

! Lower runtime overhead
! Better live state management
! Inexpensive synchronization
! More flexible control flow
! Better scheduling and locality

! All true but…
! No inherent problem with threads!
! Thread implementations can be improved

5

Runtime Overhead
! Criticism: Threads don’t perform

well for high concurrency
! Response

! Avoid O(n) operations
! Minimize context switch overhead

! Simple scalability test
! Slightly modified GNU Pth
! Thread-per-task vs.

single thread
! Same performance!

R
eq

ue
st

s /
 S

ec
on

d

Concurrent Tasks

Event-Based Server

Threaded Server

 20000

 30000

 40000

 50000

 60000

 70000

 80000

 90000

 100000

110000

 1 10 100 1000 10000 100000 1e+06

Live State Management
! Criticism: Stacks are bad for live state
! Response

! Fix with compiler help
! Stack overflow vs. wasted space

! Dynamically link stack frames

! Retain dead state
! Static lifetime analysis
! Plan arrangement of stack
! Put some data on heap
! Pop stack before tail calls

! Encourage inefficiency
! Warn about inefficiency

Live

Live

Dead

Unused

Thread State (stack)

Event State (heap)

6

Synchronization
! Criticism: Thread synchronization is heavyweight
! Response

! Cooperative multitasking works for threads, too!
! Also presents same problems

! Starvation & fairness
! Multiprocessors
! Unexpected blocking (page faults, etc.)

! Compiler support helps

Control Flow
! Criticism: Threads have restricted

control flow
! Response

! Programmers use simple patterns
! Call / return
! Parallel calls
! Pipelines

! Complicated patterns are unnatural
! Hard to understand
! Likely to cause bugs

7

Scheduling

Task

Pr
og

ra
m

 L
oc

at
io

n

! Criticism: Thread schedulers are too generic
! Can’t use application-specific information

! Response
! 2D scheduling: task & program location

! Threads schedule based on task only
! Events schedule by location (e.g. SEDA)

! Allows batching
! Allows prediction for SRCT

! Threads can use 2D, too!
! Runtime system tracks current location
! Call graph allows prediction

Scheduling

Task

Pr
og

ra
m

 L
oc

at
io

n

Threads

! Criticism: Thread schedulers are too generic
! Can’t use application-specific information

! Response
! 2D scheduling: task & program location

! Threads schedule based on task only
! Events schedule by location (e.g. SEDA)

! Allows batching
! Allows prediction for SRCT

! Threads can use 2D, too!
! Runtime system tracks current location
! Call graph allows prediction

8

Scheduling
! Criticism: Thread schedulers are too generic

! Can’t use application-specific information

! Response
! 2D scheduling: task & program location

! Threads schedule based on task only
! Events schedule by location (e.g. SEDA)

! Allows batching
! Allows prediction for SRCT

! Threads can use 2D, too!
! Runtime system tracks current location
! Call graph allows prediction

Task

Pr
og

ra
m

 L
oc

at
io

n

Threads

Events

The Proof’s in the Pudding
! User-level threads package

! Subset of pthreads
! Intercept blocking system calls
! No O(n) operations
! Support > 100K threads
! 5000 lines of C code

! Simple web server: Knot
! 700 lines of C code

! Similar performance
! Linear increase, then steady
! Drop-off due to poll() overhead

0

100

200

300

400

500

600

700

800

900

1 4 16 64 256 1024 4096 16384

KnotC (Favor Connections)
KnotA (Favor Accept)

Haboob

Concurrent Clients

M
bi

ts
/

se
co

nd

9

Our Big But…
! More natural programming model

! Control flow is more apparent
! Exception handling is easier
! State management is automatic

! Better fit with current tools & hardware
! Better existing infrastructure
! Allows better performance?

Control Flow
! Events obscure control flow

! For programmers and tools

AcceptHandler(event e) {
struct session *s = new_session(e);
RequestHandler.enqueue(s);

}
RequestHandler(struct session *s) {

…; CacheHandler.enqueue(s);
}
CacheHandler(struct session *s) {

pin(s);
if(!in_cache(s)) ReadFileHandler.enqueue(s);
else ResponseHandler.enqueue(s);

}
. . .
ExitHandlerr(struct session *s) {

…; unpin(&s); free_session(s); }

thread_main(int sock) {
struct session s;
accept_conn(sock, &s);
read_request(&s);
pin_cache(&s);
write_response(&s);
unpin(&s);

}

pin_cache(struct session *s) {
pin(&s);
if(!in_cache(&s))

read_file(&s);
}

EventsThreads
Accept
Conn.

Write
Response

Read
File

Read
Request

Pin
Cache

Web Server

Exit

10

Control Flow

Accept
Conn.

Write
Response

Read
File

Read
Request

Pin
Cache

Web Server

Exit

CacheHandler(struct session *s) {
pin(s);
if(!in_cache(s)) ReadFileHandler.enqueue(s);
else ResponseHandler.enqueue(s);

}
RequestHandler(struct session *s) {

…; CacheHandler.enqueue(s);
}
. . .
ExitHandlerr(struct session *s) {

…; unpin(&s); free_session(s);
}
AcceptHandler(event e) {

struct session *s = new_session(e);
RequestHandler.enqueue(s); }

thread_main(int sock) {
struct session s;
accept_conn(sock, &s);
read_request(&s);
pin_cache(&s);
write_response(&s);
unpin(&s);

}

pin_cache(struct session *s) {
pin(&s);
if(!in_cache(&s))

read_file(&s);
}

EventsThreads

! Events obscure control flow
! For programmers and tools

Exceptions
! Exceptions complicate control flow

! Harder to understand program flow
! Cause bugs in cleanup code Accept

Conn.

Write
Response

Read
File

Read
Request

Pin
Cache

Web Server

Exit

CacheHandler(struct session *s) {
pin(s);
if(!in_cache(s)) ReadFileHandler.enqueue(s);
else ResponseHandler.enqueue(s);

}
RequestHandler(struct session *s) {

…; if(error) return; CacheHandler.enqueue(s);
}
. . .
ExitHandlerr(struct session *s) {

…; unpin(&s); free_session(s);
}
AcceptHandler(event e) {

struct session *s = new_session(e);
RequestHandler.enqueue(s); }

thread_main(int sock) {
struct session s;
accept_conn(sock, &s);
if(!read_request(&s))

return;
pin_cache(&s);
write_response(&s);
unpin(&s);

}

pin_cache(struct session *s) {
pin(&s);
if(!in_cache(&s))

read_file(&s);
}

EventsThreads

11

State Management

CacheHandler(struct session *s) {
pin(s);
if(!in_cache(s)) ReadFileHandler.enqueue(s);
else ResponseHandler.enqueue(s);

}
RequestHandler(struct session *s) {

…; if(error) return; CacheHandler.enqueue(s);
}
. . .
ExitHandlerr(struct session *s) {

…; unpin(&s); free_session(s);
}
AcceptHandler(event e) {

struct session *s = new_session(e);
RequestHandler.enqueue(s); }

thread_main(int sock) {
struct session s;
accept_conn(sock, &s);
if(!read_request(&s))

return;
pin_cache(&s);
write_response(&s);
unpin(&s);

}

pin_cache(struct session *s) {
pin(&s);
if(!in_cache(&s))

read_file(&s);
}

EventsThreads
Accept
Conn.

Write
Response

Read
File

Read
Request

Pin
Cache

Web Server

Exit

! Events require manual state management
! Hard to know when to free

! Use GC or risk bugs

Existing Infrastructure
! Lots of infrastructure for threads

! Debuggers
! Languages & compilers

! Consequences
! More amenable to analysis
! Less effort to get working systems

12

Better Performance?
! Function pointers & dynamic dispatch

! Limit compiler optimizations
! Hurt branch prediction & I-cache locality

! More context switches with events?
! Example: Haboob does 6x more than Knot
! Natural result of queues

! More investigation needed!

The Future:
Compiler-Runtime Integration

! Insight
! Automate things event programmers do by hand
! Additional analysis for other things

! Specific targets
! Dynamic stack growth*
! Live state management
! Synchronization
! Scheduling*

! Improve performance and decrease complexity

* Working prototype in threads package

13

Conclusion
! Threads ≈ Events

! Performance
! Expressiveness

! Threads > Events
! Complexity / Manageability

! Performance and Ease of use?
! Compiler-runtime integration is key

Performance

Ea
se

 o
f

Pr
og

ra
m

m
in

g

Current
Threads

Current Threads

Current Events

New Threads?

