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Abstract

Data replication is a widely used technique for
achieving fault tolerance and improved performance.
With the advent of content delivery networks, it is becom-
ing more and more frequent that data content is placed
on hosts that are not directly controlled by the content
owner, and because of this, security mechanisms to pro-
tect data integrity are necessary. In this paper we present
a system architecture that allows arbitrary queries to
be supported on data content replicated on untrusted
servers. To prevent these servers from returning erro-
neous answers to client queries, we make use of a small
number of trusted hosts that randomly check these an-
swers and take corrective action whenever necessary.
Additionally, our system employs an audit mechanism
that guarantees that any untrusted server acting mali-
ciously will eventually be detected and excluded from the
system.

1 Introduction

Secure data replication on untrusted hosts has re-
ceived a considerable amount of attention in the past
few years. There are two generic mechanisms to handle
this problem: state signing and state machine replication
[16]. Solutions based on state signing [7, 2, 6, 11, 13, 3]
can only support semi-static data content and restrictive,
pre-defined types of queries. Furthermore, all these sys-
tems, except for the one described in [11], require that
state updates are executed on trusted servers. On the
other hand, systems based on state machine replication
[4, 15, 10] allow untrusted servers handle the updates
and support random queries, but require any particu-
lar operation to be executed multiple times (on different
hosts), which greatly increases the amount of computing
resources needed.

In this paper we present a system architecture that al-
lows dynamic data replication with support for random
queries, while avoiding much of the overhead associated

with state machine replication. We are able to achieve
this by providing only statistical guarantees on the cor-
rectness of any given query, combined with a background
audit mechanism that detects false responses with a high
degree of probability so corrective action can be taken.
Our system is configurable, so it can easily provide 100%
correctness and/or 100% false response detection, at the
expense of operational performance.

Allowing erroneous behavior and taking corrective
action only after an error has occured may seem a
strange policy; however, our model is based on the as-
sumption that byzantine failures from untrusted compo-
nents of the system are rare, so the system can be opti-
mized to give best performance in common case, which
is when everything works correctly.

This paper is organized as follows: Section 2 intro-
duces our system model, Section 3 describes the algo-
rithms used to handle read and write operations on repli-
cated data, Section 4 discusses several variants of our ba-
sic algorithms, and the operational scenarios where such
variants may be appropriate, Section 5 reviews the re-
lated work in this area, and Section 6 concludes.

2 System Model

In this paper we consider a system model consisting
of the following elements:

• The data content; this can be a database, the con-
tents of a large Web site, or a file system. The data
content needs to support both read and write opera-
tions; however, in our model we expect the number
of reads to be at least an order of magnitude larger
than the number of writes. The read operations can
be very complex; they can request parts of the data
content, but also the results of applying aggregation
functions on this content. Taking the example of a
file system, it should not only support operations of
the type read FileName, but also operations of the
type grep Expression Path.
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• The content owner; this is one individual or or-
ganization which administers the content, and is in
charge of setting an access control policy for it. For
the purpose of this paper, we assume that data se-
crecy is not an issue, so the access control policy
is only concerned with operations that modify the
content.

• The content key; this is a public/private key pair
associated with the data content. The content pri-
vate key is known only by the content owner, while
the content public key needs to be known by every
client that wants to use the data. The latter can be
accomplished by making this key part of the content
identifier, as suggested in [5].

• The master servers; these are trusted hosts directly
controlled by the content owner, each of them hold-
ing a copy of the data content. All the master
servers in the system form the master set. There is
a public/private key pair associated with each mas-
ter server. The master servers’ public keys are certi-
fied through digital certificates issued by the content
owner (and signed with the content key). These cer-
tificates bind each server’s contact address (IP ad-
dress and port number) to its public key, and are
stored in a public directory, indexed by content pub-
lic key. Thus, by knowing the content public key
and the address of the directory, any client can se-
curely get the addresses and public keys of all the
master servers replicating that content.

• The slave servers; they hold copies of the data con-
tent but are not directly controlled by the content
owner, and because of this, they are only marginally
trusted. They can be part of a content delivery net-
work run by a separate organization, or managed by
a number of cooperating, but mutually-suspicious
institutions. There is a public/private key pair as-
sociated with each slave, and each master keeps
track of the contact addresses and public keys of the
slaves it has been assigned.

• The clients; they perform read/write operations on
the data content. For a client to use the system, it
first has to go through a setup phase, when it con-
nects to exactly one master and one slave. First,
the client queries the directory and selects one mas-
ter (the closest one for example) to which it estab-
lishes a secure connection (using the master’s cer-
tified public key). The master then sends the client
the address and public key of one of its slaves (the
one closest to the client for example) to which the
client also establishes a secure connection. This
concludes the setup phase; at this point the client
can start issuing read/write requests - by sending

them to either the master or the slave - according
to the algorithm described in the next section.

3 Algorithm

In this section we present the algorithm used to handle
read/write requests from clients. This algorithm guaran-
tees that write requests are always processed correctly in
some sequential order. However, in order to allow fast
processing of read requests, only statistical guarantees
are given for their correctness; this is based on our orig-
inal assumption that byzantine failures from untrusted
(slave) servers are infrequent.

Our algorithm requires the masters to be fully con-
nected to each other through secure (e.g. cryptograph-
ically) communication links, and implement a reliable,
total-ordering, broadcast protocol that can tolerate be-
nign (non-malicious) server failures. The broadcast pro-
tocol itself is outside the scope of this paper; a good
choice could be for example the protocol described in
[8].

Using this reliable broadcast protocol, master servers
ensure they always agree on the same sequential order-
ing for write requests. Through the same broadcast pro-
tocol, the masters also elect one of them to function as an
auditor. The auditor checks (in the background) the cor-
rectness of computations performed by slaves, and takes
corrective action when any of them is found acting mali-
ciously.

Each master server is responsible for updating the
servers in its slave set when the data content changes due
to writes. This updating occurs only after the masters
have comitted the write. The masters also periodically
broadcast their slave list to the master set, so in the event
of a master crash, the remaining ones will divide its slave
set. This also entails that all the clients connected to the
crashed server will have to go through the setup process
again.

It is important to notice that a slave receives a state up-
date only after that update has been comitted. The rea-
son we have chosen this “lazy” state update algorithm,
as opposed to having masters and slaves participate in
the total ordering broadcast, is performance. Since only
masters are trusted, a total ordering broadcast protocol
including the slaves would have to be resistant to byzan-
tine failures, and implementing such an algorithm over a
WAN is extremely expensive. “Lazy” state updates make
the write protocol much more efficient, but also weaken
the consistency model since a client cannot be guaran-
teed that once his write is comitted it will be seen in
all subsequent reads. We tackle this problem by intro-
ducing a special parameter, dubbed max latency that
bounds the inconsistency window for a given write op-
eration: a client is guaranteed that once max latency



HotOS IX: The 9th Workshop on Hot Topics in Operating SystemsUSENIX Association 123

time has elapsed since comitting a write, no other client
will accept a read that is not dependent on that write.
It is worth stressing out that we do not guarantee that a
write will propagate to all slaves in max latency (this
will violate the asynchronous nature of the WAN envi-
ronment); there may be slaves for which it takes longer
that max latency to get a state update, but if they be-
have correctly they should stop handling user requests
until they are back in sync (later we will show how to
handle malicious slaves).

3.1 Write Protocol

Writes are executed only on trusted (master) servers.
When a client wants to perform a write, it sends the re-
quest to its assigned master, which first checks whether
the client is allowed to invoke such a request, and if this
is the case, it broadcasts the request to the other servers
in the master set. Upon the successful completion of this
broadcast, each master executes the request and incre-
ments a special variable, dubbed here content version
(which is initialized zero when the content is created). In
the end, all master servers hold updated, but still iden-
tical copies of the data content (because they have exe-
cuted the same write) and have the same value for the
content version variable.

At this point, the slaves are updated: each master
sends the update together with the signed and time-
stamped and new value for the content version vari-
able to all its subordinates through a secure broadcast.
In order to prevent race conditions, two write operations
cannot be, time-wise, closer than max latency to each
other. This ensures that any reads on which the second
write depends will take into account the first write. This
obviously limits the number of write operations that can
be executed in a given time, which is why we advocate
our architecture only for applications where there is a
high reads to writes ratio.

In order to satisfy the latency constraint, the master
servers have to periodically broadcast “keep-alive” pack-
ets consisting of the signed and time-stamped value of
the content version variable to their server set, even
when no writes occur. A slave can handle client requests
only if the most recently receive “keep-alive” packet is
less than max latency old.

3.2 Basic Read Protocol

As mentioned, the replicated data content needs to
support flexible query operations (reads); calculating the
result of such a query can be a computationally very in-
tensive task if it requires applying an aggregation func-
tion on the entire data content (a complex join for a
database, or a grep Expression Path request in the case of
a file system). Therefore, in order decrease the workload

on the master servers and improve performance, read re-
quests are handled by the slaves.

When a client wants to perform a read, it sends
the request to its assigned slave server. The slave ex-
ecutes the request, and constructs a “pledge” packet
which contains a copy of the request, the secure hash
(SHA-1 [1]) of the result, and the latest time-stamped
content version value received from the master. Af-
ter signing this “pledge” packet, the slave sends it to the
client, together with the result of the query.

At the other end, the client first computes the secure
hash of the query result, and makes sure it matches the
hash in the “pledge” packet. Then, the client verifies
the slave’s signature on the “pledge” packet. Finally,
the client makes sure the time-stamp is not older than
max latency. If all these conditions are met, the client
accepts the answer, otherwise it rejects it.

Because of the asynchronous nature of the network
connection between the client and the slave, it is possi-
ble that a result that was “fresh” when sent by the slave,
becomes stale by the time it reaches the client. In such
a situation, the client has to drop the answer and try
the query again. By carefully selecting the value for
max latency, and the frequency masters send “keep-
alive” packets, the probability of such events occuring
can be reduced. However, clients with very slow or un-
reliable network connections may never be able to get
fresh-enough responses. One possible way to accommo-
date such clients is to relax the consistency model and al-
low the max latency to be set by the clients themselves.
In this case, clients with fast network connections can set
high “freshness” requirements, while clients with slow
connections can settle with more modest expectations.

The main vulnerability of this basic read protocol is
that a malicious slave can return wrong answers to client
requests. To protect against such malicious slaves, we
employ two techniques - probabilistic checking and au-
diting which will be described in the next two sections.

3.3 Probabilistic Checking

For each read request, there is a certain probability
that a client will send the same request to a master and
compare the slave and master results. This “double-
check” probability is a system parameter - it should be
small enough so it does not excessively increase the
workload on the masters, but large enough so it guar-
antees that a malicious slave is caught “red-handed”
quickly.

As described in the previous section, for every read
it handles, a slave has to sign a “pledge” packet that
contains a copy of the request, the content version time-
stamped by the master and the secure hash of the result
(as computed by the slave). Should the slave act ma-
liciously and return an incorrect answer, the “pledge”
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packet becomes an irrefutable proof of its dishonesty.
Once a slave server is proven malicious it can be ex-
cluded from the system so it can do no further harm.

It is important to notice that the way the “pledge”
packets are constructed makes impossible for a client
to “frame” an innocent slave server - unless that client
is able to fake the slave’s digital signature. The only
harm a client can do is to abuse its “double-check” quota
(by double-checking all the slave responses instead of
a small fraction of them). However, by keeping track
on the number of double-check requests it receives from
each of its clients, a master can identify statistically
anomalous client behavior, which most likely indicates
a “greedy” client. The master can then enforce fair play
by simply ignoring a large fraction of the double-check
requests coming from clients suspected to be greedy.

3.4 Auditing

Besides relying on the probabilistic checker to de-
tect wrong answers, our system also employs an auditing
mechanism that ensures that even if a malicious slave
manages to return an erroneous result to a client, that
slave will eventually get caught and excluded from the
system.

The auditing mechanism works as follows: after the
client accepts the result from the slave, and given that
the client decides not to double-check that result, it still
forwards the slave’s “pledge” packet to the special audi-
tor server.

The auditor is the only trusted server that does not
have a slave set, and therefore does not handle any
double-checking requests from clients; its only duty is to
check the validity of “pledge” packets, by re-executing
the read request in the packet and comparing the secure
hash of the result to the hash in the packet. The auditor is
allowed to lag behind when executing write requests; it
executes a write only after it has audited all the read re-
quests for the content version that precedes that write.
In fact, in order to take into account possible network
delays, the auditor can move to a new content version
only after a sufficiently large time interval (more than
max latency) has elapsed since the rest of the trusted
servers have moved to that same content version. This
ensures that at that point no client will accept any more
read results for the previous content version. Here we
assume clients accept read results only after they have
forwarded the corresponding pledges to the auditor.

The auditor has several advantages over the slaves it
has to verify, which allow it to achieve a much higher
throughput when (re)executing read operations: first
the auditor does not have to produce digital signatures
(slaves on the other hand have to digitally sign a “pledge”
packet for every client request they execute). Second, the

auditor does not have to send any answers back to the
clients. Third, since the auditor knows in advance all the
operations it has to re-execute, it can, for certain types
of applications (for example databases), employ query
optimization mechanisms (cache results in the simplest
case). Finally, because the auditor needs not to worry
about client latency, it can spread its work so it mini-
mizes idle time. Assuming that read requests show daily
peak patterns (few requests at 3AM in the night for ex-
ample), it is possible that the auditor will seriously lag
behind during peak hours, but catch up during the night.
However, it is essential that in the long run the auditor is
able to keep up with the amount of reads it has to ver-
ify. If the auditor is over-used, the solution is to either
add extra auditors, or weaken the security guarantees by
verifying only a randomly chosen fraction of all reads.

3.5 Taking Corrective Action

In this section we discuss what happens when one of
the slave servers is caught “red-handed,” either as a result
of a client double-checking a read result with a master
(immediate discovery), or during the audit process (de-
layed discovery).

In the case of immediate discovery, the client for-
wards the incriminating “pledge” packet to the master.
At this point, the master contacts all the clients connected
to the (now provably malicious) slave, informs them the
slave has been excluded from the system, and assigns
each of them to a new slave server. Finally, the client that
has made the discovery connects to its newly assigned
slave and issues the same read request again.

In the case of delayed discovery, the situation is more
complex, since at least one client has already accepted an
incorrect answer. In some applications, the harm may be
undone, by rolling back the client to the state before that
particular read. In any case, the malicious slave needs to
be excluded from the system so it can do no further dam-
age. To this extent, the auditor sends the incriminating
“pledge” packet to the master in charge of the slave that
has signed it. The master then contacts all the interested
clients (clients connected to the malicious slave) inform-
ing them of the problem and assigns them to new slave
servers.

What happens after a malicious server has been ex-
cluded from the system is dependent on the administra-
tive relations between that server and the content owner.
If a formal content hosting contract exists, the matter
can be further taken to courts (given that the incriminat-
ing “pledge” packet can be used as evidence). Another
possibility is that the slave server is not inherently mali-
cious, but is has been the victim of an attack (the trusted
servers are supposedly administered much more care-
fully, so they cannot be easily hacked), in which case,
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after recovering it to a safe state, it can be brought back
to use.

4 Discussion

The algorithm described is based on the optimistic as-
sumption that byzantine failures are rare, allowing the
system to be optimized for the common case, where un-
trusted components work correctly, even if there is a dan-
ger that incorrect results may be passed to clients. The
probabilistic checking and auditing mechanisms guaran-
tee that components acting maliciously will eventually
be identified and excluded from the system.

There may be situations when stronger correctness
guarantees are required. We outline a number of variants
of our algorithm to handle this situation:

One variant is to give clients the option to differenti-
ate between “normal” and “security sensitive” reads. The
latter ones are then to be executed only by the trusted
servers (which guarantees that clients always get correct
results), while normal (non-sensitive) operations are car-
ried out as described above. This variant allows us to
provide 100% correctness guarantees for sensitive oper-
ations, at the expense of putting extra load on the trusted
components. A further refinement of this scheme assigns
even more security levels for read operations and sets
the double-check probability based on the read’s security
level. Thus for the least sensitive operations the proba-
bility can be set very low, while for the very sensitive it
can be set to 1 (which means “execute only on trusted
hosts”).

Another possibility is to send the same read request
to more than one untrusted server. If all the answers are
identical, the client proceeds as in the original algorithm
- double-check with the master (with a small probability)
and send the “pledge” packets, to the auditor. If not all
answers match, the client automatically double-checks,
since at least one of the slaves has to be malicious. This
approach is similar to what is proposed in [4], and has the
advantage that a number of malicious slaves would have
to collude in order to pass an incorrect answer. The dis-
advantage is that more computing resources are needed
in order to handle the same request, but these resources
need not be trusted, and may therefore be easier to come
by.

5 Related Work

There are two generic mechanisms for securely repli-
cating data over untrusted hosts: state signing and state
machine replication.

With state signing, the data content is divided into
small (disjunct) subsets which are signed with a con-
tent private key. Clients then retrieve data from untrusted
storage and verify its integrity using the content public

key (assumed to be known a-priori). In order to minimize
the number of digital signatures, some form of hash-tree
authentication [12] is normally used in this context.

Work that falls into this category includes [7, 11, 13,
3] which apply this technique to distributed file systems,
[2] which applies it to free software distribution, [6]
which applies it to signing XML documents, [14] which
applies it to digital certificate revocation and [9] which
applies it on building a trusted database on untrusted stor-
age. The main limitation for all these systems is that dy-
namic queries on the data need to be executed on trusted
hosts. This requires the trusted host to first retrieve all
data relevant to the query from untrusted storage, verify
it, and then perform the operation.

With state machine replication [16], the idea is to ex-
ecute the same operation on a number of untrusted hosts
(quorum), and accept the result only when a majority of
these hosts agree upon it. In this way, malicious hosts
need to collude in order to pass an erroneous result; by
requiring a large quorum size, the system can offer very
strong security guarantees. Work in this area includes
[4, 15, 10, 17]. The problem with this approach is that
it greatly increases the amount of computing resources
needed for handling a given request. Additionaly, the
request latency is dictated by the slowest server in the
quorum group.

The scheme we describe in this paper allows dynamic
queries to be handled by untrusted servers, while avoid-
ing most of the overhead associated with state machine
replication. We are able to achieve this by providing
only statistical guarantees on the correctness of any given
query. However, our background auditing mechanism
ensures that malicious servers are eventually detected, so
they can be handled appropiately (either brought back to
a safe state, or removed from the system).

6 Limitations and Future Work

One of the possible usage scenarios for the system
architecture described in this paper is in the area of
content delivery networks (CDNs), used for replicating
semi-static Web content such as product catalogues for
e-commerce, or academic, medical and legal databases.
One possibility is having the organization that owns the
data content to provide the master servers, while the
CDN provides the slaves. Yet another possibility is to
have the CDN itself divide its servers in a trusted core
and a much larger set of outsourced and thus less trusted
support servers. This scenario seems particularly realis-
tic given the fact that most CDNs physically host most
of their servers with Internet service providers and only
remotely administer them.

The work presented in this paper is based on the
fundamental assumption that byzantine failures are rare
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events, so applications can be optimized to work effi-
ciently in the common case - when everything works
correctly. This assumption is also the major limitation
of our approach as it cannot be used (or at least is not
efficiently) in scenarios when 100% security guarantees
are required. However, looking at the current state of
the Internet (the vast majority of WWW traffic is not en-
crypted, and even secure DNS is slow in gaining accep-
tance) it seems there are numerous applications where
people can do well even without strong security guaran-
tees.

The other limitation of our approach is that there is
a certain latency for propagating writes, and in order to
avoid race conditions we need to limit the frequency of
such operations. As a result, the architecture described
in this paper is appropriate for applications with a high
reads to writes ratio. CDNs used for replicating slowly
changing Web content, as well as academic, legal or
medical databases clearly fall in this category. On the
other hand, it would be impractical to use this archi-
tecture for disseminating data that changes rapidly and
requires tight freshness guarantees, such as live stock
quotes.
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