
USENIX Association

Proceedings of
HotOS IX: The 9th Workshop on
Hot Topics in Operating Systems

Lihue, Hawaii, USA
May 18–21, 2003

THE ADVANCED COMPUTING SYSTEMS ASSOCIATION

© 2003 by The USENIX Association All Rights Reserved For more information about the USENIX Association:

Phone: 1 510 528 8649 FAX: 1 510 548 5738 Email: office@usenix.org WWW: http://www.usenix.org
Rights to individual papers remain with the author or the author's employer.

 Permission is granted for noncommercial reproduction of the work for educational or research purposes.
This copyright notice must be included in the reproduced paper. USENIX acknowledges all trademarks herein.

HotOS IX: The 9th Workshop on Hot Topics in Operating SystemsUSENIX Association 175

The Case for a Session State Storage Layer

Benjamin C. Ling and Armando Fox

Stanford University
{bling, fox} @ CS.Stanford.edu

Abstract
 This paper motivates the need for a session state

storage layer. Session state is used in a large class of

applications. Existing session state storage solutions often

rely on ad-hoc choices such as databases or file systems,

and exhibit various drawbacks such as poor

failure/recovery behavior or poor performance, often

because the solutions are too general. We present a design

for a simple, fast, scalable, and fault-tolerant session state

store that we believe accurately addresses the needs of

session state retrieval, while avoiding the drawbacks of

existing solutions.

Introduction
 The concept of a user session is present in nearly all

client-facing applications, including web-based

applications. A user actively works for a period of time,

called a session, until he signs out, or his session expires

after a fixed interval. During the session, the application

may produce temporary data relevant to the user’s session,

e.g. which step the user has completed in the application

workflow. Upon session completion, the temporary state is

no longer needed.

 Session state is state whose lifetime is the duration of a

user session and is relevant to a particular user; the duration

of a user session is application specific. Examples of

session state are user workflow state in enterprise software

and user navigation in eCommerce.

 Many architectures have modules that produce and use

session state, including emerging industry standards such

as J2EE[1]. Regardless of architecture, session state and its

storage is a building block that is useful. Session state is a

large class of state, as there are many different types of data

that can be generated and used depending on the

application at hand. In this paper, we focus on an

interesting subset of session state, with distinct

requirements and properties, which we describe in the

upcoming sections.

 In Section 1, we present an example of how session

state is used. Next, we discuss the requirements and

properties for the subset of session state that we address,

and discuss the functionality that is necessary to provide a

session state store, also highlighting what is not necessary.

We then discuss current solutions and why they are

inadequate. We propose a “middle-tier” storage layer to

address session state. We discuss future work and related

work, and conclude.

1. What is session state?
 In Section 1, we describe a large subcategory of

session state by describing how it is used, its properties, the

requirements it imposes on its storage, as well as the

functionality required to support it. Various different

categories of session state exist. However, in the remainder

of this paper, we will use the term “session state” to refer to

the subcategory of session state which we describe below.

 We use the example of a user working on a web-based

marketing application to illustrate how session state is often

used. The user is building a marketing campaign,

specifying target customers and the offers they should

receive.

 A large class of applications, including J2EE-based

and web apps in general, use the interaction model below:

¶ User submits a request (to add a targeted

customer), request is routed to a stateless

application server. This server is often referred to

as the middle-tier.

¶ Application server retrieves the full session state

for user (which includes the campaign data).

¶ Application server runs application logic (adds a

customer to the targeted set of customers)

¶ Application server writes out entire session state

¶ Results are returned to the user’s browser

 Session state must be present on each interaction, since

user context or workflow is stored in session state. If it is

not, the user’s workflow and context is lost, which is seen

as an application failure to the end user, and is usually

unacceptable from a product requirement standpoint.

Session state, in this context, includes any temporary

application state that is associated with a single user; the

loss of this state is akin to losing a few hours work.

 Typically, session state is on the order of 3K-200K [2].

Session state retrieval is also in the critical path of the

control path – processing of the request cannot continue

unless session state has been retrieved.

 These requirements imply that session state solutions

should have the following properties, besides traditional

properties such as availability, scalability, performance:

¶ Session state retrieval should be fast, or negligible

when compared to application processing

¶ Failures of the state store or any of its

subcomponents should not result in data loss,

otherwise users perceive an application failure

•

•

•

•
•

•

•

HotOS IX: The 9th Workshop on Hot Topics in Operating Systems USENIX Association176

¶ Recovery of the state store and its failed

subcomponents should be fast, for the same reason

 Some important properties/qualities of the session state

we focus on are listed below. Session state:

1. Is not shared. Each user reads his own state.

Unlike state in its full generality, session state is

accessed in a fixed pattern of alternating reads and

writes: Read 1 of session state for user U is

followed by Write 1, which is followed by Read 2,
followed by Write 2.

2. Is semi-persistent. Session state must be present

for a fixed interval T, but can be deleted after T

has elapsed.

3. Is keyed to a particular user. An advanced

query mechanism to do arbitrary searches is not

needed.

4. Is updated on every interaction. Session state

such as user context in a web-based application is

updated in its entirety on every interaction, as

described earlier. A new copy of the state is

written on every interaction.

5. Does not need ACID [7] semantics. Session

state is transient, and state that requires

transactions is not included in the class of session

state we address.

Given these properties, the functionality necessary for

a session state store can be greatly simplified (each point

corresponds to an entry in the previous numbered list):

1. No synchronization is needed. Since the access

pattern corresponds to an access of a single user

making serial requests, no conflicting accesses

exist, and hence race conditions on state access

are avoided, which implies that locking is not

needed.

2. State stored by the repository need only be

semi-persistent – a temporal, lease-like [3]

guarantee is sufficient, rather than the “durable”

guarantee that is made in ACID [7].

3. Single-key lookup API is sufficient. Since state

is keyed to a particular user and is only accessed

by that user, a general query mechanism is not

needed.

4. Previous values of state keyed to a particular

user may be discarded.
5. No need to support full ACID – only atomic

update is necessary; since each write writes out all

of the user’s session state, consistency is trivial

and isolation is guaranteed. Durability is not

needed.

Existing solutions and why they are inadequate
 Currently, session state storage is done with one of the

following mechanisms: Relational Database (DB), file

system (FS), single-copy in-memory, replicated in-

memory.

Frequently, enterprises use either the DB or FS to store

session state, often reasoning, “I already have a DB and FS,

why don’t I just use one of them to store session state?”

This simplifies management, since only one type of

administrator is needed. However, there are several

drawbacks to using either a DB or FS to handle session

state, besides the costs of additional licenses and

complexity of administration:

 D1 Contention. Unless a separate DB/FS is created

for session state, requests for session state and

requests for persistent objects contend for the

same resources. Session state read/write requests

are frequent, which can interfere with requests for

persistent objects that are housed by the same

physical resource.

 D2 Failure and recovery is expensive. If a crash

occurs, recovery of the DB or FS may be slow,

often on the order of minutes or even hours.

Recovery time for a DB can be reduced if

checkpointing is done frequently, but reduces

performance under normal operation. There exist

DB/FS solutions that have fast recovery, but these

tend to be quite costly [9]. Even if recovery is on

the order of seconds, in a large scale application,

hundreds or thousands of users may see a failure if

they attempt to contact the server at time of

recovery.

 D3 Session cleanup is painful. After state is put into

a DB or FS, some process has to come back and

look at the data and expire it, or else the data

continues growing without bound. Reclaiming

expired sessions degrades performance of other

requests to the DB or FS.

 D4 Potential performance problems.

Reading/writing state objects to a DB/FS may

sometimes incur a disk access in addition to a

network roundtrip.

 On the other hand, in-memory solutions (IMS) avoid

several of the drawbacks of FS and DB, and are generally

faster than FS/DB oriented solutions. In-memory solutions

rely on affinity, and require a user to “stick” to a particular

server that stores his copy of session state. A hardware

load-balancer can guarantee affinity. However, the app-

processing tier is no longer stateless; session state is being

stored by the application server; it must serve the dual roles

of application processing as well as providing state storage.

Affinity is a key property for in-memory solutions to

operate well – the main advantage of storing state in

memory is to avoid a network roundtrip to the DB. If no

affinity is present, then a server must incur a roundtrip to

pass the request to the appropriate server. Affinity limits

load balancing options, since load balancing must be done

on the granularity of a user, rather than that of a request.

 When only a single copy of a user’s session state is

stored on a corresponding application server, if a server

crashes, state for some users is lost. The crash will be

•

HotOS IX: The 9th Workshop on Hot Topics in Operating SystemsUSENIX Association 177

manifested to users as an app failure, which is usually

unacceptable.

 A primary-secondary scheme is often used for a

replicated solution. In BEA WebLogic™ [5], a J2EE

application server, servers are given unique IDs and form a

logical ring. A server S elects the server T that trails S in

the logical ring to be its secondary. All users who are

pinned to S as a primary share T as a secondary. A cookie

is written out to the user’s browser designating the primary

and secondary.

 During normal operation, all updates to session state

are synchronously written, first at the primary, and then

synchronously replicated at the secondary.

 On failure of S, WebLogic™ does one of the

following, depending on configuration.

1. A subsequent request destined for S is assigned to

a random server U, because the load balancer

recognizes the failure of S. U will copy the state

information from the secondary T, and then

rewrite the user’s cookie, designating U as the

new primary and T as the secondary.

2. A subsequent user request destined for S is

assigned to the secondary T, because the software

load balancer recognizes the failure of S. T will

designate itself as the primary, replicate the

session state information to its secondary V, and

then rewrite the user’s cookie, designating T as the

new primary and V as the secondary.

There are several potential problems in this scheme

(Note that some of the deficiencies of DB/FS solutions are

shared by WebLogic™, as mentioned below):

 D5 Performance is degraded on secondaries. D5 is

related to D1. Instead of only providing

application processing, secondary application

servers face contention from session state updates.

 D6 Recovery is more difficult (special case code for

failure and recovery). The middle-tier is now

stateful, which makes recovery more difficult.

Special-case failure recovery code is necessary.

In Case 1, a server A receiving a valid cookie

stating that B as primary and C as secondary must

realize that it must now become primary since B

failed, and in Case 2, a secondary must realize that

it should now become the primary. Special-case

code makes the overall system harder to reason

about, harder to maintain and less elegant.

 D7 Poor failure/recovery performance for Case 2.
Assuming equal load across all servers, upon

failure of a primary A, the secondary B will have

to serve double load – B must act as primary for

all of A’s requests as well as its own. Similar

logic applies to B’s secondary, which experiences

twice the secondary load.

 D8 Lack of separation of concerns. The application

server now provides state storage, in addition to

application logic processing. These two are very

different functions, and a system administrator

should be able to scale each separately.

 D9 Performance coupling. If a secondary is

overloaded, then users contacting a primary for

that secondary will experience poor performance

behavior as well. Because of the synchronous

nature of updates from primary to secondary, if

the secondary is overloaded, e.g. from faulty

hardware or user load, the primary will have to

wait for the secondary before returning to the user,

even if the primary is under-loaded [4]. An

industry expert has confirmed that this is indeed a

drawback [6].

 Note that any replication scheme requiring

synchronous updates will necessarily exhibit performance

coupling. That is, whenever a secondary is slow for any

reason, any primary served by that secondary will block.

In Case 1, after a failure of a single server, the entire cluster

should be coupled, if we assume that the load balancer load

balances correctly. To be specific, each request for S will

be assigned to a random server U, and all of the nodes in

the cluster will be performance coupled to the secondary T.

This is particularly worrisome for large clusters, where

node failures are more likely because of the number of

nodes. Furthermore, application servers often use shared

resources such as thread pools, and slowness in the

secondary will hold resources in the primary for longer

than necessary.

Proposed solution: A “middle-tier storage” layer
 The support of industry in J2EE, together with the

special qualities of session state and the failure of current

solutions to address it properly, presents a viable

opportunity to innovate and explore new state storage

solutions. We present a solution that focuses on the

following principles:

P1 Avoid special case recovery code. This addresses

deficiencies D2 and D6. Avoiding special case

recovery code reduces total cost of ownership, by

facilitating easier administration and allowing

programmers to reason about the system more easily,

since the “special failure case” is not special, but rather

the normal case [13].

P2 Design for separation of concerns. A system

administrator should be able to scale the DB/FS

separately from the session state store, and scale the

session state store separately from the application

processing tier. This addresses D1 D5, and D8.

P3 Session cleanup should be easy, and not require extra

work. This addresses D3.

P4 Graceful degradation upon failure. Unnecessary

performance degradation effects should not be seen,

such as cache warming effects in DDS [4], and uneven

load distribution in BEA. This addresses D7.

P5 Avoid performance coupling, as seen in DDS and

which is present in the in-memory replication scheme.

This addresses D9.

HotOS IX: The 9th Workshop on Hot Topics in Operating Systems USENIX Association178

In addition, the system should be able to tolerate N

simultaneous faults, where N is configurable by the system

administrator. Unless N simultaneous faults occur, the

system should continue operating correctly.

We assume a physically secure and well-administered

cluster, along with a commercially-available high

throughput, low latency redundant system area network

(SAN) that can achieve high throughput with extremely

low latency. High redundancy in the SAN enables us to

assume that the probability of a network partition is

arbitrarily small, and we need not consider network

partitions. An uninterruptible power supply reduces the

probability of a system-wide simultaneous hardware

outage. The middle-tier storage has two components: bricks

and stubs.

A brick stores session state objects by using a hash

table. Each brick sends out periodic beacons to indicate

that it is alive.

The stub is used by applications to read and write

session state. The stub interfaces with the bricks to store

and retrieve session state. Each stub also keeps track of

which bricks are currently alive.

Figure 1

 The write interface exported by the stub to the

application is Write(HashKey H, Object v,

Expiry E) and returns a cookie as the result of a

successful write, or throws an exception if the write fails.

The returned cookie should be stored on the client. The

read interface is Read(Cookie C)and returns the last

written value for hash key H, or throws an exception if the

read fails. If a read/write returns to the application, then it

means the operation was successful. On a read, we

guarantee that the returned value is the most recently

written value (recall that the type of session state we are

dealing with is accessed serially by a single user).

 The stub propagates write and read requests to the

bricks. Before we describe the algorithm describing the

stub-to-brick interface, let us define a few variables.

 Call W the write group size. A stub will attempt to

write to W of the bricks, and read from R bricks. Define

WQ as the write quota, which is the minimum number of

bricks that must return “success” to the stub before the stub

returns to the calling application. We use the term quota to

avoid confusion with the term quorum; quorums are

discussed in section on related work. WQ – 1 is the number

of simultaneous brick failures that the system can tolerate

before losing data. Note that 1 Ò WQ Ò W, 1 Ò R, and R Ò

W. Lastly, call t the timeout interval, an amount of time

that the stub waits for bricks to reply to its requests.

 The stub handles a write by doing the following:

1. Calculate checksum for object and expiration

time.

2. Create a list of bricks L, initially the empty set.

3. Choose W random bricks, and issue the write of

{object, checksum, expiry} to each brick.

4. Wait for WQ of the bricks to return with success

messages, or until t elapsed. As each brick

replies, add its identifier to the set L.
5. If t has elapsed and the size of L is less than WQ,

repeat step 3. Otherwise, continue.

6. Create a cookie consisting of H, the identifiers of

the WQ bricks that acknowledged the write, and

the expiry, and calculate a checksum for the

cookie.

7. Return the cookie to the caller.

The stub propagates the read to the bricks:

1. Verify the checksum on the cookie.

2. Issue the read to R random bricks chosen from the

list of WQ bricks contained in the cookie.

3. Wait for 1 of the bricks to return, or until t

elapses.
4. If the timeout has elapsed and no response has

been returned, repeat step 2. Otherwise, continue.

5. Verify checksum and expiration. If checksum is

invalid, repeat step 2. Otherwise continue.

6. Return the object to the caller.

The set of bricks that have the most recent write for

key X changes on each write. While omitted in the

algorithm for simplicity, a second-level timeout can be

added for the case when writes/reads to the stubs

continually time out; an exception can be thrown when this

occurs.

For garbage collection of bricks, we use a method seen

in generational garbage collectors [10]. Earlier we

described each brick as having one hash table, for

simplicity. In reality, it has a set of hash tables; each hash

table has an expiration. A brick handles writes by putting

state into the table with the closest expiration time after the

state’s expiration time. For a read, the stub also sends the

key’s expiration time, so the brick knows which table to

look in. When a table’s expiration has elapsed, it is

discarded, and a new one is added in its place with a new

expiration.

What happens on failure?

 If a node cannot communicate with another, we

assume it is because the other node has stopped executing.

As discussed earlier, we assume that a network partition is

not possible. We assume that components are fail-stop.

 On failure of a client, the user perceives the session as

lost, i.e. if the OS crashes, a user does not expect to be able

to resume his interaction with a web application.

AppServer
S
T
U
B

SAN

Brick1

Brick2

BrickN

AppServer
S
T
U
B

Middle-Tier (App Logic) Middle-Tier Storage

HotOS IX: The 9th Workshop on Hot Topics in Operating SystemsUSENIX Association 179

 On failure of an application server, a simple restart of

the server is sufficient since it is stateless. The stub on the

server detects existing bricks from the beacons and can

reconstruct the table of bricks that are alive. The stub can

immediately begin handling read and write requests.

 On failure of a brick, a simple restart of the brick is

necessary. All state on that brick is lost; however, the state

is replicated on (WQ – 1) other bricks, and so no data is

lost. Furthermore, on a subsequent write of that data, WQ

copies are made, and the system can once again tolerate

(WQ – 1) faults without losing data.

 An elegant side effect of having simple recovery is that

clients, servers, and bricks can be added to a production

system to increase capacity. For example, adding an extra

brick to an already existing system is easy. Initially, the

new brick will not service any read requests since it will

not be in the read group for any requests. However, it will

be included in new write groups because when the stub

detects that a brick is alive, the brick is a candidate for a

write. Over time, the new brick will receive an equal load

of read/write traffic as the existing bricks.

 When the system is under high load, and latency

exceeds t, new requests will be generated while old ones

have not yet been serviced, potentially increasing the load

even more. To address this, bricks can discard a request if t
has elapsed by the time the brick begins processing it.

Secondly, we insert a random exponentially delay between

each retry.

Middle-tier storage vs. design principles

We believe the design of this middle-tier storage

system achieves the design principles outlined, and avoids

the drawbacks of previous solutions while achieving good

performance and exhibiting good failure/recovery behavior.

P1 Avoid special case recovery code. The system as

described has no special case recovery code.

P2 Allow for separation of concerns. A middle-tier

storage layer can be scaled separately from persistent

storage usage and separately from application

processing.

P3 Session cleanup is easy. Bricks can easily expire

session by removing them from the hash. No extra

process to scrub old data is needed.

P4 Node failure results in graceful degradation. Since

multiple copies are available for any given write, a

single node failure does not affect correctness, only the

capacity of the system. Furthermore, multiple node

failures do not affect correctness as long as the number

of simultaneous failures is less than WQ.

P5 Performance coupling is avoided by two strategies:

Change the brick replica group on each write. In

schemes where a key is mapped to a fixed set of

replicas (i.e. Key X is always mapped to replicas A, B,

and C), performance for key X is limited by the

slowest in the replica group. This implies that if the

entire cluster is functioning correctly, with the

exception of a single node, all requests served by the

faulty replica group will experience poor performance.

It is important to note that any scheme requiring
synchronous replies from a fixed set of nodes will

experience negative performance coupling – namely,

performance is limited by the slowest in the group.

Issue more writes than necessary and wait for a few of

them to return. By issuing a write to more replicas

than are required, we avoid performance coupling

caused by faulty nodes. Say bricks A, B, C compose

the write group for a given write of key X, and B is

faulty or overloaded. If WQ is set to 2, the faulty node

does not hamper performance of the higher-level

request. This is especially important since the replica

group for key X changes on each write – if we do not

issue the write to more bricks than necessary, in the

presence of a faulty brick, eventually all keys will

experience poor performance at one point or another.

The ratio of the tunable parameters WQ to W allows

the administrator to determine the performance/cost

tradeoff.

Interesting properties of solution:
 An interesting property is a negative feedback loop

involving the stubs and bricks. For example, let W be 3,

WQ be 2, and the write group be A, B, C. If B is faulty or

overloaded, A and C will reply first. A subsequent read

will not involve B. In general, B will fail to reply to most

write requests in time. By monitoring the number of

operations handled by a brick, an administrator can detect

and replace faulty nodes.

 If B is temporarily overloaded, it can start shedding

writes, to bring load back to a reasonable level.

Furthermore, since subsequent reads for the state will not

be addressed to B, load is reduced. This may result in

writes failing under high load, but it is often better to shed

load early, as evidenced in Internet workloads.

Related Work:
 A similar mechanism is used in quorum-based systems

[11, 12]. In quorum systems, writes must be propagated to

W of the nodes in a replica group, and reads must be

successful on R of the nodes, where R + W > N, the total

number of nodes in a replica group. A faulty node will

often cause reads to be slow, writes to be slow, or possibly

both. Our solution obviates the need for a quorum system,

since the cookie contains the references to up-to-date

copies of the data; quorum systems are used to compare

versions of the data to determine which copy is the current

copy.

 DDS [4] is very similar to the proposed middle-tier

storage layer. However, one observed effect in DDS is

performance coupling – a given key has a fixed replica

group, and all nodes in the replica group must

synchronously commit before a write completes. DDS also

guarantees persistence, which is unnecessary for session

state. Recovery behavior also exhibits negative cache

HotOS IX: The 9th Workshop on Hot Topics in Operating Systems USENIX Association180

warming effects; when a DDS brick is added to the system,

performance of the cluster first drops (because of cache

warming) before it increases. This effect is not present in

our work, since recovered/new bricks do not serve any read

requests.

 From distributed database research, Directory-Oriented

Available Copies [15] utilizes a directory that must be

consulted to determine what replicas store valid copies of

an object. This involves a separate roundtrip, and the

directory becomes a bottleneck. In our work, we distribute

the directory by sending the directory entries to the

browser, leveraging the fact that for a given key, there is a

single reader/writer.

 We share many of the same motivations as Berkeley

DB [14], which stressed the importance of fast-restart and

treating failure as a normal operating condition, and

recognized that the full generality of databases is

sometimes unneeded.

 The need for graceful degradation upon failure was

recognized in Petal [16]. However, Petal uses chained

declustered; nodes are logically chained, and upon failure

of a node, the node’s predecessor and its successor can

service requests for it. Similar to DDS, Petal allows reads

to be serviced by either a primary or secondary, but writes

must occur at the primary, and data is locked on a write.

Hence Petal shares some of the same disadvantages as

discussed earlier under DDS. Another key difference

between our work and Petal is that although both systems

address storage, we address different levels of the storage

hierarchy. Petal attempts to present the image of virtual

disk to its clients, and hence must maintain and keep

consistent metadata for disk block information; in our

system, we deal with in memory objects, and need not

maintain and keep consistent such metadata.

 There are some interesting settings of W, WQ, and R

that correspond to work done in previous research. Setting

all the variables to 1 is the equivalent of single-copy

memory. Setting W and WQ to 2 is roughly equivalent to

the in-memory replication scheme adopted by BEA, and

setting W to the total number of bricks and R to 1 is the

equivalent of “write all, read any.”

Future Work:
 We hope to explore the effect of faulty or overloaded

bricks on overall performance. We expect that the system

will degrade gracefully in the presence of n faulty bricks

when W > n + WQ.
 An interesting point to investigate is “shooting bricks,”

either for garbage collection, or to restart a brick that is

performing poorly because it has been running too long.

With respect to GC, since session state for a client is

rejuvenated on each request, it may be possible simply

“shoot” bricks that are reaching capacity, and restart them

proactively to avoid garbage collection. A large Internet

portal employs a similar strategy, by proactive rebooting its

web servers to avoid out-of-memory errors caused by

memory leaks. We do not expect rebooting to have a

significant impact on performance of the system, given a

sufficient number of bricks and an appropriate setting for

WQ.
 We hope to investigate the effects of the ratio of W to

WQ and how performance is affected. We expect that as W

grows larger than WQ that the system will perform without

bottlenecks, until system capacity is reached.

Conclusion:
 This paper argues for a new middle-tier storage layer

that handles session state. We believe the storage system

avoids the pitfalls of previous solutions, in particular, poor

failure/recovery behavior and performance coupling.

References:
[1] Sun Microsystems. Java2 EnterpriseEdition. http://java.sun.com/j2ee/.

[2] U. Singh. Personal communication. E.piphany, 2002.

[3] C.G. Gray and D. R. Cheriton. Leases: An efficient fault-tolerant

mechanism for distributed file cache consistency. In Proceedings of the

12th ACM Symposium on Operating Systems Principles, pages 2002-210,

Litchfield Park, AZ, 1989.

[4] S. Gribble, E. Brewer, J. M. Hellerstein, and D. Culler. Scalable,

distributed data structures for iIternet service construction. In

Proceedings of the 4th USENIX Symposium on Operating Systems Design

and Implementation, San Diego, CA, Oct. 2000.

[5] D. Jacobs. Distributed Computing with BEA WebLogic server. In

Proceedings of the Conference on Innovative Data Systems Research,

Asilomar, CA, Jan. 2003.

[6] D. Jacobs. Personal communication, BEA Systems, December 2002.

[7] J. Gray. The Transaction Concept, Virtues and Limitations. In

Proceedings of VLDB, Cannes, France, Sept 1981.

 [9] Network Appliance. http://www.networkappliance.com.

[10] William D. Clinger and Lars T. Hansen. Generational garbage

collection and the radioactive decay model. SIGPLAN Notices,

32(5):97—108. Proceedings of the ACM SIGPLAN '97 Conference on

Programming Language Design and Implementation, May 1997.

[11] Robert H. Thomas: A Majority Consensus Approach to Concurrency

Control for Multiple Copy Databases. TODS 4(2): 180-209(1979)

[12] David K. Gifford: Weighted Voting for Replicated Data. Proceedings

7th Symposium on Operating Systems Principles: 150-162, 1979.

[13] G. Candea and A. Fox, Crash-Only Software, Submitted to HotOS

2003.

[14] M. Seltzer and M. Olson. Challenges in embedded database system

administration. In Proceeding of the Embedded System Workshop, 1999.

Cambridge, MA

 [15] Concurrency Control and Recovery in Database Systems, by P.A.

Bernstein, V. Hadzilacos and N. Goodman.

[16] Petal, Distributed Virtual Disks, Edward K. Lee and Chandramohan

A. Thekkath. In Proceedings of the Seventh International Conference on

Architectural Support for Programming Languages and Operating

Systems (Cambridge, MA, 1996), pp. 84--92.

