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Abstract 
 This paper motivates the need for a session state 

storage layer.  Session state is used in a large class of 

applications.  Existing session state storage solutions often 

rely on ad-hoc choices such as databases or file systems, 

and exhibit various drawbacks such as poor 

failure/recovery behavior or poor performance, often 

because the solutions are too general.  We present a design 

for a simple, fast, scalable, and fault-tolerant session state 

store that we believe accurately addresses the needs of 

session state retrieval, while avoiding the drawbacks of 

existing solutions.  
 

Introduction 
 The concept of a user session is present in nearly all 

client-facing applications, including web-based 

applications.  A user actively works for a period of time, 

called a session, until he signs out, or his session expires 

after a fixed interval.  During the session, the application 

may produce temporary data relevant to the user’s session, 

e.g. which step the user has completed in the application 

workflow.  Upon session completion, the temporary state is 

no longer needed.   

 Session state is state whose lifetime is the duration of a 

user session and is relevant to a particular user; the duration 

of a user session is application specific. Examples of 

session state are user workflow state in enterprise software 

and user navigation in eCommerce.   

 Many architectures have modules that produce and use 

session state, including emerging industry standards such 

as J2EE[1].  Regardless of architecture, session state and its 

storage is a building block that is useful.  Session state is a 

large class of state, as there are many different types of data 

that can be generated and used depending on the 

application at hand.  In this paper, we focus on an 

interesting subset of session state, with distinct 

requirements and properties, which we describe in the 

upcoming sections. 

 In Section 1, we present an example of how session 

state is used.  Next, we discuss the requirements and 

properties for the subset of session state that we address, 

and discuss the functionality that is necessary to provide a 

session state store, also highlighting what is not necessary.  

We then discuss current solutions and why they are 

inadequate.  We propose a “middle-tier” storage layer to 

address session state.  We discuss future work and related 

work, and conclude. 
 

1. What is session state? 
 In Section 1, we describe a large subcategory of 

session state by describing how it is used, its properties, the 

requirements it imposes on its storage, as well as the 

functionality required to support it.  Various different 

categories of session state exist. However, in the remainder 

of this paper, we will use the term “session state” to refer to 

the subcategory of session state which we describe below. 

 We use the example of a user working on a web-based 

marketing application to illustrate how session state is often 

used. The user is building a marketing campaign, 

specifying target customers and the offers they should 

receive.   

 A large class of applications, including J2EE-based 

and web apps in general, use the interaction model below: 

¶ User submits a request (to add a targeted 

customer), request is routed to a stateless 

application server.  This server is often referred to 

as the middle-tier. 

¶ Application server retrieves the full session state 

for user (which includes the campaign data). 

¶ Application server runs application logic (adds a 

customer to the targeted set of customers) 

¶ Application server writes out entire session state  

¶ Results are returned to the user’s browser 

 

 Session state must be present on each interaction, since 

user context or workflow is stored in session state.  If it is 

not, the user’s workflow and context is lost, which is seen 

as an application failure to the end user, and is usually 

unacceptable from a product requirement standpoint.  

Session state, in this context, includes any temporary 

application state that is associated with a single user; the 

loss of this state is akin to losing a few hours work.  

 Typically, session state is on the order of 3K-200K [2].  

Session state retrieval is also in the critical path of the 

control path – processing of the request cannot continue 

unless session state has been retrieved. 

 These requirements imply that session state solutions 

should have the following properties, besides traditional 

properties such as availability, scalability, performance: 

¶ Session state retrieval should be fast, or negligible 

when compared to application processing  

¶ Failures of the state store or any of its 

subcomponents should not result in data loss, 

otherwise users perceive an application failure 
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¶ Recovery of the state store and its failed 

subcomponents should be fast, for the same reason 

 

 Some important properties/qualities of the session state 

we focus on are listed below.  Session state: 

1. Is not shared. Each user reads his own state. 

Unlike state in its full generality, session state is 

accessed in a fixed pattern of alternating reads and 

writes:  Read 1 of session state for user U is 

followed by Write 1, which is followed by Read 2, 
followed by Write 2.   

2. Is semi-persistent. Session state must be present 

for a fixed interval T, but can be deleted after T 

has elapsed. 

3. Is keyed to a particular user.  An advanced 

query mechanism to do arbitrary searches is not 

needed. 

4. Is updated on every interaction. Session state 

such as user context in a web-based application is 

updated in its entirety on every interaction, as 

described earlier.  A new copy of the state is 

written on every interaction. 

5. Does not need ACID [7] semantics.  Session 

state is transient, and state that requires 

transactions is not included in the class of session 

state we address. 

 

Given these properties, the functionality necessary for 

a session state store can be greatly simplified (each point 

corresponds to an entry in the previous numbered list): 

1. No synchronization is needed. Since the access 

pattern corresponds to an access of a single user 

making serial requests, no conflicting accesses 

exist, and hence race conditions on state access 

are avoided, which implies that locking is not 

needed. 

2. State stored by the repository need only be 

semi-persistent –  a temporal, lease-like [3] 

guarantee is sufficient, rather than the “durable” 

guarantee that is made in ACID [7]. 

3. Single-key lookup API is sufficient.  Since state 

is keyed to a particular user and is only accessed 

by that user, a general query mechanism is not 

needed. 

4. Previous values of state keyed to a particular 

user may be discarded.  
5. No need to support full ACID – only atomic 

update is necessary; since each write writes out all 

of the user’s session state, consistency is trivial 

and isolation is guaranteed.  Durability is not 

needed. 
 

Existing solutions and why they are inadequate 
 Currently, session state storage is done with one of the 

following mechanisms: Relational Database (DB), file 

system (FS), single-copy in-memory, replicated in-

memory. 

Frequently, enterprises use either the DB or FS to store 

session state, often reasoning, “I already have a DB and FS, 

why don’t I just use one of them to store session state?” 

This simplifies management, since only one type of 

administrator is needed.   However, there are several 

drawbacks to using either a DB or FS to handle session 

state, besides the costs of additional licenses and 

complexity of administration:   

 D1 Contention. Unless a separate DB/FS is created 

for session state, requests for session state and 

requests for persistent objects contend for the 

same resources.  Session state read/write requests 

are frequent, which can interfere with requests for 

persistent objects that are housed by the same 

physical resource.  

 D2 Failure and recovery is expensive. If a crash 

occurs, recovery of the DB or FS may be slow, 

often on the order of minutes or even hours.  

Recovery time for a DB can be reduced if 

checkpointing is done frequently, but reduces 

performance under normal operation. There exist 

DB/FS solutions that have fast recovery, but these 

tend to be quite costly [9].  Even if recovery is on 

the order of seconds, in a large scale application, 

hundreds or thousands of users may see a failure if 

they attempt to contact the server at time of 

recovery. 

 D3 Session cleanup is painful. After state is put into 

a DB or FS, some process has to come back and 

look at the data and expire it, or else the data 

continues growing without bound.  Reclaiming 

expired sessions degrades performance of other 

requests to the DB or FS. 

 D4 Potential performance problems.  

Reading/writing state objects to a DB/FS may 

sometimes incur a disk access in addition to a 

network roundtrip. 

 

 On the other hand, in-memory solutions (IMS) avoid 

several of the drawbacks of FS and DB, and are generally 

faster than FS/DB oriented solutions.  In-memory solutions 

rely on affinity, and require a user to “stick” to a particular 

server that stores his copy of session state.  A hardware 

load-balancer can guarantee affinity.  However, the app-

processing tier is no longer stateless; session state is being 

stored by the application server; it must serve the dual roles 

of application processing as well as providing state storage.  

Affinity is a key property for in-memory solutions to 

operate well – the main advantage of storing state in 

memory is to avoid a network roundtrip to the DB. If no 

affinity is present, then a server must incur a roundtrip to 

pass the request to the appropriate server.  Affinity limits 

load balancing options, since load balancing must be done 

on the granularity of a user, rather than that of a request. 

 When only a single copy of a user’s session state is 

stored on a corresponding application server, if a server 

crashes, state for some users is lost.  The crash will be 

•
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manifested to users as an app failure, which is usually 

unacceptable. 

 A primary-secondary scheme is often used for a 

replicated solution.  In BEA WebLogic™ [5], a J2EE 

application server, servers are given unique IDs and form a 

logical ring. A server S elects the server T that trails S in 

the logical ring to be its secondary.  All users who are 

pinned to S as a primary share T as a secondary.  A cookie 

is written out to the user’s browser designating the primary 

and secondary. 

 During normal operation, all updates to session state 

are synchronously written, first at the primary, and then 

synchronously replicated at the secondary. 

 On failure of S, WebLogic™ does one of the 

following, depending on configuration.   

1. A subsequent request destined for S is assigned to 

a random server U, because the load balancer 

recognizes the failure of S.  U will copy the state 

information from the secondary T, and then 

rewrite the user’s cookie, designating U as the 

new primary and T as the secondary. 

2. A subsequent user request destined for S is 

assigned to the secondary T, because the software 

load balancer recognizes the failure of S.  T will 

designate itself as the primary, replicate the 

session state information to its secondary V, and 

then rewrite the user’s cookie, designating T as the 

new primary and V as the secondary. 

 

There are several potential problems in this scheme 

(Note that some of the deficiencies of DB/FS solutions are 

shared by WebLogic™, as mentioned below): 

 D5  Performance is degraded on secondaries. D5 is 

related to D1.  Instead of only providing 

application processing, secondary application 

servers face contention from session state updates.  

 D6 Recovery is more difficult (special case code for 

failure and recovery). The middle-tier is now 

stateful, which makes recovery more difficult.  

Special-case failure recovery code is necessary.  

In Case 1, a server A receiving a valid cookie 

stating that B as primary and C as secondary must 

realize that it must now become primary since B 

failed, and in Case 2, a secondary must realize that 

it should now become the primary. Special-case 

code makes the overall system harder to reason 

about, harder to maintain and less elegant.  

 D7 Poor failure/recovery performance for Case 2.  
Assuming equal load across all servers, upon 

failure of a primary A, the secondary B will have 

to serve double load – B must act as primary for 

all of A’s requests as well as its own.  Similar 

logic applies to B’s secondary, which experiences 

twice the secondary load. 

 D8 Lack of separation of concerns. The application 

server now provides state storage, in addition to 

application logic processing.  These two are very 

different functions, and a system administrator 

should be able to scale each separately.  

 D9 Performance coupling. If a secondary is 

overloaded, then users contacting a primary for 

that secondary will experience poor performance 

behavior as well.  Because of the synchronous 

nature of updates from primary to secondary, if 

the secondary is overloaded, e.g. from faulty 

hardware or user load, the primary will have to 

wait for the secondary before returning to the user, 

even if the primary is under-loaded [4]. An 

industry expert has confirmed that this is indeed a 

drawback [6]. 

 

 Note that any replication scheme requiring 

synchronous updates will necessarily exhibit performance 

coupling.  That is, whenever a secondary is slow for any 

reason, any primary served by that secondary will block.  

In Case 1, after a failure of a single server, the entire cluster 

should be coupled, if we assume that the load balancer load 

balances correctly.  To be specific, each request for S will 

be assigned to a random server U, and all of the nodes in 

the cluster will be performance coupled to the secondary T.  

This is particularly worrisome for large clusters, where 

node failures are more likely because of the number of 

nodes.  Furthermore, application servers often use shared 

resources such as thread pools, and slowness in the 

secondary will hold resources in the primary for longer 

than necessary. 
 

Proposed solution: A “middle-tier storage” layer 
 The support of industry in J2EE, together with the 

special qualities of session state and the failure of current 

solutions to address it properly, presents a viable 

opportunity to innovate and explore new state storage 

solutions.  We present a solution that focuses on the 

following principles: 

P1 Avoid special case recovery code. This addresses 

deficiencies D2 and D6. Avoiding special case 

recovery code reduces total cost of ownership, by 

facilitating easier administration and allowing 

programmers to reason about the system more easily, 

since the “special failure case” is not special, but rather 

the normal case [13]. 

P2 Design for separation of concerns. A system 

administrator should be able to scale the DB/FS 

separately from the session state store, and scale the 

session state store separately from the application 

processing tier. This addresses D1 D5, and D8. 

P3 Session cleanup should be easy, and not require extra 

work.  This addresses D3. 

P4 Graceful degradation upon failure. Unnecessary 

performance degradation effects should not be seen, 

such as cache warming effects in DDS [4], and uneven 

load distribution in BEA. This addresses D7. 

P5 Avoid performance coupling, as seen in DDS and 

which is present in the in-memory replication scheme. 

This addresses D9. 
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In addition, the system should be able to tolerate N 

simultaneous faults, where N is configurable by the system 

administrator.  Unless N simultaneous faults occur, the 

system should continue operating correctly. 

We assume a physically secure and well-administered 

cluster, along with a commercially-available high 

throughput, low latency redundant system area network 

(SAN) that can achieve high throughput with extremely 

low latency.  High redundancy in the SAN enables us to 

assume that the probability of a network partition is 

arbitrarily small, and we need not consider network 

partitions.  An uninterruptible power supply reduces the 

probability of a system-wide simultaneous hardware 

outage. The middle-tier storage has two components: bricks 

and stubs.   

A brick stores session state objects by using a hash 

table.  Each brick sends out periodic beacons to indicate 

that it is alive.   

The stub is used by applications to read and write 

session state.  The stub interfaces with the bricks to store 

and retrieve session state.  Each stub also keeps track of 

which bricks are currently alive. 
 

 
Figure 1 

 

 The write interface exported by the stub to the 

application is Write(HashKey H, Object v, 

Expiry E) and returns a cookie as the result of a 

successful write, or throws an exception if the write fails.  

The returned cookie should be stored on the client. The 

read interface is Read(Cookie C)and returns the last 

written value for hash key H, or throws an exception if the 

read fails. If a read/write returns to the application, then it 

means the operation was successful.  On a read, we 

guarantee that the returned value is the most recently 

written value (recall that the type of session state we are 

dealing with is accessed serially by a single user). 

 The stub propagates write and read requests to the 

bricks.  Before we describe the algorithm describing the 

stub-to-brick interface, let us define a few variables. 

 Call W the write group size.  A stub will attempt to 

write to W of the bricks, and read from R bricks. Define 

WQ as the write quota, which is the minimum number of 

bricks that must return “success” to the stub before the stub 

returns to the calling application. We use the term quota to 

avoid confusion with the term quorum; quorums are 

discussed in section on related work. WQ – 1 is the number 

of simultaneous brick failures that the system can tolerate 

before losing data.  Note that 1 Ò WQ Ò W, 1 Ò R, and R Ò 

W.  Lastly, call t the timeout interval, an amount of time 

that the stub waits for bricks to reply to its requests.  

 The stub handles a write by doing the following: 

1. Calculate checksum for object and expiration 

time. 

2. Create a list of bricks L, initially the empty set. 

3. Choose W random bricks, and issue the write of 

{object, checksum, expiry} to each brick. 

4. Wait for WQ of the bricks to return with success 

messages, or until t elapsed.  As each brick 

replies, add its identifier to the set L. 
5. If t has elapsed and the size of L is less than WQ, 

repeat step 3.  Otherwise, continue. 

6. Create a cookie consisting of H, the identifiers of 

the WQ bricks that acknowledged the write, and 

the expiry, and calculate a checksum for the 

cookie. 

7. Return the cookie to the caller. 

 

The stub propagates the read to the bricks: 

1. Verify the checksum on the cookie. 

2. Issue the read to R random bricks chosen from the 

list of WQ bricks contained in the cookie. 

3. Wait for 1 of the bricks to return, or until t 

elapses. 
4. If the timeout has elapsed and no response has 

been returned, repeat step 2.  Otherwise, continue. 

5. Verify checksum and expiration.  If checksum is 

invalid, repeat step 2. Otherwise continue. 

6. Return the object to the caller. 

  

The set of bricks that have the most recent write for 

key X changes on each write.  While omitted in the 

algorithm for simplicity, a second-level timeout can be 

added for the case when writes/reads to the stubs 

continually time out; an exception can be thrown when this 

occurs. 

For garbage collection of bricks, we use a method seen 

in generational garbage collectors [10].  Earlier we 

described each brick as having one hash table, for 

simplicity.  In reality, it has a set of hash tables; each hash 

table has an expiration. A brick handles writes by putting 

state into the table with the closest expiration time after the 

state’s expiration time.  For a read, the stub also sends the 

key’s expiration time, so the brick knows which table to 

look in.  When a table’s expiration has elapsed, it is 

discarded, and a new one is added in its place with a new 

expiration.    
 

What happens on failure? 

 If a node cannot communicate with another, we 

assume it is because the other node has stopped executing.  

As discussed earlier, we assume that a network partition is 

not possible.  We assume that components are fail-stop. 

 On failure of a client, the user perceives the session as 

lost, i.e. if the OS crashes, a user does not expect to be able 

to resume his interaction with a web application. 

AppServer 
S
T
U
B 

SAN 

Brick1 

Brick2 

BrickN 

AppServer 
S
T
U
B 

Middle-Tier (App Logic) Middle-Tier Storage 
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 On failure of an application server, a simple restart of 

the server is sufficient since it is stateless.  The stub on the 

server detects existing bricks from the beacons and can 

reconstruct the table of bricks that are alive. The stub can 

immediately begin handling read and write requests. 

 On failure of a brick, a simple restart of the brick is 

necessary.  All state on that brick is lost; however, the state 

is replicated on (WQ – 1) other bricks, and so no data is 

lost.  Furthermore, on a subsequent write of that data, WQ 

copies are made, and the system can once again tolerate 

(WQ – 1) faults without losing data. 

 An elegant side effect of having simple recovery is that 

clients, servers, and bricks can be added to a production 

system to increase capacity.  For example, adding an extra 

brick to an already existing system is easy. Initially, the 

new brick will not service any read requests since it will 

not be in the read group for any requests.  However, it will 

be included in new write groups because when the stub 

detects that a brick is alive, the brick is a candidate for a 

write. Over time, the new brick will receive an equal load 

of read/write traffic as the existing bricks. 

 When the system is under high load, and latency 

exceeds t, new requests will be generated while old ones 

have not yet been serviced, potentially increasing the load 

even more.  To address this, bricks can discard a request if t 
has elapsed by the time the brick begins processing it.  

Secondly, we insert a random exponentially delay between 

each retry. 
 

Middle-tier storage vs. design principles 

We believe the design of this middle-tier storage 

system achieves the design principles outlined, and avoids 

the drawbacks of previous solutions while achieving good 

performance and exhibiting good failure/recovery behavior. 

 

P1 Avoid special case recovery code.  The system as 

described has no special case recovery code. 

P2 Allow for separation of concerns.  A middle-tier 

storage layer can be scaled separately from persistent 

storage usage and separately from application 

processing. 

P3 Session cleanup is easy.  Bricks can easily expire 

session by removing them from the hash.  No extra 

process to scrub old data is needed. 

P4 Node failure results in graceful degradation.  Since 

multiple copies are available for any given write, a 

single node failure does not affect correctness, only the 

capacity of the system.  Furthermore, multiple node 

failures do not affect correctness as long as the number 

of simultaneous failures is less than WQ. 

P5 Performance coupling is avoided by two strategies: 

Change the brick replica group on each write.  In 

schemes where a key is mapped to a fixed set of 

replicas (i.e. Key X is always mapped to replicas A, B, 

and C), performance for key X is limited by the 

slowest in the replica group.  This implies that if the 

entire cluster is functioning correctly, with the 

exception of a single node, all requests served by the 

faulty replica group will experience poor performance.  

It is important to note that any scheme requiring 
synchronous replies from a fixed set of nodes will 

experience negative performance coupling – namely, 

performance is limited by the slowest in the group. 

 

Issue more writes than necessary and wait for a few of 

them to return.  By issuing a write to more replicas 

than are required, we avoid performance coupling 

caused by faulty nodes.  Say bricks A, B, C compose 

the write group for a given write of key X, and B is 

faulty or overloaded.  If WQ is set to 2, the faulty node 

does not hamper performance of the higher-level 

request.  This is especially important since the replica 

group for key X changes on each write – if we do not 

issue the write to more bricks than necessary, in the 

presence of a faulty brick, eventually all keys will 

experience poor performance at one point or another.   

 

The ratio of the tunable parameters WQ to W allows 

the administrator to determine the performance/cost 

tradeoff.  
 

Interesting properties of solution: 
 An interesting property is a negative feedback loop 

involving the stubs and bricks. For example, let W be 3, 

WQ be 2, and the write group be A, B, C. If B is faulty or 

overloaded, A and C will reply first.  A subsequent read 

will not involve B.  In general, B will fail to reply to most 

write requests in time. By monitoring the number of 

operations handled by a brick, an administrator can detect 

and replace faulty nodes. 

 If B is temporarily overloaded, it can start shedding 

writes, to bring load back to a reasonable level.  

Furthermore, since subsequent reads for the state will not 

be addressed to B, load is reduced.  This may result in 

writes failing under high load, but it is often better to shed 

load early, as evidenced in Internet workloads. 
 

Related Work: 
 A similar mechanism is used in quorum-based systems 

[11, 12].  In quorum systems, writes must be propagated to 

W of the nodes in a replica group, and reads must be 

successful on R of the nodes, where R + W > N, the total 

number of nodes in a replica group. A faulty node will 

often cause reads to be slow, writes to be slow, or possibly 

both.  Our solution obviates the need for a quorum system, 

since the cookie contains the references to up-to-date 

copies of the data; quorum systems are used to compare 

versions of the data to determine which copy is the current 

copy.  

 DDS [4] is very similar to the proposed middle-tier 

storage layer.  However, one observed effect in DDS is 

performance coupling – a given key has a fixed replica 

group, and all nodes in the replica group must 

synchronously commit before a write completes.  DDS also 

guarantees persistence, which is unnecessary for session 

state. Recovery behavior also exhibits negative cache 
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warming effects; when a DDS brick is added to the system, 

performance of the cluster first drops (because of cache 

warming) before it increases.  This effect is not present in 

our work, since recovered/new bricks do not serve any read 

requests. 

 From distributed database research, Directory-Oriented 

Available Copies [15] utilizes a directory that must be 

consulted to determine what replicas store valid copies of 

an object.  This involves a separate roundtrip, and the 

directory becomes a bottleneck.  In our work, we distribute 

the directory by sending the directory entries to the 

browser, leveraging the fact that for a given key, there is a 

single reader/writer.  

 We share many of the same motivations as Berkeley 

DB [14], which stressed the importance of fast-restart and 

treating failure as a normal operating condition, and 

recognized that the full generality of databases is 

sometimes unneeded. 

 The need for graceful degradation upon failure was 

recognized in Petal [16].  However, Petal uses chained 

declustered; nodes are logically chained, and upon failure 

of a node, the node’s predecessor and its successor can 

service requests for it.  Similar to DDS, Petal allows reads 

to be serviced by either a primary or secondary, but writes 

must occur at the primary, and data is locked on a write. 

Hence Petal shares some of the same disadvantages as 

discussed earlier under DDS. Another key difference 

between our work and Petal is that although both systems 

address storage, we address different levels of the storage 

hierarchy.  Petal attempts to present the image of virtual 

disk to its clients, and hence must maintain and keep 

consistent metadata for disk block information; in our 

system, we deal with in memory objects, and need not 

maintain and keep consistent such metadata. 

 There are some interesting settings of W, WQ, and R 

that correspond to work done in previous research.  Setting 

all the variables to 1 is the equivalent of single-copy 

memory.  Setting W and WQ to 2 is roughly equivalent to 

the in-memory replication scheme adopted by BEA, and 

setting W to the total number of bricks and R to 1 is the 

equivalent of “write all, read any.” 
  

Future Work: 
 We hope to explore the effect of faulty or overloaded 

bricks on overall performance.  We expect that the system 

will degrade gracefully in the presence of n faulty bricks 

when W > n + WQ.   
 An interesting point to investigate is “shooting bricks,” 

either for garbage collection, or to restart a brick that is 

performing poorly because it has been running too long.  

With respect to GC, since session state for a client is 

rejuvenated on each request, it may be possible simply 

“shoot” bricks that are reaching capacity, and restart them 

proactively to avoid garbage collection.  A large Internet 

portal employs a similar strategy, by proactive rebooting its 

web servers to avoid out-of-memory errors caused by 

memory leaks. We do not expect rebooting to have a 

significant impact on performance of the system, given a 

sufficient number of bricks and an appropriate setting for 

WQ. 
 We hope to investigate the effects of the ratio of W  to 

WQ and how performance is affected.  We expect that as W 

grows larger than WQ that the system will perform without 

bottlenecks, until system capacity is reached.   
 

Conclusion: 
 This paper argues for a new middle-tier storage layer 

that handles session state.  We believe the storage system 

avoids the pitfalls of previous solutions, in particular, poor 

failure/recovery behavior and performance coupling. 
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