
USENIX Association

Proceedings of
HotOS IX: The 9th Workshop on
Hot Topics in Operating Systems

Lihue, Hawaii, USA
May 18–21, 2003

THE ADVANCED COMPUTING SYSTEMS ASSOCIATION

© 2003 by The USENIX Association All Rights Reserved For more information about the USENIX Association:

Phone: 1 510 528 8649 FAX: 1 510 548 5738 Email: office@usenix.org WWW: http://www.usenix.org
Rights to individual papers remain with the author or the author's employer.

 Permission is granted for noncommercial reproduction of the work for educational or research purposes.
This copyright notice must be included in the reproduced paper. USENIX acknowledges all trademarks herein.

HotOS IX: The 9th Workshop on Hot Topics in Operating SystemsUSENIX Association 73

The Phoenix Recovery System:
Rebuilding from the ashes of an Internet catastrophe

Flavio Junqueira Ranjita Bhagwan Keith Marzullo Stefan Savage Geoffrey M. Voelker
Department of Computer Science and Engineering

University of California, San Diego

1 Introduction

The Internet today is highly vulnerable to Internet catas-
trophes: events in which an exceptionally successful In-
ternet pathogen, like a worm or email virus, causes data
loss on a significant percentage of the computers con-
nected to the Internet. Incidents of successful wide-scale
pathogens are becoming increasingly common on the In-
ternet today, as exemplified by the Code Red and re-
lated worms [6], and LoveBug and other recent email
viruses [11]. Given the ease with which someone can aug-
ment such Internet pathogens to erase data on the hosts
that they infect, it is only a matter of time before Internet
catastrophes occur that result in large-scale data loss.

In this paper, we explore the feasibility of using data re-
dundancy, a model of dependent host vulnerabilities, and
distributed storage to tolerate such events. In particular,
we motivate the design of a cooperative, distributed re-
mote backup system called the Phoenix recovery system.
The usage model of Phoenix is straightforward: a user
specify an amount � of bytes from its disk space the sys-
tem can use, and the goal of the system is to protect a pro-
portional amount ��� of its data using storage provided
by other hosts.

In general, to recover the lost data of a host that was a
victim in an Internet catastrophe, there must be copies of
that data stored on a host or set of hosts that survived the
catastrophe. A typical replication approach [10] creates �
additional replicas if up to � copies of the data can be lost
in a failure. In our case, � would need to be as large as the
largest Internet catastrophe. As an example, the Code Red
worm infected over 359,000 computers, and so � would
need to be larger than 359,000 for hosts to survive a sim-
ilar kind of event. Using such a large degree of replica-
tion would make cooperative remote backup useless for at
least two reasons. First, the amount of data each user can
protect is inversely proportional to the degree of replica-
tion, and with such a vast degree of replication the system
could only protect a minuscule amount of data per user.
Second, ensuring that such a large number of replicas are
written would take an impractical amount of time.

Our key observation that makes Phoenix both feasi-
ble and practical is that an Internet catastrophe, like any
large-scale Internet attack, exploits shared vulnerabilities.

Hence, users should replicate their data on hosts that do
not have the same vulnerabilities. That is, the repli-
cation mechanism should take the dependencies of host
failures—in this case, host diversity—into account [5].
Hence, we formally represent host attributes, such as its
operating system, web browser, mail client, web server,
etc. The system can then use the attributes of all hosts in
the system to determine how many replicas are needed to
ensure recoverability, and on which hosts those replicas
should be placed, to survive an Internet catastrophe that
exploits one of its attributes. For example, for hosts that
run a Microsoft web server, the system will avoid plac-
ing replicas on other hosts that run similar servers so that
the replicas will survive Internet worms that exploit bugs
in the server. Such a system could naturally be extended
to tolerate simultaneous catastrophes using multiple ex-
ploits, although at the cost of a reduced amount of recov-
erable data that can be stored. Using a simulation model
we show that, by doing informed placement of replicas, a
Phoenix recovery system can provide highly resilient and
available cooperative backup with low overhead.

In the rest of this paper, we discuss various approaches
for tolerating Internet catastrophes and motivate the use
of a cooperative, distributed recovery system like Phoenix
for surviving them. Section 3 then describes our model for
dependent failures and how we apply it to tolerate catas-
trophes. In Section 4, we explore the design space of the
amount of available storage in the system and the redun-
dancy required to survive Internet catastrophes under var-
ious degrees of host diversity and shared vulnerabilities.
We then discuss system design issues in Section 5. Fi-
nally, Section 6 concludes the paper.

2 Motivation

Backups are a common way to protect data from being
lost as a result of a catastrophe. We know of three ap-
proaches to backup.

Local backup is the most common approach for recov-
ering from data loss, and it has many advantages. Users
and organizations have complete control over the amount
and frequency with which data is backed up. Further-
more, tape and optical storage are inexpensive, high ca-
pacity devices. However, large organizations that have

HotOS IX: The 9th Workshop on Hot Topics in Operating Systems USENIX Association74

large amounts of data have to employ personnel to pro-
vide the backup service. Individual home users often do
not use it because of the time and hassle of doing so, caus-
ing home systems to be highly vulnerable to exploit and
potential data loss.

Another approach is to use a commercial remote backup
service, such as DataThought Consulting [4] or Protect-
Data.com [9]. This approach is convenient, yet expensive.
Currently, automatic backup via a modem or the Internet
for 500MB of data costs around $30-$125 a month.

Cooperative remote backup services provide the con-
venience of a commercial backup service but at a more
attractive price. Instead of paying money, users relinquish
a fraction of their computing resources (disk storage, CPU
cycles for handling requests, and network bandwidth for
propagating data). pStore [1] is an example of such a ser-
vice. However, its primary goal is to tolerate local failures
such as disk crashes, power failures, etc. Pastiche [2] also
provides similar services, while trying to minimize stor-
age overhead by finding similarities in data being backed
up. Its aim is also to guard against localized catastrophes,
by storing one replica of all data in a geographically re-
mote location.

We believe that a cooperative, distributed system is a
compelling architecture for providing a convenient and
effective approach for tolerating Internet catastrophes. It
would be an attractive system for individual Internet users,
like home broadband users, who do not wish to pay for
commercial backup service or do not want the hassle of
making their own local backups frequently. Users of
Phoenix would not need to exert any significant effort to
backup their data. Specifying what data to protect can
be made as easy as specifying what data to share on a
file sharing peer-to-peer system. Further, a cooperative
architecture has little cost in terms of time and money; in-
stead, users relinquish a small fraction of their computer
resources to gain access to a highly resilient backup ser-
vice. A user specifies an amount � of bytes from its disk
space to be used by the system, and the system would pro-
tect a proportional amount ��� of its data. We observe
that the value � depends on the host diversity, and can dif-
fer among the hosts. In addition, the system would limit
the network bandwidth and CPU utilization to minimize
the impact of the service on normal operation.

To our knowledge, Phoenix is the first effort to build a
cooperative backup system resilient to wide-scale Internet
catastrophes.

3 Taking Advantage of Diversity

Traditionally, reliable distributed systems are designed us-
ing the threshold model: out of � components, no more
than � � � are faulty at any time. Although this model

can always be applied when the probability of having a
total failure is negligible, it is only capable of expressing
the worst-case failure scenario, and it is best suited when
failures are independent and identically distributed. The
worst-case, however, can be one in which the failures of
components are highly correlated.

Failures of hosts in a distributed system can be corre-
lated for several reasons. Hosts may run the same code
or be located in the same room, for example. In the for-
mer case, if there is a vulnerability in the code, then it can
be exploited in all the hosts executing the target software.
In the latter case, a power outage can crash all machines
plugged into the same electrical circuit.

As a first step towards the design of a cooperative
backup system for tolerating catastrophes, we need a con-
cise way of representing failure correlation. We use the
core abstraction to represent correlation among host fail-
ures [5]. A core is a reliable minimal subset of compo-
nents: the probability of having all hosts in a core fail-
ing is negligible, for some definition of negligible. In a
backup system, a core corresponds to the minimal replica
set required for resilience.

Determining the cores of a system depends on the fail-
ure model used and the desired degree of resilience for the
system. The failure model prescribes the possible types
of failures for components. These types of failures de-
termine how host failures can be correlated. In our case,
hosts are the components of interest and software vulner-
abilities are the causes of failures. Consequently, hosts
executing the same piece of software present high failure
correlation. This information on failure correlation is not
sufficient, however, to determine the cores of a system. It
also depends on the desired degree of resilience. As one
increases the degree of resilience, more components are
perhaps necessary to fulfill the core property stated above.

To reason about the correlation of host failures, we as-
sociate attributes to hosts. The attributes represent char-
acteristics of the host that can make it prone to failures.
For example, the operating system a host runs is a point
of attack: an attack that targets Linux is less likely to be
effective against hosts running Solaris, and is even less ef-
fective against hosts running Windows XP. We could rep-
resent this point of attack by having an �-ary attribute that
indicates the operating system, where the value of the at-
tribute is 0 for Linux, 1 for Windows XP, 2 for Solaris,
and so on. Throughout this paper, we use � as the set of
attributes that characterize a host.

To illustrate the concepts introduced in this section,
consider the system described in Example 3.1. In this sys-
tem, hosts are characterized by three attributes and each
attribute has two possible values. We assume that hosts
fail due to crashes caused by software vulnerabilities, and
at most one vulnerability can be exploited at a time. Note

HotOS IX: The 9th Workshop on Hot Topics in Operating SystemsUSENIX Association 75

that the cores shown in the example have maximum re-
silience according to the given set of attributes.

Example 3.1 :
Attributes: Operating System = �Unix, Windows�;

Web Server = �Apache, IIS�;
Web Browser = �IE, Netscape�.

Hosts: �� � �Unix, Apache, Netscape�;
�� � �Windows, IIS, IE�;
�� � �Windows, IIS, Netscape�;
�� � �Windows, Apache, IE�.

Cores � ������ �������.

There are a few interesting facts to be observed about
Example 3.1. First, �� and �� form what we call an
orthogonal core, which is a core composed of hosts that
have different values for every attribute. Note that in this
case the size of the orthogonal core is two because of our
assumption that at most one vulnerability can be exploited
at a time. This implies that it is necessary and sufficient
to have two hosts with different values for every attribute.
Even though it is not orthogonal, ������ is also a core
since it covers all attributes. Second, when choosing a
core for host �� to store replicas of its data, there are two
possibilities: ���� and ������. The second option for
a core is larger than the first. Thus, choosing the second
leads to unnecessary replication. The optimal choice in
terms of storage overhead is therefore ����.

Choosing a smallest core may seem a good choice at
first because it requires fewer replicas. We observe, how-
ever, that such a choice can adversely impact the system.
In environments with highly skewed diversity, the total
capacity of the system may be impacted by always choos-
ing the smallest core1. Back in Example 3.1, �� is the
only host which has some flavor of Unix as the operating
system. Consequently, a core for every other host has to
contain ��. For a small system as the one in the example
this should not be a problem, but it is a potential problem
for large-scale deployments. This raises the question of
how host diversity impacts on storage overhead, storage
load, and resilience. We address this question in the next
section.

4 Host Diversity

We now develop a metric for specifying attribute diversity
among a set of hosts, and a system model for representing
sets of hosts with various degrees of host diversity. We
then use this model to quantify the core sizes, and hence
the amount of replication, required to achieve high de-
grees of resilience to Internet catastrophes under a wide
range of diversities of host vulnerabilities.

1By skewed diversity, we mean a distribution of attribute configura-
tions that is not uniform.

4.1 Diversity and Core Sizes

If one knew the probability of attack for each vulnerabil-
ity, then given a target system resilience one could enu-
merate cores with that target resilience. In our case, it is
not clear how one would determine such probabilities. In-
stead, we define a core 	 for a host
 to be a minimal set of
hosts with the following additional properties: 1)
 � 	;
2) for every attribute � � �, either there is a host in 	
that differs from
 in the value of � or there is no host in
the system that differs from
 in the value of �. Such a
subset of hosts is a core for a host
 if we assume that,
in any Internet catastrophe, an attack targets a single at-
tribute value. Although it is not hard to generalize this
definition to allow for attacks targeted against multiple at-
tribute values, in the rest of this paper we focus on attacks
against a single attribute value.

Smaller cores means less replication, which is desir-
able for reducing storage overhead. A core will contain
between 2 and ��� � � hosts. If the hosts’ attributes are
well distributed, then the cores will be small on average:
for any host
, it is likely that there is a host � that has
different values of each of the attributes, and so
 and �
constitute an orthogonal core. That is, a fair number of or-
thogonal cores are likely to exist. If there is less diversity,
though, then the smallest cores may not be orthogonal for
many hosts, thus increasing storage overhead.

A lack of diversity, especially when trying to keep core
sizes small, can lead to a more severe problem. Suppose
there are � hosts �
��
��

�� and an attribute � such
that all have the same value for �. Moreover, there is only
one host
 that differs in the value of �. A core for each
host
� hence contains
, meaning that
 will maintain
copies for all of the
�. Since the amount of disk space

 donates for storing backup data is fixed, each
 � can
only use ��� of this space. In other words, if
 donates
� bytes for common storage to the system, then each
 �

can back up only ��� bytes. Note that � can be as large
as the number of hosts, and so ��� can be minuscule. In
Example 3.1, host �� is the only one to have a different
value for attribute “Operating System” , and hence has to
store copies for all the other hosts.

Characterizing the diversity of a set of hosts is a chal-
lenging task. In particular, considering all possible dis-
tributions for attribute configurations is not feasible. In-
stead, we define a measure � that condenses the diversity
of a system into a single number. According to our defi-
nition, a system with diversity � is one in which a share
� of the servers is characterized by a share ��� �� of the
combinations of attributes. Although this metric is coarse
and does not capture all possible scenarios, it is expres-
sive enough to enable one to observe how the behavior
of a backup system is affected by skewed diversity. Note
that � is in the interval ��
�� ��. The value � � �
� corre-

HotOS IX: The 9th Workshop on Hot Topics in Operating Systems USENIX Association76

sponds to a uniform distribution, and a value of � close to
1 indicates a highly skewed diversity.

We use this metric to study how storage overhead, stor-
age load, and resilience vary with skew in diversity. We
define the storage overhead of a host
 as the size of the
core that
 uses to backup its data. Host
 maintains
copies for � other hosts. We define the storage load of

 to be such a value �. Note that storage load may vary
among the hosts. Thus, we define the storage load of the
system as the maximum value of � across all the hosts. In
the remainder of this paper, we refer to the storage load of
the system as just storage load. Finally, resilience depends
on the number of attributes covered in a core, and it de-
creases as the number of non-covered attributes increases.
We then define the resilience of the system for a host
 as
the percentage of attributes covered by the core 	 that

uses to backup its data.

The problem of finding a smallest core given a set of
hosts and an attribute configuration for each host, how-
ever, is NP-hard (reduction from SET-COVER). For this
reason, we used a randomized heuristic to find cores. This
heuristic finds a core for a host
 as follows:

1. It tries to find other hosts that have a fully disjoint set
of attributes. If there is more than one host, then it
picks one randomly;

2. If it finds no host in the previous step, then it ran-
domly chooses hosts that have at least one different
attribute until a core is constructed or there are no
hosts left to choose.

This heuristic may not be the best; We have not yet
done a thorough study of heuristics for finding cores. The
results we present below, however, indicates that it is effi-
cient in terms of storage overhead and resilience.

4.2 Modeling Diversity

To better understand the impact of diversity skew, we sim-
ulate a system of hosts with various attributes . On the
Internet, most hosts run some version of Windows with
Internet Explorer as the web browser [8], so we biased
the attribute distribution towards having some fixed sub-
set of attributes. The size of this subset depends on the
value � chosen for the diversity of the system. To see this,
consider a subset of size �. Assuming that each attribute
has � possible values, for such a subset the total number
of distinct configurations is � �����. Thus, there is some
integer �, � � ���, that satisfies the following equation:

������

����
� ��� �� �

����������

����

�
�

��
� ��� �� �

�

����

 (1)

In our simulations, we compute the value of � using
Equation 1, and then pick a subset � � � � of attributes
such that ���� � �. For every attribute � in ��, we fix
the value of � for a fraction � of the hosts. We then ran-
domly choose values for the remaining attributes for this
fraction of hosts. For the remaining hosts, we pick at-
tribute configurations at random, but we make sure that
each configuration is not a configuration of any host in
the first fraction.

4.3 Simulation Results

Figures 1, 2, and 3 show the results of our simulations.
We simulate a system of 1,000 hosts and present results
for two scenarios: 8 attributes with 2 values each (8/2)
and 8 attributes with 4 values each (8/4). The choice of
8 attributes is based upon an examination of the most
targeted categories of software from public vulnerabil-
ity databases, such as [7, 11]. From these databases, we
observed 8 significant software categories and chose this
value as a reasonable parameter for our simulations.

1

2

3

4

5

6

7

0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

C
or

e
S

iz
e

R
es

ili
en

ce

Diversity (f)

Core size Resilience

Figure 1: Core sizes as a function of diversity for 8 at-
tributes, 2 values each.

We chose two different numbers of values per attribute
to 1) explore a worst case and 2) show how core size and
storage load benefit as a result of more fine-grained at-
tribute configurations. The choice of 2 values per attribute
corresponds to the coarsest division of hosts possible (e.g.,
Windows vs. Linux), and represents the worst case in
terms of core size and storage load. We note that no vul-
nerabilities exploited by Internet pathogens have been so
extreme, and that pathogens tend to exploit vulnerabilities
at finer attribute granularities (e.g., Code Red and its vari-
ants exploited a vulnerability in Microsoft IIS running on
Windows NT). The choice of 4 values per attribute rep-
resents a more fine-grained attribute configurations, and
we use it to demonstrate how such configurations signifi-
cantly improve core sizes and reduce storage load.

HotOS IX: The 9th Workshop on Hot Topics in Operating SystemsUSENIX Association 77

1

2

3

4

5

0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
C

or
e

S
iz

e

R
es

ili
en

ce

Diversity (f)

Core size Resilience

Figure 2: Core sizes as a function of diversity for 8 at-
tributes, 4 values each.

We only show the results for one sample generated for
each value of � , as we did not see significant variation
across samples. Figures 1 and 2 show the core size aver-
aged over cores for all of the hosts for different values of
the diversity parameter � . We also include a measure of
resilience that shows whether our algorithm was able to
cover all attributes or not. A point in the resilience curve
is hence the number of covered attributes, averaged over
all hosts, divided by the total number of attributes. Note
that resilience 1.0 means that all attributes are covered.

To show the variability in core size, we include error
bars in the graphs showing the maximum and the mini-
mum core sizes for values of � . The variability in core
size is noticeably high in the 8/2 scenario, whereas it is
lower in the 8/4 scenario. Because there are more con-
figurations available in the 8/4 setting, it is likely that a
host
 finds a host � which has different values for every
attribute even when the diversity is highly skewed.

Regarding the average core size, in the 8/2 scenario,
it remains around 2 for values of � under 0.7, and goes
up to average sizes around 3 for higher values of � . In
either case, storage overhead is low, although it is overall
higher than the average core size for the 8/4 scenario. The
result of adding more attribute values to each attribute is
therefore a reduction in storage overhead. In this scenario,
the average core size remains around 2 for most of the
values of � . It only increases for � � �
���.

It is important to note that there is a drop in resilience
for � � �
��� in both scenarios. Observe that, for such
a value of � , there are 999 hosts sharing some subset � �

of attributes with a fixed value for each attribute and a
single host
 not sharing this subset. As a consequence,
host
 has to be in the core of a host � sharing � �. Host

, however, may not cover all the attributes of �. This
being the case, there are possibly other hosts that cover the
remaining attributes of � that
 does not cover. If there are

no such hosts, then there is no core for � which covers all
attributes. The resilience for this host is therefore lower.

An important question that remains to be addressed is
how much backup data a host will need to store. We ad-
dress this question with the help of Figure 3. In this fig-
ure, the �-axis plots storage load. Thus, if � � ��, for
example, there is a host
 that must be in �� cores given
the core compositions that we computed, and every other
host must be in �� or fewer cores. As expected, storage
load increases as � approaches 1, and reaches 1,000 for
� � �
��� in both scenarios. This is due to our previous
observation that, for this value of � , there is a single host
which has to be in the core of every other host. We con-
clude that the storage overhead for such a highly skewed
diversity is small, but the total load incurred in a small
percentage of the hosts can be very high.

1

10

100

1000

0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

S
to

ra
ge

 L
oa

d

R
es

ili
en

ce

Diversity (f)

Storage Load 8/2
Resilience 8/2

Storage Load 8/4
Resilience 8/4

Figure 3: Storage load as a function of diversity for the
8/2 and the 8/4 scenarios.

Although we have presented results only for 1,000
hosts, we have also looked into other scenarios with a
larger number of hosts. For 10,000 hosts and the same
attribute scenarios, there is no reduction in resilience, and
the average core size remains in the same order of magni-
tude. As we add more hosts to the system, we increase the
probability of a host having some particular configuration,
thus creating more possibilities for cores. The trend for
storage load is the same as before: the more skewed the
distribution of attribute configurations, the higher the stor-
age load. For highly skewed distributions and large num-
ber of hosts, storage load can be extremely high. One im-
portant observation, however, is that as the population of
hosts in the system increases, the number of different at-
tribute configurations and the number of hosts with some
particular configuration are likely to increase. Thus, for
some scenario and fixed value of � , storage load does not
increase linearly with the number of hosts. In our diversity
model, it actually remains in the same order of magnitude.

Suppose now that we want to determine a bound on �

HotOS IX: The 9th Workshop on Hot Topics in Operating Systems USENIX Association78

for a real system given our preliminary results. Accord-
ing to [8], over �	
 of the hosts that access a popular
web site run some version of Internet Explorer. This is
the most skewed distribution of software they report (the
second most skewed distribution is the percent of hosts
running some version of Windows, which is ��
). There
are vulnerabilities that attack all versions of Internet Ex-
plorer [11], and so � for such a collection of hosts can be
no larger than �
�	. Note that as one adds attributes that
are less skewed, they will contribute to the diversity of the
system and reduce � .

In the lists provided by [8], there are 14 web browsers
and 11 operating systems. For an idea of how a scenario
like this would behave, consider a system of 1,000 hosts
with 2 attributes and 14 values per attribute. For a value
of � � �
�	 we have an average core size of �, a maxi-
mum core size of �, and storage load of ��. We did not
see significant changes in these values when changing the
number of values per attribute from 14 to 11.

A storage load of 24 means that there is some host that
has to store backup data from 24 other hosts, or �
 of its
storage to each host. We observe that this value is high be-
cause our heuristic optimizes for storage overhead. In an
environment with such a skewed diversity, a good heuris-
tic will have to take into account not only storage over-
head, but the storage load of available hosts as well.

5 System Design Issues

The previous section gives us an idea of how much repli-
cation and how much storage is required in Phoenix. We
end by briefly mentioning a number of design issues that
an implementation of Phoenix needs to address as well.

The heuristics used for core identification need to use
an index that maps hosts to the different attributes they
possess. Phoenix therefore needs to maintain this index,
which we intend to implement using a distributed hash ta-
ble (DHT). Once Phoenix has identified a core, it stores
copies of data on the hosts in the core. To ensure the
integrity of the data, we plan on using some encryption
mechanism. Thus, data is encrypted before releasing it to
the hosts of a core. As observed in the previous section,
it is also necessary to ensure fairness of storage alloca-
tion across users. For this, our heuristic to find cores will
have to be modified to take storage load into account. Fi-
nally, we need to more carefully model the set of vulner-
abilities and allow for dynamically adding and removing
attributes/values.

In the wake of an Internet catastrophe, Phoenix itself
has to continue functioning satisfactorily. Since we in-
tend to use a DHT as a platform, it will need to survive a
scenario where a large number of hosts suddenly leave the
system [3]. Moreover, once there is a catastrophe, many

users may try to recover files at the same time, potentially
overloading the system; since recovery time is not criti-
cal, a distributed scheduler using randomized exponential
wait times can ease recovery demand.

We are currently working on addressing these issues in
a prototype design and implementation of Phoenix.

6 Conclusions

In this paper, we have explored the feasibility of using
a cooperative remote backup system called Phoenix as
an effective approach for surviving Internet catastrophes.
Phoenix uses data redundancy, a model of dependent host
failures, and distributed storage in a cooperative system.
Using a simulation model we have shown that, by per-
forming informed placement of replicas, Phoenix can pro-
vide highly reliable and available cooperative backup and
recovery with low overhead.

References

[1] C. Batten, K. Barr, A. Saraf, and S. Treptin. pStore:
A secure peer-to-peer backup system. Unpublished
report, Dec. 2001.

[2] L. P. Cox and B. D. Noble. Pastiche: Making backup
cheap and easy. In Proceedings of Fifth USENIX
Symposium on Operating Systems Design and Im-
plementation, Boston, MA, Dec. 2002.

[3] F. Dabek, M. Kaashoek, D. Karger, R. Morris, and
I. Stoica. Wide-area cooperative storage with CFS.
In proceedings of the 18th ACM Symposium on Op-
erating System Principles (SOSP) , Oct. 2001.

[4] Datathought website, http://www.datathought.com.
[5] F. Junqueira and K. Marzullo. Synchronous Consen-

sus for dependent process failures. In Proceedings of
the ICDCS 2003, pages 274–283, May 2003.

[6] D. Moore, C. Shannon, and J. Brown. Code-Red: A
case study on the spread and victims of an Internet
worm. In Proceedings of the 2002 ACM SICGOMM
Internet Measurement Workshop, pages 273–284,
Marseille, France, Nov. 2002.

[7] National Institute of Standards and Technology
(NIST). ICAT vulnerability database. http://
icat.nist.gov/icat.cfm.

[8] OneStat.com. Provider of web analytics. http:
//www.onestat.com.

[9] Protect-data website, http://www.protect-data.com.
[10] F. B. Schneider. Implementing fault-tolerant ser-

vices using the state machine approach: A tutorial.
ACM Computing Surveys, Dec. 1990.

[11] SecurityFocus. Vulnerability database. http://
securityfocus.com.

