
USENIX Association

Proceedings of
HotOS IX: The 9th Workshop on
Hot Topics in Operating Systems

Lihue, Hawaii, USA
May 18–21, 2003

THE ADVANCED COMPUTING SYSTEMS ASSOCIATION

© 2003 by The USENIX Association All Rights Reserved For more information about the USENIX Association:

Phone: 1 510 528 8649 FAX: 1 510 548 5738 Email: office@usenix.org WWW: http://www.usenix.org
Rights to individual papers remain with the author or the author's employer.

 Permission is granted for noncommercial reproduction of the work for educational or research purposes.
This copyright notice must be included in the reproduced paper. USENIX acknowledges all trademarks herein.



HotOS IX: The 9th Workshop on Hot Topics in Operating SystemsUSENIX Association 157

Access Control to Information
in Pervasive Computing Environments

Urs Hengartner and Peter Steenkiste
Carnegie Mellon University
{uhengart,prs}@cs.cmu.edu

Abstract

Many types of information available in a pervasive com-
puting environment, such as people location informa-
tion, should be accessible only by a limited set of people.
Some properties of the information raise unique chal-
lenges for the design of an access control mechanism:
Information can emanate from more than one source,
it might change its nature or granularity before reach-
ing its final receiver, and it can flow through nodes ad-
ministrated by different entities. We propose three de-
sign principles for the architecture of an access control
mechanism: (1) extract pieces of information in raw data
streams early, (2) define policies controlling access at
the information level, and (3) exploit information rela-
tionships for access control. We describe an example
architecture in which we apply these principles. We also
report how our earlier work about adding access control
to a people location service contributed to the more gen-
eral access control architecture proposed here.

1 Introduction

Pervasive computing environments, such as the ones
studied in CMU’s Aura project [4], provide many kinds
of information. Some of this information should be ac-
cessible only by a limited set of people. For example,
a person’s location is a sensitive piece of information,
and releasing it to unauthorized entities might pose secu-
rity and privacy risks. For instance, when walking home
at night, a person will want to limit the risk of being
robbed, and only people trusted by the person should be
able to learn about her current location.

The access control requirements of information avail-
able in a pervasive computing environment have not
been thoroughly studied. This information is inherently
different from information such as files stored in a file
system or objects stored in a database, whose access
control requirements have been widely studied. In this
paper, we discuss these differences in detail. This dis-
cussion leads to the proposal of three design principles
for the architecture of an access control mechanism de-

ployed in a pervasive computing environment. Namely,
these design principles suggest: (1) extract pieces of
information in raw data streams early, (2) define poli-
cies controlling access to information at the information
level, and (3) exploit information relationships when
performing access control.

Let us illustrate the unique challenges for access control
with an example scenario. Figure 1 shows how indi-
viduals can locate other people and free food in a per-
vasive computing environment. To simplify our discus-
sion, we introduce the following notation: We call en-
tities from which original information emanates source
nodes (file system, access point, camera, and instant
messaging client in the example), and entities that are
final recipients of information sink nodes (Bob). For a
pair of entities between which there is a direct infor-
mation flow (e.g., laptop locator to people locator and
camera to face detector), we call the entity from which
the information emanates server node and the entity re-
ceiving the information client node. Each source node
is always a server node, and each sink node is always
a client node. The notation {foo; bar} denotes that a
server node reports information “bar” about item “foo”
to a client node, whereas the item is optional.

Based on Figure 1, we identify the following challenges
for performing access control to information in a perva-
sive computing environment:

• A piece of information, like a person’s location, can
be derived from other pieces of information, like a
camera picture or the location of her laptop, and
multiple source nodes can contribute to a single
piece of information. The source nodes can be of
different types: they can be devices like sensors or
cameras, or they can be of digital nature like files
or instant messages. Thus there might be no sin-
gle point, like a file in a filesystem or an object in
a database, where we can deploy access control to
protect the information. Instead, we have to run ac-
cess control in a distributed way, depending on how



HotOS IX: The 9th Workshop on Hot Topics in Operating Systems USENIX Association158

Camera
(Room 8220)

Face
Recognizer

{Alice;
 Room 8220}

People
 Locator

{Alice;
 Room 8220}

Filter {Alice;
Pittsburgh}

Alice

Bob

Access Point
(Room 8220)

Laptop
Locator

{Alice;
 Room 8220}

{IP Address of Alice’s laptop; present}

Free Food
Locator

{Food; Room 8220}IM Client

{Food; Room 8220} {Food; Room 8220}

{broadcast instance; 
..., Free pizza in room 8220,...}

Free Food
Parser

Filesystem

{Face Parameters;
Room 8220}

Face
Detector

Food
Detector

{; Picture}

{Alice’s calendar file;
..., 4pm: meeting in room 8220,...}

Calendar
Parser

{Alice;
 Room 8220}

Figure 1: Retrieval of location information about people and free food. The people locator gathers people location
information from various nodes. The calendar parser extracts scheduling information from a user’s calendar file.
The laptop locator returns the location of the wireless access point to which a user’s laptop is connecting. The
face recognizer maps between a person and a set of face parameters used by the face detector. The face detector
detects faces in pictures delivered to it by cameras in a building. The free food locator locates free food by exploiting
information from the food detector and the free food parser. The food detector detects food in camera pictures. The
free food parser scans broadcast messages posted to an instant messaging application for messages announcing free
food. The filter reduces the granularity of Alice’s location information before giving it to Bob.

information is gathered and processed.

• Information can change in nature (e.g., a picture
becomes becomes a user/location pair) or its gran-
ularity (e.g., “Room 8220” becomes “Pittsburgh”)
while flowing from the source to the sink node.
The access control mechanism needs to be aware of
these changes. For instance, it should be possible to
grant only a small set of people access to a piece
of information provided at a fine-grained level,
whereas a larger set can have access to the same in-
formation provided at a more coarse-grained level.
Access control to files or objects in a database cov-
ers only a single variant of a piece of information,
being of a single granularity only.

• The nodes in the environment can be administrated
by different entities. Thus access control needs to
ensure that information flows only through nodes
that are authorized to access the information. A
filesystem or a database is typically run by a single
administrative entity, and accessing remote filesys-
tems from outside that domain, as, for example, in
the case of the Andrew File System (AFS), requires
extra configuration beforehand.

In addition to addressing these challenges, the access
control infrastructure needs to offer flexible ways for
granting entities access to information. Though this flex-
ibility could also be useful for information like files or
objects in a database, it becomes more important for in-
formation provided in a pervasive computing environ-
ment. As mentioned above, we should be able to grant
access based on the granularity of information. We also
require flexibility along the following lines:

• We should be able to grant access to an individual
based on her context. An individual’s context can
consist of the current time, her current location, or
her current activity. For example, Alice can allow
Bob to access her location only during office hours.

• Depending on the environment, different entities
should be able to grant access to information. For
example, in a military environment, a central au-
thority must perform this task, whereas in a uni-
versity environment, individuals should be able to
grant access to their personal information.

• Individuals should be able to let other people grant
access for them. For example, an individual can
have her doctor decide who should have access to
her medical information, such as a sensor measur-
ing her heart rate.

In the rest of this paper, we elaborate on how these chal-
lenges and requirements affect the design of an access
control architecture deployed in a pervasive computing
environment. In Section 2, we introduce three design
principles for such an architecture. In Section 3, we
present the design of our actual architecture. In Sec-
tion 4, we discuss how our experience gained in design-
ing and implementing an access control mechanism for
a people location service contributed to the proposed de-
sign principles and architecture. In Section 5, we discuss
related work. We conclude the paper in Section 6.

2 Design Principles

In this section, we elaborate on three principles that we
have followed in our design of an access control archi-



HotOS IX: The 9th Workshop on Hot Topics in Operating SystemsUSENIX Association 159

tecture for information available in a pervasive comput-
ing environment.

2.1 Extract Information Early

This principle suggests that for raw data streams, such
as a videostream, the pieces of information available in
the stream should be extracted as early as possible. Ac-
cess to the raw data streams should be strictly limited
and granted only to the entity doing the extraction. For
example, when exploiting cameras for locating people
or free food, only the face and food recognizers should
have access to the pictures delivered by the cameras. As
soon as information has been extracted from a raw data
stream, more entities can be granted access to the ex-
tracted information. However, these entities should not
get access to the raw data stream, which has a lot of other
information in it. For example, a person can be granted
access to her location information as produced by the
face recognizer, but not to the raw pictures. Similarly,
each person in the organization can be granted access to
the location of free food as produced by the free food
parser, but not to the raw pictures.

2.2 Define Policies at Information Level

This principle suggests that users should not have to is-
sue policies controlling access to information at the level
of individual nodes. Instead, they should be able to de-
fine these policies at the information level. The principle
is based on the observation that a pervasive computing
environment consists of a lot of nodes. Therefore, the
environment is going to require a lot of policies to con-
trol what nodes should have access to what information
offered by other nodes. To reduce the burden on indi-
vidual users, we do not have them issue low-level state-
ments about nodes. Instead, we let themmake high-level
statements about information and relationships between
information. For example, Alice should be able to state
that “Bob can access my location information” and “Use
the location of my laptop for locating me”. She should
not have to declare that “Bob can access my location in-
formation as provided by the people locator, which is
derived from the location of my laptop as provided by
the laptop locator” and “The people locator can access
the location of my laptop as provided by the laptop lo-
cator”. The high-level statements should be independent
of the information flow, that is, users should not have
to know about the architecture of the system and how
information flows through the various nodes.

2.3 Exploit Information Relationships

This principle suggests that information relationships, as
proposed by the second design principle, should be taken

into account for access control. Such relationships can
be exploited in different ways. We describe two exam-
ples. First, if there is a relationship specifying that the
location of Alice’s laptop should be used for locating
her, the laptop locator will grant the people locator ac-
cess to location information about Alice’s laptop. This
example is a straightforward mapping from a high-level
information relationship to a low-level access control
policy. Second, we can require that the people locator
proves to the laptop locator that Bob has actually asked
for the location of Alice and that Bob is entitled to get
this information. This additional constraint implies that
the people locator will not be able to ask the laptop lo-
cator for Alice’s location unless it can present a valid re-
quest for the location of Alice. Therefore, we minimize
damage in case of a break-in into the people locator; in-
truders will not be able to ask the laptop locator for the
location of Alice since they are not able to generate a
valid request for Alice’s location (unless they explicitly
have the right to generate such a request). This example
shows that by exploiting additional knowledge available
in an information relationship, we can make the access
control process more robust.

3 Design of Access Control Mechanism

Before forwarding a piece of information from a server
to a client node, we need to validate that the client node
is entitled to get the information. Two possible models
for performing access control are end-to-end and step-
by-step. In this section, we first discuss these two mod-
els and their application in the design of our access con-
trol architecture. We then describe our architecture.

3.1 End-to-End vs. Step-by-Step Model

In the end-to-end model, a source node validates that the
sink node and all the nodes between the source and the
sink node are authorized to receive the requested piece
of information emanating from the source node. The
source node then instructs all the nodes on the path to
the sink node how to deal with the received informa-
tion; these instructions can be sent together with the in-
formation. The advantage of this model is that access
control is done at a single point; there are no redundant
access control checks. The drawback of the model is
that it puts a heavy load on a source node. The task of
performing access control might be too heavyweight for
resource-limited source nodes, such as a sensor. In ad-
dition, there might be multiple source nodes, so there
is no single point at which we can perform access con-
trol. Another drawback is that a request for information
has to flow through the entire system to the source node
before an access control decision is made. Intermedi-
ate nodes process the request and potentially translate it



HotOS IX: The 9th Workshop on Hot Topics in Operating Systems USENIX Association160

Alice’s locationlocation of
 Alice’s laptop

Bob

coarse-grained

access right
information relationship

Figure 2: Example information relationship and access
right. Alice’s location information is derived from the
location of her laptop. Bob has coarse-grained access
to Alice’s location information.

into different requests. Therefore, the end-to-end model
is more prone to denial-of-service attacks.

In the step-by-step model, for each possible pair of
server/client nodes participating in the information flow,
the server node validates whether it should give infor-
mation to the client node. The advantage of this model
is that it distributes the access control load over multi-
ple nodes. In addition, an invalid request can be thrown
away immediately by the first node receiving the request,
thus this method is less prone to denial-of-service at-
tacks. The drawback of this model is that all nodes
need to run access control, thus there might be redun-
dant checks. In addition, all nodes need to be able to
run access control checks. This requirement is difficult
to fulfill when we want to support “dumb” nodes with
limited functionality. For example, the filter node shown
in Figure 1 might only be able to filter data, but not to
run access control.

Our architecture is based on the step-by-step model. We
extend the model to support dumb nodes by having them
delegate the access control check to a node that is able
to perform access control.

Let us now discuss how we apply this access control ar-
chitecture in the example scenario shown in Figure 1.
We limit our discussion to a subset of the nodes; the re-
maining nodes run access control in a similar way. The
nodes uses the information relationship rule and the ac-
cess right associated with Alice’s location shown in Fig-
ure 2. Note that the figure does not determine the iden-
tity of the entity making these associations. Depending
on the environment, this entity can be a central authority,
or it can be Alice, whereas Alice can delegate this task
to some other entity. Also note that we have to ensure
that only valid information relationships are exploited in
the access control process. For example, Alice should
not be able to state that Bob’s laptop should be used for
locating her.

The nodes perform access control as follows: The fil-

ter is not able to perform any access control. It only fil-
ters location data as instructed by the people locator, and
has the people locator take care of access control. The
people locator validates that Bob has access to Alice’s
location information and at what granularity. It will in-
struct the filter to reduce the granularity of the informa-
tion accordingly. It requests location information from
the various location services, for example, from the lap-
top locator. The laptop locator validates that the location
of Alice’s laptop should be used to determine Alice’s lo-
cation by looking at the information relationship. In ad-
dition, as suggested by the third design principle, it can
verify whether Bob has really asked for Alice’s location
information. The access point is a resource-constrained
node; its access control ensures only that information
is forwarded to the laptop locator, but not to any other
nodes.

3.2 Architecture

Our access control architecture consists of two descrip-
tion languages and the actual access control mechanism.

We use the policy description language for the speci-
fication of policies controlling access to information. A
policy lists the entities that are granted access to a partic-
ular piece of information. Policies, and thus the descrip-
tion language, should be flexible. For instance, it should
be possible to grant access both to single entities and to
groups of entities. In addition, policies should support
the specification of various constraints (e.g., time inter-
vals) that need to be fulfilled before access is granted.
Also, it must be possible to specify the granularity of a
piece of information to which access is given. Depend-
ing on the environment, different entities should be able
to define these policies. The entity can be an individ-
ual or a central authority. For some environments, the
individuals should have the option to delegate the deci-
sion about her access control policies to other entities.
We can employ existing certificate-based trust manage-
ment frameworks (e.g., KeyNote [2] or SDSI/SPKI [3])
to implement this component.

We use the information description language to describe
information, its properties, and relationships between in-
formation. For example, Alice needs to be able to spec-
ify the granularity of information to give granularity-
based access rights. In addition, if Alice wants her lap-
top’s location to serve as her location, she needs to be
able to explicitly define this relationship. Finally, if there
are multiple services that provide location information,
Alice must be able to define which of them provides her
location information.



HotOS IX: The 9th Workshop on Hot Topics in Operating SystemsUSENIX Association 161

At each server node participating in an information flow,
the access control mechanism decides whether informa-
tion should flow to the corresponding client node. To
make this decision, the access control mechanism will
use the policy and information description languages
just described. More specifically, the access control
mechanism works as follows.

First, the mechanism checks whether there is a policy al-
lowing the information flow from the server node to the
client node. In addition, all the constraints stated in the
policy must be fulfilled, and the granularity of the infor-
mation might have to be reduced. The policy description
language lets the access control mechanism learn about
the content of policies.

Second, the mechanism also exploits information rela-
tionships in the access control process, as suggested by
the third design principle. Furthermore, it can exploit
additional properties of the information. For example,
anyone who has access to a piece of information offered
at a fine-grained level should also have access to the
same piece of information offered at a coarse-grained
level. In addition, the mechanism might be able to au-
tomatically derive the access control policy of a piece
of information derived from other pieces of information.
Namely, it can combine the access control policies of
these pieces to form the access control policy of the de-
rived piece. For the combination, we can, for example,
exploit principles from Myers and Liskov’s decentral-
ized label model [10]. The information description lan-
guage lets the access control mechanism learn about the
characteristics of information.

Finally, to avoid snooping attacks on information ex-
changed between nodes, the mechanism needs to en-
crypt this information. We cannot employ end-to-end
encryption since intermediate nodes have to be able to
process the information flowing through them.

4 People Locator Service

We have built a service for locating people and are cur-
rently deploying it at Carnegie Mellon [5]. The service
uses multiple sources for locating people, namely, login
information, calendar information, and device location
information. We have included access control in the de-
sign of our service, and the experience gathered during
its development and implementation has contributed to
the architecture proposed in this paper.

We use SPKI/SDSI digital certificates [3] for specifying
different types of decisions, such as policies controlling
access to information, and performing the access con-

trol check. For example, in the following certificate, Al-
ice grants Bob access to her location information at a
coarse-grained level only. Bob can locate Alice only if
she is at the locations specified in the certificate and dur-
ing the listed time intervals. (The signature belonging to
the certificate is not shown.)

(cert (issuer (public key of alice))
(subject (public key of bob))
(tag (policy alice

(* prefix world.cmu.wean)
(* set (monday (* range numeric

ge #8000# le #1200#))
(tuesday (* range numeric

ge #1300# le #1400#)))
coarse-grained)))

The example shows that we can define flexible access
control policies in the tag section of a certificate. There-
fore, we are planning on employing SPKI/SDSI certifi-
cates in the more general access control architecture.
But we have also identified a limitation of this mecha-
nism. The fixed sequential ordering of the access con-
trol constraints in the tag section limits the type of con-
straints that users can specify. It is not possible for users
to include additional, individual constraints (such as cus-
tomized filters) in their certificates.

Clients of our service contact the people locator node.
To limit risk in case of a break-in, we do not allow this
node to actively ask the various source nodes for infor-
mation. Instead, it can only forward requests received
from its clients to them. These nodes return information
to the people locator node only if the entity setting up
the access control policy for the requested information
trusts this node. While this mechanism is sufficient for
the people locator service, it is not flexible enough for a
more general system. Forwarding requests assumes that
each node provides the same type of information; it does
not support the case where nodes offer different types of
information (e.g., the location of a device instead of the
location of a person). In addition, the notion of trust is
rather awkward since it is not directly coupled to the in-
formation to which access is controlled. Instead, it is
coupled to nodes. These shortcomings lead us to pro-
pose the second and third design principle.

5 Related Work

Previous work about dealing with intermediate nodes
between a source and a sink node includes, for exam-
ple, Howell and Kotz’s quoting gateways [6] and Neu-
man’s proxy-based authorization [11]. In this related
work, there is typically only one intermediate node be-
tween the source and the sink node, whereas in a perva-
sive computing environment, there can be an unlimited
number of nodes. In addition, in the related work, the



HotOS IX: The 9th Workshop on Hot Topics in Operating Systems USENIX Association162

intermediate nodes are authorized to ask for data them-
selves. This authorization presents a risk if the interme-
diate node is broken into. We try to avoid such risks by
exploiting opportunities offered to us by the information
description language.

Kagal et al. [8] propose an extended role-based access
control model for pervasive computing. (Al-Muhtadi
et al. [1] pursue a similar approach.) They extend the
model with the notion of delegation and incorporate
context-sensitive roles. The authors use the model for
controlling access to services like a printer or a projector.
In contrast to our work, the authors do not consider pre-
venting individuals from accessing pieces of information
provided by a service. For access control, the proposed
architecture relies on a centralized trusted entity running
a Prolog-like knowledge base. Our architecture runs ac-
cess control in a distributed way.

Jiang and Landay [7] and Minami and Kotz [9] perform
access control to information by assigning tags to pieces
of information. A tag denotes the policy for the piece.
The tag of a piece of information derived from other
pieces of information is automatically computed based
on the tags of these pieces. Whereas Jiang and Landay
use a technique similar to Myers and Liskov’s decen-
tralized label model [10] for this computation, Minami
and Kotz deem this model too conservative and propose
a more relaxed model. Though automatic derivation of
policies can reduce the number of policies that need to
be manually specified in a pervasive computing envi-
ronment, it is not clear how big the actual benefit is.
For example, when information changes its type or be-
comes more coarse-grained, other people or more people
than the ones allowed to access the original information
might be granted access to the transformed information.
In such a case, the new tag cannot be automatically de-
rived. Finally, both Jiang and Landay and Minami and
Kotz assume that the environment is administrated by a
single entity and that source and intermediate nodes are
fully trusted. Thus, in contrast to our model, there is no
need to restrict intermediate nodes from accessing in-
formation, and the authors address only preventing sink
nodes from getting access.

6 Conclusions

In this paper, we examined access control requirements
for information available in pervasive computing envi-
ronments. We identified several challenges, and we pre-
sented three design principles that we applied in an ex-
ample access control architecture. We are currently re-
fining our design. Namely, we are designing a language
for the specification of relationships between different

pieces of information and of their granularity. This lan-
guage will help us in defining policies controlling access
to information and in automatically deriving access con-
trol policies.

Acknowledgments

We thank Mahim Mishra and the anonymous reviewers
for their comments. This research was funded in part by
DARPA under contract number N66001-99-2-8918 and
by NSF under award number CCR-0205266. Additional
support was also provided by Intel.

References

[1] J. Al-Muhtadi, A. Ranganathan, R. Campbell, and M. D.
Mickunas. Cerberus: A Context-Aware Security Scheme
for Smart Spaces. In Proceedings of IEEE International
Conference on Pervasive Computing and Communica-
tions (PerCom 2003), pages 489–496, March 2003.

[2] M. Blaze, J. Ioannidis, and A. Keromytis. The KeyNote
Trust-Management System Version 2. RFC 2704,
September 1999.

[3] C. Ellison, B. Frantz, B. Lampson, R. Rivest, B. Thomas,
and T. Ylonen. SPKI Certificate Theory. RFC 2693,
September 1999.

[4] D. Garlan, D. Siewiorek, A. Smailagic, and P. Steenkiste.
Project Aura: Towards Distraction-Free Pervasive Com-
puting. IEEE Pervasive Computing, 1(2):22–31, April-
June 2002.

[5] U. Hengartner and P. Steenkiste. Protecting Access to
People Location Information. In Proceedings of Inter-
national Conference on Security in Pervasive Computing
(SPC 2003), March 2003.

[6] J. Howell and D. Kotz. End-to-end authorization. In
Proceedings of the 4th Symposium on Operating System
Design & Implementation (OSDI 2000), pages 151–164,
October 2000.

[7] X. Jiang and J. A. Landay. Modeling Privacy Control
in Context-Aware Systems. IEEE Pervasive Computing,
1(3):59–63, July-September 2002.

[8] T. Kagal, L. Finin and A. Josh. Trust-Based Security
in Pervasive Computing Environments. IEEE Computer,
pages 154–157, December 2001.

[9] K. Minami and D. Kotz. Controlling access to perva-
sive information in the ”Solar”system. Technical Report
TR2002-422, Dept. of Computer Science, Dartmouth
College, February 2002.

[10] A. C. Myers and B. Liskov. Complete, Safe Informa-
tion Flow with Decentralized Labels. In Proceedings of
the 1998 IEEE Symposium on Security and Privacy, May
1998.

[11] B.C. Neuman. Proxy-Based Authorization and Account-
ing for Distributed Systems. In Proceedings of Inter-
national Conference on Distributed Computing Systems,
pages 283–291, May 1993.


