
USENIX Association

Proceedings of
HotOS IX: The 9th Workshop on
Hot Topics in Operating Systems

Lihue, Hawaii, USA
May 18–21, 2003

THE ADVANCED COMPUTING SYSTEMS ASSOCIATION

© 2003 by The USENIX Association All Rights Reserved For more information about the USENIX Association:

Phone: 1 510 528 8649 FAX: 1 510 548 5738 Email: office@usenix.org WWW: http://www.usenix.org
Rights to individual papers remain with the author or the author's employer.

 Permission is granted for noncommercial reproduction of the work for educational or research purposes.
This copyright notice must be included in the reproduced paper. USENIX acknowledges all trademarks herein.



HotOS IX: The 9th Workshop on Hot Topics in Operating SystemsUSENIX Association 145

Flexible OS Support and Applications for Trusted Computing

Tal Garfinkel Mendel Rosenblum Dan Boneh
{talg,mendel,dabo}@cs.stanford.edu
Computer Science Department, Stanford University

Abstract

Trusted computing (e.g. TCPA and Microsoft’s Next-
Generation Secure Computing Base) has been one of the
most talked about and least understood technologies in
the computing community over the past year. The ca-
pabilities trusted computing provides have the potential
to radically improve the security and robustness of dis-
tributed systems. Unfortunately, the debate over its ap-
plication to digital rights management has caused its sig-
nificant other applications to be largely overlooked. In
this paper we present a broader vision for trusted com-
puting. We give an intuitive model for understanding the
capabilities and limitations of the mechanisms provided
by trusted computing. We describe a flexible OS archi-
tecture to support trusted computing. We present a range
of practical applications that illustrate how trusted com-
puting can be used to improve security and robustness in
distributed systems.

1 Introduction

Many difficult problems in today’s distributed systems,
such as preventing denial of service, performing access
control and monitoring, and achieving scalability, are
either caused or severely exacerbated by the fact that
clients are untrusted and thus potentially malicious. This
forces system designers to implement most system pol-
icy and sensitive computations in the core of the system,
where trust resides, instead of at the endpoints where
most of the system’s resources and capabilities are. The
only complete solution to this problem has been the use
of closed platforms, such as those in cellular networks
and banking systems, where special-purpose, tamper-
resistant clients are utilized that provide end-to-end trust.
This approach has demonstrated significant benefits, al-
lowing the construction of some of today’s most capable
and robust distributed systems. Unfortunately, this ap-
proach presently necessitates the use of dedicated hard-
ware, thus limiting designers to the use of only a few
types of devices over which they must have exclusive
control.

In the near future it will no longer be necessary to force
designers to make trade-offs between the benefits of open
and closed platforms. This change will come as the re-
sult of ubiquitous support for trusted computing plat-
forms. Trusted platforms will allow systems to extend
trust to clients running on these platforms, thus provid-
ing the benefits of open platforms: wide availability, di-
verse hardware types, and the ability to run many ap-
plications from many mutually distrusting sources while
still retaining trust in clients.

The vision of trusted platforms cannot be achieved with
today’s operating systems which offer poor assurance
and implement a security model that is largely orthog-
onal to that required for trusted computing. To meet the
demands of implementing a trusted platform we outline
the design of a new OS architecture based on the idea of
a trusted virtual machine monitor. In this model, tradi-
tional applications and OSes can run side-by-side on the
same platform in either an “open box” or “closed box”
execution model in keeping with the trust requirements
imposed by the application.

In the next section we define and describe the compo-
nents that make up trusted computing. In Section 3 we
present our approach of using a trusted virtual machine
monitor to support a mixture of open and closed box
models simultaneously. In Section 4 we examine a se-
lection of practical areas where trusted computing can
provide novel functionality yielding significant benefits
for security, scalability and robustness. Section 5 dis-
cusses related work.

2 Trusted Platforms

Open platforms are general-purpose computing plat-
forms where there is no apriori trust established between
the hardware of the platform and a third party, that could
be used to prove the functionality of the platform. Exam-
ples of these include workstations, mainframes, PDAs,
and PCs. Open platforms possess many practical bene-
fits over closed platforms. Unfortunately a remote party
cannot make any assumptions about how that platform



HotOS IX: The 9th Workshop on Hot Topics in Operating Systems USENIX Association146

will behave or misbehave.

Closed platforms are special-purpose computing devices
that interact with the user via a restricted interface
(e.g. automated tellers, game consoles, and satellite re-
ceivers). A closed platform can authenticate itself as an
authorized platform to a remote party using a secret key
embedded in the platform during manufacturing. Closed
platforms rely on hardware tamper resistance to protect
the embedded secret key and ensure well-behaved oper-
ation.

Trusted platforms provide the best properties of open and
closed platforms. As with an open platform, trusted plat-
forms allow applications from many different sources to
run on the same platform. As with a closed platform,
remote parties can determine what software is running
on a platform and thus determine whether to expect the
platform to be well behaved. The process of dynami-
cally establishing that a platform conforms to the spec-
ification expected by a remote party is done through a
process called attestation.

Attestation consists of several steps of cryptographic au-
thentication by which the specification for each layer of
the platform is checked from the hardware up to the op-
erating system and application code. At a high level, the
steps in a basic model of attestation are as follows. A
more detailed example is given in Section 4:

• A hardware platform has a signing key Ksign. It
also has a public key certificate (Chw) for this key.

• When an application A is started it first generates a
public/private key pair PKA/SKA. Next, the ap-
plication requests the platform to certify its public
key PKA. The platform uses its signing key Ksign

to generate a certificate for PKA. We denote this
certificate by CA. Along with standard certificate
fields, the certificate CA contains the hash of the ex-
ecutable image of the application A. This hash is
at the heart of the attestation process. The signed
certificate CA is returned to the application.

• When the application A wants to attest its valid-
ity to a remote server it sends the certificate chain
(Chw, CA) to the remote server. The server checks
two things:

– The signatures on both certificates are valid
and Chw is not revoked, and

– The application hash embedded in CA is on
the server’s list of applications it trusts.

At this point the server is assured that CA comes
from an application it trusts. The application can
now authenticate itself by proving knowledge of
SKA. For example, the application and the remote
server could run an authenticated key exchange to
generate a shared session key. All communication

between the remote server and the application will
be protected using this key.

We emphasize that attestation must result in a shared se-
cret between the application and remote party, otherwise
the platform is vulnerable to session hijacking—an at-
tacker could wait for attestation to complete, reboot the
machine into untrusted mode, and masquerade as an au-
thorized application.

Leveraging attestation requires the presence of software
that allows the remote party to meaningfully interpret the
state of the system. This takes place through a multi-step
process whereby the hardware will attest to what oper-
ating system it booted, the operating system will in turn
attest what application it requires a key for, and will only
allow the use of that key by that given application.

Limitations of attestation. It is important to realize
that software attestation only tells a remote party exactly
what executable code was launched on a platform and
establishes a session key for future interaction with that
software component on the platform. This does not pro-
vide trustworthiness in the usual sense:

• The software component could be buggy and pro-
duce incorrect results. The onus is on the remote
party to choose who to trust.

• Attestation provides no information about the cur-
rent state of the running system. For example, at-
testation does not show whether the software com-
ponent has been compromised by a buffer overflow
attack, infected by a virus, etc.

• Future behavior can only be ensured for authenti-
cated interactions via a shared secret.

• A platform is only as trusted as the tamper re-
sistance of hardware and level of assurance of its
trusted OS.

3 An OS for Trusted Platforms

The vision of trusted computing falls apart when it en-
counters the realities of modern general-purpose oper-
ating systems. OSes such as Microsoft Windows and
Linux are large and complex code bases optimized over
the years for ease of use, performance, and reliability. As
a result they are incompatible both in design and imple-
mentation with the objective of providing a high assur-
ance platform. High assurance is essential as a trusted
OS must instill confidence in remote parties that it can
be relied upon to execute their code in a well-specified
fashion.



HotOS IX: The 9th Workshop on Hot Topics in Operating SystemsUSENIX Association 147

The protection model provided by contemporary oper-
ating systems is poorly matched to the needs of trusted
computing. In a trusted platform the primary security
objective is to isolate subjects from one another. The
fine-grained resource abstractions for controlled sharing
provided by typical OSes would add needless complex-
ity to a trusted OS, thus detracting from its primary goal
of providing secure isolation.

The approach we advocate and have begun to explore
in our own work on building a trusted operating system,
is to use a virtual machine monitor [14] (VMM). A vir-
tual machine monitor is a thin system software layer that
exports the abstractions of virtual machines (VMs) that
look like the real hardware.

The simplicity of the VMMs interface and implementa-
tion provides the means for building a high-assurance
OS that offers strong isolation [17]. VMM’s also pro-
vide backwards compatibility, allowing existing services
and operating systems to realize the benefits provided by
trusted platforms with little or no modification. Users
can continue to use their normal operating systems for
applications that do not require trust from a remote party.
Developers building services that require trust can utilize
the wide range of existing secure operating systems, ap-
plications, etc. , thus allowing them to leverage a huge
amount of high quality existing code and development
environments.

Our trusted virtual machine monitor (T-VMM) exports
two different types of virtual machine abstractions:

Open-box VMs are traditional virtual machines that ex-
actly match the hardware interface of the machine. They
are used to run general-purpose operating systems such
as Microsoft Windows or Linux and allow the platform
owner full access to the hardware state of the VM just as
in a normal open platform.

Closed-box VMs provide the same hardware interface as
open-box VMs. In addition, a virtual device is provided
that allows them to do attestation. To platform owners,
the closed-box VMM is a black box. They can grant
it access to resources but they cannot inspect or tamper
with its contents.

Hardware attestation needs only attest to the fact that the
T-VMM is running. For applications to attest, the attes-
tation virtual device can provide a closed-box VM with a
signed hash of its executable plus some attributes which
it can then present to a remote party to obtain a token
encrypted under the public key of the T-VMM. The at-
testation interface can then be used to decrypt this token,
but it will only release the token to the VM whose hash
and attributes match those that were originally used to
request the token. This token will contain a session key,
certificate, or some other means of allowing the VM to

authenticate itself.

The T-VMM has total control of both the visibility and
use of hardware resources by the VMs. Resource man-
agement policy is specified by the platform owner di-
rectly to the T-VMM.

Storage devices are abstracted into disjoint virtual disks.
Virtual storage can be either encrypted at the block level
by the T-VMM or left as plain text in accordance with the
performance and security requirements of the VM. Com-
munication devices such as network interface cards can
either be virtualized or exported directly to a VM. User
interface and display devices are multiplexed among the
VMs in such a fashion that one VM cannot observe the
user interactions of another.

To support composition of VMs and communicate be-
tween VMs, the T-VMM supports the notion of a virtual
device. A virtual device can be implemented by a closed
box VM and exported as a device to any VM. For exam-
ple, many closed box VMs will want to export a virtual
NIC or virtual serial port to allow other local VMs access
to their functionality.

The T-VMM supports a trusted console that allows ac-
cess to the T-VMM. This is used to control the allocat-
ing hardware sources to VMs, mapping of I/O devices to
VMs, the destruction of VMs, etc. . The console VM can
be accessed via a trusted path. How to securely facilitate
this access in a backwards compatible and seamless way
is a question we are still are working to address.

4 Example Applications

We survey several areas where trusted platforms promise
to have significant impact. We discuss how the introduc-
tion of trusted platforms can significantly increase the
functionality of existing client side technologies, such
as distributed firewalls and massively distributed paral-
lel computing clients. We also look at some entirely
novel applications of this technology, like those facili-
tated by rate limiting. We do not discuss any applications
related to Digital Rights Management (DRM) since we
find them far less exciting that the applications discussed
below.

Regulated Endpoints and Distributed Firewalls. Tra-
ditionally firewalls assume that everyone on the “inside”
of the network is trusted, while everyone on the outside
is untrusted. However, the increased use of wireless ac-
cess points, tunnels, VPNs, and dial-ins breaks down the
distinction between inside and outside. Given today’s in-
creasingly dynamic network topologies, distributed fire-
walls [7] greatly simplify the task of implementing net-
work security policies. With a distributed firewall secu-



HotOS IX: The 9th Workshop on Hot Topics in Operating Systems USENIX Association148

rity policy is defined centrally, but enforced at each in-
dividual network endpoint. This supports a richer set of
policies and greater scalability than traditional central-
ized firewalls [15].

On standard hosts, distributed firewalls do an excellent
job of protecting a host from others, but are of little use
for protecting others from the host—there is no way of
ensuring that the host does not simply tamper with or
bypass the firewall.

On a trusted platform a distributed firewall is a sig-
nificantly more powerful primitive since it can prevent
packets that violate the central security policy from ever
reaching the network in the first place. For example, the
distributed firewall can prevent applications that attempt
port scanning and IP spoofing from ever reaching the net-
work. Similarly, the firewall can ensure that all VMs on
the machine are properly implementing connection rate
limits. Hence, distributed firewalls on trusted platforms
can provide well-regulated endpoints for a wide variety
of different network types.

The architecture for a distributed firewall on a trusted
platform is as follows. The distributed firewall runs in
its own closed-box VM and listens on a virtual NIC. All
packets generated by open-box application VM’s on the
machine are sent to the distributed firewall VM. The dis-
tributed firewall ensures that these packets adhere to the
security policy being enforced. If so, it embeds them into
an IPsec packet and sends them to their destination on the
network. If not, the packets are blocked. The termination
point of the IPsec tunnel is the closest network gateway,
or alternatively, the remote destination host. The IPsec
tunnel is only used to prove to the IPsec endpoint de-
vice that the packets are sent via the firewall VM. Con-
sequently, it suffices to use the Authentication Header
(AH) in IPsec. There is no need to encrypt the packets.

The main question is how does the IPsec endpoint de-
vice know that the sending host is running a distributed
firewall. At a high level, the idea is as follows: during
initial firewall setup the distributed firewall VM uses at-
testation to convince a certification authority (CA) that it
is an authorized firewall implementing the required secu-
rity policy. The CA issues a certificate to the firewall VM
enabling it to establish IPsec tunnels with peer devices.
Without this certificate, peer devices will reject connec-
tion requests. Consequently, no application on the ma-
chine can communicate with a networked device unless
it sends its packets through the firewall VM.

In reality, the exact firewall VM architecture is more
complicated. We briefly explain the initial attestation
protocol with the CA. We are assuming that the T-
VMM on the machine has certified public/private key
pairs that can be used for encryption/decryption and for

signing. The following steps take place during initial
firewall setup:

• the firewall VM generates a public/private key pair
PKFW /SKFW .

• The firewall VM requests the T-VMM to sign the
hash of the executable image running inside the fire-
wall VM. Let S be the resulting signature. This
signature is the main capability used for attestation.

• The firewall VM contacts a CA and sends the pub-
lic key PKFW , the signature S, and a certified T-
VMM public key PKV MM .

• The CA verifies that the firewall executable im-
age (whose signature is S) is an authorized fire-
wall. If so, it issues a certificate CERTFW for
the firewall’s public key PKFW . The CA also em-
beds the hash of the firewall executable in the cer-
tificate. The CA encrypts the resulting certificate
CERTFW under PKV MM and sends the resulting
ciphertext E[CERTFW ] to the firewall.

This completes the initial firewall setup. Note that no
open-box VM can directly use E[CERTFW ] since it is
encrypted using the T-VMM’s public key. Whenever the
firewall VM is launched, it first requests the T-VMM’s
virtual attestation device to decrypt E[CERTFW ]. The
T-VMM does so only if the hash of the executable run-
ning in the VM matches the hash inside CERTFW . If
there is a match, the firewall VM obtains CERTFW

which enables it to setup IPsec tunnels with remote hosts.
Consequently, when a remote host receives an IPsec ses-
sion request using CERTFW it is assured that the re-
questing machine is running an authorized firewall VM.

Rate Limiting for DDOS Prevention. Rate limiting
can be used to address the problem of Distributed De-
nial of Service (DDOS) attacks at both the network and
application levels. For example, by limiting the rate at
which client machines can issue queries in a P2P net-
work we defend against certain P2P DoS attacks [9]. By
limiting the rate at which a machine can open network
connection we defend against certain network DDOS at-
tacks [16, 10]. Finally, by limiting the rate at which ma-
chines can send email we reduce the rate at which spam
email is generated [11].

Implementing a rate limiter with a trusted platform is
straightforward. On each trusted platform we run a
ticket-granting service in a closed-box VM. The ticket-
granting service issues at most one ticket every time
quantum. These tickets are content dependent. For ex-
ample, to limit the rate at which a P2P client issues
queries we require an open-box P2P client VM to ob-
tain a ticket from a ticket-granting VM for every query
being sent. More precisely, prior to issuing a query, the
P2P client VM sends a hash of the query to the ticket-



HotOS IX: The 9th Workshop on Hot Topics in Operating SystemsUSENIX Association 149

granting VM (via a virtual NIC). The resulting ticket is
attached to the outgoing query. The P2P network will
discard any incoming queries that contain no ticket or
an invalid ticket. Consequently, each client machine can
generate at most one query every time quantum (say ev-
ery 5 seconds).

Without attestation the best known method for achieving
these types of rate limits is using client puzzles [11, 4],
the practice of forcing a client to perform some costly
computation (solving a puzzle) for each request made.
A trusted computing solution has several major advan-
tages over client puzzles: no resources must be wasted in
order to generate tickets (a real consideration on mobile
devices where computing expensive client puzzles could
present a significant power drain); users do not need to
wait for tickets to be issued; client puzzles vary heavily in
their impact based on the type of platform (processor and
memory speeds, etc.) whereas trusted-computing based
rate limiters are independent of device size or Moore’s
law.

Improving Robustness via Reputation. Understanding
DDOS attacks on today’s P2P storage systems requires
considering a broad spectrum of attack types. One of the
most insidious types of attacks are those based on con-
tent poisoning, where a user disseminates damaged or
incomplete content (e.g. audio files which have artifacts
inserted) in order to make the good content difficult or
impossible to find amongst the noise.

One approach to solving these and other problems of
mis-behaving users are the use of reputation systems.
These are already widely seen in use in online games,
P2P file sharing systems [2], and even on eBay to ensure
the integrity of sellers. One difficulty with reputation
systems is that when users misbehave and their identity is
tarnished they can simply apply for a new identity. With-
out extra infrastructure there is no way to tell whether
two distinct identities represent the same entity.

Trusted platforms provide an ideal means of building
more robust reputation systems. First, using trusted plat-
forms we can ensure that a single hardware platform
represents at most one identity. Consequently, to reg-
ister multiple identities in a single system one would
have to purchase multiple hardware platforms. This ap-
proach would thwart common attacks on reputation sys-
tem where a single platform registers thousands of ma-
licious identities. Second, trusted platforms simplify de-
centralized reputation systems since the platform can be
used to track its own reputation.

Third-Party Computing. Increasingly computing re-
sources are being borrowed, leased, or donated by a third
party. Examples of this include (1) using donated cy-
cles for massively parallel scientific and mathematical

computations by distributed.net, SETI@home, and Fold-
ing@home, (2) using leased time on commercial com-
puter farms for doing large-scale rendering and anima-
tion, and (3) the emerging field of grid computing that
allows heavy users of scientific computing resources to
pool and share their computing resources.

The difficulty with this approach to massively parallel
computation is trusting the machines doing the compu-
tation to (1) produce the correct results, and (2) keep the
contents of the computation secret. Trusted platforms of-
fer an ideal mechanism for solving both problems. Using
attestation, remote machines can prove that they are run-
ning the expected executable image, the trusted OS will
of course keep the computation and its associated state
private. The executable can use its token to sign and
encrypt the results of its computation, thus ensuring its
privacy and authenticity.

Civil Liberties Protection. Increasingly law enforce-
ment requires the use of network surveillance devices [1]
that can potentially infringe on civil liberties. Cur-
rently, these devices are certified not to exceed their le-
gal boundaries by inviting a select group of experts to
review their design. However, there is no guarantee that
the system reviewed by the experts is the one deployed
in the field. Attestation enables us to do precisely that.
Building such devices on a trusted platform enables the
platform to prove to third parties that the software on
the device is the one authorized to execute. Note that
our threat model excludes compromise of the underlying
tamper-resistant hardware, which is possibly not beyond
the reach of law enforcement agencies.

5 Related Work

The basic mechanisms of attestation have been well stud-
ied. Gasser et al. [13] describes an architecture which
performs a secure loading process with minimal hard-
ware support to certify to a remote party the operating
systems and applications on a platform. Work by Tygar
et al. [18] describes host integrity checking with secure
coprocessor. More recent work by Arbaugh [6] presents
a practical architecture for secure bootstrapping that pro-
vides a similar chain of integrity checks to those required
for attestation. However, it is important to note that
secure bootstrapping and attestation are fundamentally
different capabilities. Secure bootstrapping limits what
software can be run on a platform, whereas attestation
merely reports what software a platform is running.

Prior work has studied attestation in a relatively lim-
ited context, usually allowing hosts within an admin-
istrative domain to certify what OS they are running



HotOS IX: The 9th Workshop on Hot Topics in Operating Systems USENIX Association150

to their peers or an administrator [19]. Our much
broader vision of trusted computing coincides with ef-
forts such as TCPA [5] and Microsoft’s Next Genera-
tion Secure Computing Base (NGSCB) project (formerly
“Palladium”) [8, 3] to deploy trusted computing plat-
forms ubiquitously and provide a very general mecha-
nism for application designers.

TCPA is a platform specification developed by an indus-
try consortium to provide hardware support for trusted
computing. Several current implementations of the ini-
tial TCPA 1.1b spec have already been implemented in
single chips and shipped in the IBM T30 laptops. TCPA
does not provide a complete solution to building a trusted
platform as it deals strictly with the problem of key man-
agement and attestation. Other features required to sup-
port a flexible trusted OS (e.g. efficient architecture sup-
port for virtualization, additional protection mechanisms,
a trusted path to the trusted OS, etc.) are not provided by
TCPA. The software model assumed by TCPA is implic-
itly one of a trusted version of today’s commodity OS’s.
As we have argued this approach is incompatible with
the assurance requirements of a trusted platform.

Microsoft’s NGSCB project aims to provide hard-
ware [12] and OS support for running authenticated soft-
ware on an open platform. In NGSCB trusted applica-
tions are built on top of a single dedicated trusted oper-
ating system specified by Microsoft. This operating sys-
tem is protected from Windows (but not vice-versa) via
special purpose hardware memory protection. All appli-
cations are limited to using only this common operating
system. In short, NGSCB as it is currently described pro-
vides less flexibility and weaker isolation properties than
our proposed architecture.

6 Conclusion

We have just begun to explore the broad range of po-
tential benefits that trusted computing can bring to dis-
tributed systems. Extending trust from the core of the
network to its end-points solves or greatly simplifies
many problems in distributed systems as well as enabling
a wide range of new applications. In future work we will
continue to study the range of systems issues that arise in
implementing OS support for trusted computing as well
as engage in further study of its applications.

Acknowledgments

The authors would like to thank Ben Pfaff for his edi-
torial assistance and thoughtful comments on this work.

This material is based upon work supported in part by the
National Science Foundation under Grant No. 0121481
and through support from the Packard Foundation.

References

[1] Fbi. carnivore diagnostic tool. http://www.fbi.gov/hq/
lab/carnivore/carnivore.htm.

[2] The mojonation p2p platform. http://www.mojonation.
net.

[3] Microsoft next-generation secure computing base—technical
FAQ. http://www.microsoft.com/technet/
treeview/default.asp?url=/technet/security/
%news/NGSCB.asp, February 2003.

[4] M. Abadi, M. Burrows, M. Manasse, and E. Wobber. Moderately
hard, memory-bound functions. In NDSS 2003, february 2003.

[5] Trusted Computing Platform Allaince. Tcpa main specification
v. 1.1b. http://www.trustedcomputing.org/.

[6] W. Arbaugh, D. Farber, and J. Smith. A secure and reliable boot-
strap architecture. In In Proceedings 1997 IEEE Symposium on
Security, pages 65–71, May 1997.

[7] Steven M. Bellovin. Distributed firewalls. ;login:, 24(Security),
November 1999.

[8] Amy Carroll, Mario Juarez, Julia Polk, and Tony Leininger.
Microsoft palladium: A business overview. http:
//www.microsoft.com/PressPass/features/
2002/jul02/0724palladiumwp.asp, August 2002.

[9] N. Daswani and H. Garcia-Molina. Query-flood dos attacks in
gnutella. In ACM Conference on Computer and Communications
Security, nov 2002.

[10] Drew Dean and Adam Stubblefield. Using client puzzles to pro-
tect tls. In Proceedings of the 10th USENIX Security Symposium,
2001.

[11] C. Dwork and M. Naor. Pricing via processing or combatting
junk mail. In Proc. of Crypto 92, pages 139–147, 1992.

[12] Paul England and Marcus Peinado. Authenticated operation of
open computing devices. In Proc. of the 7th Australian Confer-
ence on Information Security and Privacy, pages 346–361, 2002.
Springer-Verlag Lecture Notes on Computer Science.

[13] M. Gasser, A. Goldstein, C. Kaufman, and B. Lampson. The dig-
ital distributed system security architecture. In Proc. 12th NIST-
NCSC National Computer Security Conference, pages 305–319,
1989.

[14] R.P. Goldberg. Survey of virtual machine research. IEEE Com-
puter Magazine, 7:34–45, June 1974.

[15] Sotiris Ioannidis, Angelos D. Keromytis, Steven M. Bellovin, and
Jonathan M. Smith. Implementing a distributed firewall. In ACM
Conference on Computer and Communications Security, pages
190–199, 2000.

[16] A. Juels and J. Brainard. Client puzzles: A cryptographic defense
against connection depletion attacks. In Proceedings of NDSS 99,
pages 151–165, 1999.

[17] P.A. Karger, M.E. Zurko, D.W. Bonin, A.H. Mason, and C.E.
Kahn. A retrospective on the VAX VMM security kernel. In
IEEE Transactions on Software Engineering, November 1991.

[18] J. D. Tygar and Bennet Yee. Dyad: A system for using physically
secure coprocessors. In IP Workshop Proceedings, 1994.

[19] Edward Wobber, Martı́n Abadi, Michael Burrows, and Butler
Lampson. Authentication in the Taos operating system. ACM
Transactions on Computer Systems (TOCS), 12(1):3–32, 1994.


