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Abstract

Upgrading the software of long-lived distributed systems
is difficult. It is not possible to upgrade all the nodes in
a system at once, since some nodes may be down and
halting the system for an upgrade is unacceptable. This
means that different nodes may be running different soft-
ware versions and yet need to communicate, even though
those versions may not be fully compatible. We present
a methodology and infrastructure that addresses these
challenges and makes it possible to upgrade distributed
systems automatically while limiting service disruption.

1 Introduction

Long-lived distributed systems, like server clusters, con-
tent distribution networks, peer-to-peer systems, and sen-
sor networks, require changes (upgrades) in their soft-
ware over time to fix bugs, add features, and improve
performance. These systems are large, so it is impractical
for an administrator to upgrade nodes manually (e.g., via
remote login). Instead, upgrades must propagate auto-
matically, but the administrator may still require control
over the order and rate at which nodes upgrade to avoid
interrupting service or to test an upgrade on a few nodes.
Thus, upgrades may happen slowly, and there may be
long periods of time when some nodes are upgraded and
others are not. Nonetheless, the system as a whole should
continue to provide service.

The goal of our research is to support automatic up-
grades for such systems and to enable them to provide
service during upgrades. Earlier approaches to automat-
ically upgrading distributed systems [9–11, 17, 18, 22] or
distributing software over networks [1–6,8,15,25] do lit-
tle to ensure continuous service during upgrades. The
Eternal system [27], the Simplex architecture [24], and
Google [14] enable specific kinds of systems to provide
service during upgrades, but they do not provide general
solutions.

An automatic upgrade system must:

• propagate upgrades to nodes automatically
• provide a way to control when nodes upgrade
• enable the system to provide service when nodes are

running different versions

• provide a way to preserve the persistent state of
nodes from one version to the next

To address these requirements, our approach includes an
upgrade infrastructure, scheduling functions, simulation
objects, and transform functions.

The upgrade infrastructure is a combination of cen-
tralized and distributed components that enables rapid
dissemination of upgrade information and flexible moni-
toring and control of upgrade progress.

Scheduling functions (SFs) are procedures that run on
nodes and tell them when to upgrade. SFs can implement
a variety of upgrade scheduling policies.

Simulation objects (SOs) are adapters that allow a
node to behave as though it were running multiple ver-
sions simultaneously. Unlike previous approaches that
propose similar adapters [13, 23, 27], ours includes cor-
rectness criteria to ensure that simulation objects reflect
node state consistently across different versions. These
criteria require that some interactions made via SOs must
fail; we identify when such failure is necessary and, con-
versely, when it is possible to provide service between
nodes running different versions.

Transform functions (TFs) are procedures that convert
a node’s persistent state from one version to the next.
Our contribution is to show how TFs interact with SOs
to ensure that nodes upgrade to the correct new state.

Our approach takes advantage of the fact that long-
lived systems are robust. They tolerate node failures:
nodes are prepared for failures and know how to recover
to a consistent state. This means that we can model a
node upgrade as a soft restart. Robust systems also tol-
erate communication problems: remote procedure calls
may fail, and callers know how to compensate for such
failures. This means that we can use a failure response
when calls occur at inopportune times, e.g., when a node
is upgrading or when a node’s simulation object is unable
to carry out the requested action.

The rest of the paper is organized as follows. Section 2
presents our upgrade model and assumptions. Section 3
describes the upgrade infrastructure; Section 4, schedul-
ing functions; Section 5, simulation objects; and Sec-
tion 6, transform functions. Section 7 presents correct-
ness criteria, and Section 8 concludes.
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2 Model and Assumptions

We model each node as an object that has an identity and
a state; we assume there is just one object per node but
the model can be extended to handle multiple objects.
Objects are fully-encapsulated; inter-object interaction is
by means of method calls. Systems based on remote pro-
cedure calls [26] or remote method invocations [21] map
easily to this model; extending the model to message-
passing [19] is future work.

A portion of an object’s state may be persistent. Ob-
jects are prepared for failure of their node: when the node
recovers, the object reinitializes itself from the persistent
portion of its state.

Each node runs a top-level class—the class that im-
plements its object. We assume class definitions are
stored in well-known repositories and define the full im-
plementation of a node, including its subcomponents
and libraries. Different nodes are likely to run differ-
ent classes, e.g., clients run one class, while servers run
another.

Our approach defines upgrades for entire systems,
rather than just for individual nodes. A version defines
the software for all the nodes in the system. An upgrade
moves the system from one version to the next. We ex-
pect upgrades to be relatively rare, e.g., they occur less
than once a month. Therefore, the common case is when
all nodes are running the same version. We also expect
that before an upgrade is installed, it is thoroughly de-
bugged; our system is not intended to providing a debug-
ging infrastructure.

An upgrade identifies the classes that need to change
by providing a set of class upgrades: 〈old-class, new-
class, TF, SF, past-SO, future-SO〉. Old-class identifies
the class that is now obsolete; new-class identifies the
class that is to replace it. TF is a transform function that
generates the new object’s persistent state from that of
the old object. SF is a scheduling function that tells a
node when it should upgrade. Past-SO and Future-SO
are classes providing simulation objects. Past-SO’s ob-
ject implements old-class’s behavior by calling methods
on the new object (i.e., it provides backward compatibil-
ity); Future-SO’s object implements new-class’s behav-
ior by calling methods on the old object (i.e., it provides
forward compatibility). An important feature of our ap-
proach is that the upgrade designer only needs to under-
stand two versions: the new one and the preceding one.

Sometimes new-class will implement a subtype of old-
class, but we do not assume this. When the subtype re-
lationship holds, no past-SO is needed, since new-class
can handle all calls for old-class. Often, new-class and
old-class will implement the same type (e.g., new-class
just fixes a bug or optimizes performance), in which case
neither a past-SO nor a future-SO is needed.

We assume that all nodes running the old-class must
switch to the new-class. Eventually we may provide a
filter that restricts a class upgrade to only some nodes
belonging to the old-class; this is useful, e.g., to upgrade
nodes selectively to optimize for environment or hard-
ware capabilities.

3 Infrastructure

The upgrade infrastructure consists of four kinds of com-
ponents, as illustrated in Figure 1: an upgrade server, an
upgrade database, and per-node upgrade layers and up-
grade managers.

A logically centralized upgrade server maintains a
version number that counts how many upgrades have
been installed in the past. An upgrade can only be de-
fined by a trusted party, called the upgrader, who must
have the right credentials to install upgrades at the up-
grade server. When a new upgrade is installed, the up-
grade server advances the version number and makes the
new upgrade available for download. We can extend this
model to allow multiple upgrade servers, each with its
own version number.

Each node in the system is running a particular ver-
sion, which is the version of the last upgrade installed on
that node. A node’s upgrade layer labels outgoing calls
made by its node with the node’s version number. The
upgrade layer learns about new upgrades by querying the
upgrade server and by examining the version numbers of
incoming calls.

When an upgrade layer hears about a new version,
it notifies the node’s upgrade manager (UM). The UM
downloads the upgrade for the new version from the up-
grade server and checks whether the upgrade contains a
class upgrade whose old-class matches the node’s current
class. If so, the node is affected by the upgrade. Other-
wise, the node is unaffected and immediately advances
its version number.

If a node is affected by an upgrade, its UM fetches the
appropriate class upgrade and class implementation from
the upgrade server. The UM verifies the class upgrade’s
authenticity then installs the class upgrade’s future-SO,
which lets the node support (some) calls at the new ver-
sion. The node’s upgrade layer dispatches incoming calls
labeled with the new version to the future-SO.

The UM then invokes the class upgrade’s scheduling
function, which runs in parallel with the current version’s
software, determines when the node should upgrade, and
signals the UM at that time. The scheduling function
may access a centralized upgrade database to coordinate
the upgrade schedule with other nodes and to enable hu-
man operators to monitor and control upgrade progress.

In response to the scheduling signal, the UM shuts
down the current node software, causing it to persist
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Figure 1: An example system that consists of an upgrade server and a single system node. Arrows indicate the direction of (remote)
method calls. The upgrade server stores the upgrade database and publishes upgrades for versions 1 through 4. The node is
running version 2, has a chain of past-SOs to support versions 0 and 1, and has a chain of future-SOs to support versions 3 and 4.

its state. The UM then installs the new class imple-
mentation and runs the transform function to convert the
node’s persistent state to the representation required by
new version. The UM then discards the future-SO and
installs the past-SO, which lets the node continue to sup-
port the previous version. Finally, the UM starts the
new version’s software, which recovers from the newly-
transformed persistent state.

4 Scheduling Functions

Scheduling functions (SFs) are procedures defined by the
upgrader that tell nodes when to upgrade. Unlike exist-
ing systems that coordinate upgrades centrally [4,15,25],
SFs run on the nodes themselves. This lets SFs respond
quickly to changing environments, e.g., to avoid upgrad-
ing a replica if another one fails. This approach can also
reduce communication and so save energy in resource-
constrained systems.

Here are examples of upgrade schedules and SFs:

Upgrade eagerly. The SF signals immediately. This
schedule is useful to fix a critical bug.

Upgrade gradually. The SF decides whether to signal
by periodically flipping a coin. This schedule can avoid
causing too many simultaneous node failures and recov-
eries, e.g., in a peer-to-peer system.

Upgrade one-replica-at-a-time. The SF signals if its
node has the lowest IP address among its non-upgraded
replicas. This schedule is useful for replica groups that
tolerate only a few failures [7, 27].

Upgrade after my servers upgrade. The SF signals once
its node’s servers have upgraded. This schedule prevents
a client node from calling methods that its servers do not
yet fully support.

Upgrade all nodes of class C1 before nodes of class C2.
The SF queries the upgrade database to determine when

to signal its UM. This schedule imposes a partial order
on node upgrades.

Upgrade only nodes 1, 2, and 5. This schedule lets the
upgrader test an upgrade on a few nodes [25].

Many other schedules are possible, e.g., to avoid disturb-
ing user activity or to avoid creating blind spots in sensor
networks.

In general, we cannot predict what parts of a node’s
state an SF might use to implement its policy. Instead, we
provide SFs with read-only access to all of a node’s state
via privileged observers. Restricting SFs to read-only
access prevents them from violating the node’s specifi-
cation by mutating its state.

An SF may also need to know the versions and classes
of other nodes. The upgrade database (UDB) provides
a generic, central store for such information. Upgrade
layers (ULs) store their node’s class and version in the
UDB after each upgrade. SFs can query the UDB to
implement globally-coordinated schedules, and the up-
grader can query the UDB to monitor upgrade progress.
ULs also exchange this information with other ULs and
cache it, so SFs can query ULs for information about
recently-contacted nodes. The upgrader can define addi-
tional upgrade-specific tables in the UDB, e.g., a list of
nodes that are authorized to upgrade. The upgrader can
modify these tables to control upgrade progress.

The main challenge in designing scheduling functions
is ensuring that they behave correctly. Since SFs control
the rate at which node upgrades occur, they can affect
a system’s availability, fault-tolerance, and performance.
We are investigating ways to reason about SF correctness
and their system-wide effects.

5 Simulation Objects

Simulation objects (SOs) are defined by the upgrader
to enable communication between nodes running differ-
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ent versions. This is necessary when nodes upgrade at
different times, since nodes running older versions may
make calls on nodes running newer versions, and vice
versa. It is important to enable simulation in both di-
rections, because otherwise a slow upgrade can partition
upgraded nodes from non-upgraded ones (since calls be-
tween those nodes will fail). Simulation also simplifies
software development by allowing implementors to write
their software as if every node in the system were running
the same version.

SOs are wrappers: they delegate (most of) their be-
havior to other objects. This means that SOs are simpler
to implement than full class implementations, but they
are also slower than full implementations and may not
be able to implement full functionality (as discussed in
Section 7). If a new version does not admit good simu-
lation, the upgrader may choose to use an eager upgrade
schedule (as discussed in Section 4) and avoid the use of
SOs altogether—but the upgrader must bear in mind that
an eager schedule can disrupt service.

An upgrader defines two simulation objects for each
version, a past-SO and a future-SO. A past-SO imple-
ments an old version by calling methods on the object
of the next newer version; thus, a chain of past SOs can
support many old versions. It is installed when a node
upgrades to a new version and is discarded when the in-
frastructure determines (by consulting the UDB) that it
is no longer needed.

A future-SO implements a new version by calling
methods on the previous version; like past-SOs, future-
SOs can be chained together to support several versions.
A future-SO is installed when a node learns of a new
version and can be installed “on-the-fly” when a node re-
ceives a call at a version newer than its own. A future-SO
is removed when its node upgrades to the new version.

At a given time, a node may contain a chain of past-
SOs and a chain of future-SOs, as depicted in Figure 1.
An SO may call methods on the next object in the chain;
it is unaware of whether the next object is the current
object or another SO. When a node receives a call, its
upgrade layer dispatches the call to the object that im-
plements the version of that call. The infrastructure en-
sures that such an object always exists by dynamically in-
stalling future-SOs and by only discarding past-SOs for
dead versions.

Simulation objects may contain state and may use this
state to implement calls. SOs must automatically recover
their state after a node failure. When an SO is installed,
it must initialize its state. Past-SOs initialize their state
from the old version’s persistent state, as depicted in Fig-
ure 2. Future-SOs initialize their state without any input.

SOi-1
p

SOi-1
p

O i

SOi
p

SOi+1
f

O i+1

SOi+2
f

SOi+2
f

Initialize
new SO

Transform
Function

Before i+1
upgrade

After i+1
upgrade

Figure 2: State transforms for upgrading from version i to ver-
sion i+1. Squares represent the states of the current version;
circles represent the states of simulation objects.

6 Transform Functions

Transform functions (TFs) are procedures defined by the
upgrader to convert a node’s persistent state from one
version to the next. In previous systems [11, 13, 17],
TFs converted the old object into a new one whose rep-
resentation (a.k.a. “rep”) reflected the state of the old
one at the moment the TF ran. Our system extends this
approach to allow the TF to also access the future-SO
created for its version, as illustrated in Figure 2. The
TF must then produce a new-class object whose state re-
flects both the state of the old object and the state of the
future-SO. The upgrader can simplify the TF by making
the future-SO stateless; then the TF’s input is just the old
version’s state.

In systems that enable nodes to recover their persistent
state from other nodes, the TF may be able to simply dis-
card a node’s state and rely on state recovery to restore it.
This requires that state transfer work correctly between
nodes running different versions (e.g., using SOs) and
that the scheduling function allow enough time between
node upgrades for state transfer.

Previous systems provide tools to generate TFs auto-
matically [16, 20, 27]. We believe such tools can be use-
ful to generate simple TFs and SOs, but creating complex
TFs and SOs will require human assistance.

7 Correctness Criteria

This section presents informal correctness criteria for
simulation objects. We describe the criteria in the con-
text of a node running version i, Oi, with a single past-
SO, SO i 1

p , and a single future-SO, SO i+1
f . We assume

atomicity, i.e., calls to a node run in some serial order.
We assume that each version i + 1 has a specification

that describes the behavior of its objects. In addition we
require that the specification explain how version i + 1
is related to the previous version i. This explanation can
be given in the form of a mapping function, MF i+1, that
maps the abstract state of Oi to that of Oi+1.
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We have the obvious criteria: SO i+1
f , Oi, and SO i 1

p

must each satisfy their version’s specification. In the case
of Oi we expect “full compliance,” but in the case of the
SOs, calls may fail when necessary. One of the main
questions we are trying to answer is, when is failure nec-
essary?

There can be multiple clients of a node, and these
clients may be running different versions. This means
that calls to different versions can be interleaved. For ex-
ample, a call to Oi (made by a client at version i) may be
followed by a call to SO i+1

f (made by a client at version

i + 1), which may be followed by a call to SO i 1
p (made

by a client running version i 1), and so on. We want
this interleaving to make sense.

Also, clients running different versions may commu-
nicate about the state of a node. A client at version i may
use (observe or modify) the state of the node via Oi, and
a client at version i + 1 may use the state of the node
via SO i+1

f , and the two clients may communicate about
the state of the node out-of-band. We want the state of
the node to appear consistent to the two clients.

7.1 Future SOs

This section discusses the correctness criteria for SO i+1
f .

We need to understand what each method of SO i+1
f is

allowed to do. The choices are: fail, access/modify the
state of Oi, or access/modify the state of SO i+1

f .
When going from version i to i + 1, some state of Oi

is reflected in Oi+1, and some is forgotten. We can view
the abstract state of Oi as having two parts, a dependent
part Di and an independent part Ii, and the abstract state
of Oi+1 as having two parts, Di+1 and Ii+1. These parts
are defined by MF i+1: MF i+1 ignores Ii, uses Di to
produce Di+1, and trivially initializes Ii+1.

Now we can describe the criteria for SO i+1
f . A call

to SO i+1
f uses (observes or modifies) Di+1, Ii+1, or

both. Calls that use Ii+1 execute directly on SO i+1
f ’s

rep. However, calls that use Di+1 must access Oi, or else
clients at versions i and i + 1 may see inconsistencies.

For example, suppose Oi and Oi+1 are web servers,
and Oi+1 adds support for comments on web pages.
MF i+1 produces Oi+1’s pages from Oi’s pages: Di+1 =
Di = the pages. Oi+1’s comments for each page are inde-
pendent of Oi’s state, i.e., Ii+1 = the comments. Calls to
SO i+1

f to add or view comments can be implemented by

accessing SO i+1
f ’s rep, where information about com-

ments is stored, but calls that access the pages must be
delegated to Oi. This way we ensure, e.g., that a modi-
fication of a page made via a call to SO i+1

f will be ob-
served by later uses of Oi.

Thus we have the following condition:

1. Calls to SO i+1
f that modify or observe Di+1 must

be implemented by calling methods of Oi.

This condition ensures that modifications made via calls
to SO i+1

f are visible to users of Oi, and that modifica-

tions made via calls to Oi are visible to users of SO i+1
f .

However, there is a problem here: sometimes it is not
possible to implement calls on Di+1 by delegating to Oi.
Suppose Oi is an Archive (a set that can only grow)
and Oi+1 is a Cache (a set that can grow and shrink).
Then, Di+1 = Di = the set. SO i+1

f cannot implement
removals by delegating to Oi, because Oi does not sup-
port removals. SO i+1

f could support removals by keep-
ing track of removed elements in its own rep and “sub-
tracting” these elements when calls observe Di+1, but
this creates an inconsistency between the states visible to
clients at version i and i + 1. To prevent such inconsis-
tencies, we require:

2. Calls to SO i+1
f that use Di+1 but that cannot be im-

plemented by calling methods of Oi must fail.

So calls on SO i+1
f for removals must fail. SO i+1

f can
still implement additions and fetches by calling Oi.

These conditions disallow caching of mutable Oi state
in SO i+1

f . Caching of immutable state is allowed since
no inconsistency is possible.

7.2 Past SOs

When Oi upgrades to Oi+1, a past-SO, SO i
p, is cre-

ated to handle calls to version i. We can apply all the
above criteria to SO i

p by substituting SO i
p for SO i+1

f ,

Di for Di+1, and Oi+1 for Oi. In addition, SO i
p must

initialize its state from Ii, so that calls to SO i
p that ac-

cess Ii reflect the effects of previous calls to Oi.

7.3 Transform Functions

TF i+1 produces a rep for Oi+1 from that of Oi, i.e., it
is the concrete analogue of MF i+1. Where TF i+1 dif-
fers is in how it produces the concrete analogue of Ii+1:
rather than initializing it trivially (as MF i+1 does),
TF i+1 initializes Ii+1 from the rep of SO i+1

f . This en-
sures that calls to Oi+1 that access Ii+1 reflect the effects
of previous calls to SO i+1

f .

8 Future Work

We believe the design sketched above is a good starting
point for supporting automatic upgrades for distributed
systems, but plenty of work remains to be done. Here are
some of the more interesting open problems:

• Formalize correctness criteria for scheduling func-
tions, simulation objects, and transform functions.
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• Provide support for nodes that communicate by
message-passing rather than by RPC or RMI.

• Provide support for multiple objects per node.

• Investigate ways to run transform functions lazily,
so that a node can upgrade to the next version
quickly and add additional information to its rep-
resentation as needed.

• Investigate ways to recover from upgrades that in-
troduce bugs. One possibility is to use a later up-
grade to fix an earlier, broken one. This requires a
way to undo an upgrade, fix it, then somehow “re-
play” the undone operations [12].

• Investigate ways to allow the upgrade infrastructure
itself to be upgraded.

We are currently implementing a prototype of our up-
grade infrastructure for RPC-based systems [26]. We
plan to use the prototype to evaluate upgrades for sev-
eral systems, including Chord and NFS.
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