
Enabling Flow-level Latency Measurements across Routers in Data Centers
Parmjeet Singh, Myungjin Lee, Sagar Kumar, Ramana Rao Kompella

Purdue University

Abstract
Detecting and localizing latency-related problems at
router and switch levels is an important task to network
operators as latency-critical applications in a data cen-
ter network become popular. This however requires that
measurement instances must be deployed at each and ev-
ery router/switch in the network. In this paper, we study
a partial deployment method called Reference Latency
Interpolation across Routers (RLIR) to support network
operators’ requirements such as incremental deployment
and small deployment complexity without losing local-
ization granularity and estimation accuracy significantly.

1 Introduction
As many data centers today host latency-critical appli-
cations such as web search, retail advertising and rec-
ommendation systems [3], network operators are con-
sciously trying to guarantee low end-to-end latency. End-
to-end latency observed by clients consists of two main
components—between client and the data center, and
within the data center. To reduce the latency between
the client and data centers, many service providers today
heavily rely on infrastructures like Content Distribution
Networks (CDN) where their customers’ traffic is served
at the data center closest to customers’ networks as pos-
sible to minimize latency. In this paper, we are concerned
mainly with the other component, namely, latency within
a data center.

In data center networks, tasks assigned to clusters usu-
ally need to meet stringent latency requirements. For
example, Google’s instant search service [1] provides
search results as a user types key words. This implies
that a search query sent to Google’s data centers needs to
be processed within a few 100ms assuming about 300ms
period between keystrokes. Then, each network com-
ponents such as routers and switches in the data center
network only have tens of µseconds to forward requests
to a cluster as majority time is consumed to process the
query in the cluster. Thus, high network latency signif-
icantly aggravates customer experience on the service
which possibly decreases revenue of service providers
like Google. Similarly, in financial data center networks,
message latencies are quite critical since automated trad-
ing platforms respond to stock price fluctuations to buy a
stock cheaply and sell it when the price goes up. Failing
to guarantee low message latencies can potentially cause
millions of dollars in lost arbitrage opportunities.

Operators running data centers need mechanisms to

detect and diagnose any latency abnormalities suffered
by applications. Most applications involve several layers
of software, I/O, and accesses over the network. While
end-host latencies are typically monitored locally by the
operating system, detecting and diagnosing abnormal la-
tencies through the network is more complicated, since
there exists no native support in latency measurements in
today’s commodity switches.

Two prior works, LDA [9] and RLI [11], provide
switch-based mechanisms to obtain high-fidelity mea-
surements at the microsecond granularity. Out of the
two, RLI provides measurements on a per-flow mea-
surements while LDA provides only aggregate measure-
ments. Thus, the fact RLI provides more fine-grained
measurements than LDA, makes RLI a more suitable ar-
chitecture for the kind of latency measurement support
required in the aforementioned environments. At a high
level, RLI basically works by injecting a reference packet
that carries a timestamp within the packet periodically
between the measurement points, and uses linear inter-
polation to estimate the latency of packets between the
two reference packets. The fundamental premise behind
the idea of linear interpolation is delay locality, whereby
two packets that traverse a path segment roughly at the
same time will potentially experience similar (or corre-
lated) delays. This delay locality assumption forms the
key underpinning of RLI.

While [11] has shown that it produces accurate per-
flow latency measurements, deployment of RLI is a sig-
nificant challenge, since it requires all switches in the
network to implement RLI. In this paper, we consider
a partial deployment of RLI architecture within a net-
work, that involves implementing RLI only in some
routers, or more precisely, implementing RLI across
routers (RLIR). By only upgrading a few routers to im-
plement RLI, we can considerably reduce the deploy-
ment costs, but the disadvantage is that there will be an
increase in the localization granularity, i.e., the size of
the segment to which we can localize the latency spikes.
We believe this is an acceptable tradeoff for already es-
tablished data centers.

The original requirement in RLI for upgrading all
routers stems from the delay locality assumption, be-
cause between a (series of) queue(s) within a router, the
assumption typically holds true. However, implement-
ing RLI across routers in a data center is challenging
since the assumption may not hold true in most data cen-
ters that use multipathing across two routers. Specifi-

cally, packets may potentially take different paths across
a given pair of routers since routers use equal-cost mul-
tipath (ECMP) forwarding. In such cases, delay locality
may not hold true since the delay of a reference packet
that traverses one path may have no correlation with the
delay of a packet that traverses a different path.

Another issue that comes up in deploying RLI archi-
tecture across routers is that of cross traffic. A sender
in RLI architecture adapts its reference packet injection
rate based on an estimated link utilization at the inter-
face. Unfortunately, the sender cannot easily estimate
utilization across routers, because it has no idea about
the amount of cross traffic at intermediate routers.

We deal with these two issues using the following
ideas. First, we deploy RLI instances in every other
switch. RLI instances selectively compute per-flow la-
tency measurements by finding regular packets and ref-
erence packets that traversed the same path (Section 3).
Second, to deal with cross traffic, we essentially assume
worst case utilization. We quantify the impact of this as-
sumption through experiments in Section 4. We observe
that RLIR architecture achieves median relative error of
4.5% for per-flow latency estimates in the presence of
cross traffic yielding 93% link utilization while incorrect
link utilization estimation does not cause too much inter-
ference with regular traffic in terms of packet loss rate.

2 Background
We first provide an overview of RLI architecture before
we discuss our scheme to support per-flow latency mea-
surements across routers. The basic premise behind RLI
is that, within bursts of delay, packets belonging to dif-
ferent flows experience similar queueing delays. For a
pair of interfaces in a switch, two RLI instances (a sender
and a receiver) are installed in each interface along the
forwarding path. Time-synchronization between RLI in-
stances is a basic requirement, that can be achieved by
GPS-based clock synchronization or IEEE 1588 [8]. An
RLI sender regularly injects special packets called refer-
ence packets that carry a (hardware) timestamp to an RLI
receiver. The RLI receiver then easily obtains true delays
of these special packets based on the local clock.

The delay samples can then be used to approximate the
latency of regular packets. Specifically, consider a train
of regular packets arriving at an RLI receiver between
two reference packets. (We first see a reference packet
followed by regular packets and then the second refer-
ence packet.) Given the delays of the two reference pack-
ets (computed from the timestamps), and arrival times
of the reference and regular packets, RLI uses linear
interpolation to estimate per-packet latency. Note here
that the assumption is that regular packets cannot carry a
timestamp since that would require intrusive changes to
router forwarding paths; if they could, there is no need

CORE

EDGE
TOR

C1 C2

E1 E2 E4E3

T1 T2 T3 T4

S1

S3

R3

R1 R2

C3 C4

E5 E6 E8E7

T6 T7 T8T5

S4Sender

Receiver

S2 S5

Figure 1: A data center network architecture with partial
placement of measurement instances.

for reference packets. The idea that RLI uses, i.e., only
a small number of known delays is sufficient to estimate
the delays of individual packets, works because the delay
locality assumption holds true in general. Obtaining per-
flow measurements now is just a matter of aggregating
latency estimates across packets that share a given flow
key. For further details, see [11].

3 RLI across Routers
Consider the problem of detecting and localizing latency
anomalies of all flows traversing paths between a pair
of interfaces in ToR switches T1 and T7 (say, an inter-
face hosting an RLI sender, S1, and an interface hosting
an RLI receiver, R3) from Figure 1. The most effective
deployment strategy is to install RLI instances at every
interfaces of switches/routers that packets can traverse
from T1 to T7 through. Due to its associated difficulty
and cost, however, network operators may want to de-
ploy the solution partially. We propose an architecture
called RLIR (short for Reference Latency Interpolation
across Routers), which requires deploying RLI instances
at fewer number of routers, for a small increase in the
localization granularity (similar to mPlane [10]). For ex-
ample, from Figure 1, we can divide the path between
T1 and T7 into segments T1− C1 and C1− T7 which
will reduce the number of upgraded routers from 5 to 3.

However, deploying RLIR faces two unique chal-
lenges; 1) traffic multiplexing, and 2) cross traffic. While
we mainly deal with the problem and solution of traffic
multiplexing in this section, we briefly discuss the impact
of the presence of cross traffic and evaluate it empirically
in Section 4.

3.1 Traffic Multiplexing
Correct operation of RLI (as discussed in Section 2) re-
quires applying linear interpolation for packets that tra-
versed exactly the same path as reference packets. In
our context, however, there is a possibility of traffic mul-
tiplexing, where other flows that only partially share the
path that reference packets traversed may get multiplexed
with packets that fully share the path. For instance,

S2

Reference packets

Regular packets

In
terp

o
latio

n
 b

u
ffer

R1 / R2

MUX

S1 S2

S1

(a) Upstream

R3

MUX

S3 S4 S5

(b) Downstream

Figure 2: Different traffic multiplexing situations de-
pending on location of an RLI receiver.

in Figure 1, if we are interested in per-flow measure-
ments across S1 and R1, packets from T2 to C1 via
E1 may multiplex with those from T1 to C1. Depend-
ing on the direction of traffic multiplexing, there are two
possibilities—upstream and downstream—that are simi-
lar in nature but require separate solutions.
Upstream. The issue here is that packets from differ-
ent senders may end up at the same receiver; thus, many
RLI senders need to associate with a given RLI receiver,
and the receiver needs a mechanism to distinguish both
regular and reference packets to isolate the streams. The
simplified version of the upstream multiplexing case in
Figure 1 is shown in Figure 2(a). In our example fat-
tree topology, R1 may have two senders, S1 and S2, that
need to be properly demultiplexed, otherwise per-flow
latency estimates at the receivers can be totally wrong.

We address this issue with two ideas. First, each
sender sends reference packets to all intermediate re-
ceivers through which its packets may cross. For exam-
ple, S1 must send reference packets to both R1 and R2,
and so does S2. Second, an RLI receiver needs to know
the source of the reference packets and regular packets.
The RLI receiver can identify reference packets’ origin
easily via an RLI sender ID (or IP address of the inter-
face which S1 sitting on). While regular packets are not
as easily identifiable, note that in many cases (such as
the fat-tree example), the origin of regular packets can be
easily identified by IP address block assigned for hosts in
each ToR switch. Thus, upstream RLI receivers need to
perform simple IP prefix matching.
Downstream. The issue of downstream multiplexing is
much more complicated than that of the upstream case
because of two reasons. First, the unique paths taken
by regular packets coming from intermediate (e.g., core)
switches cannot be determined by IP prefix matching any
more. For instance, regular packets from T1 via the in-
terface consisting of S1 can reach R3 via either C1 or
C2. In such a case, IP prefix matching alone is not suf-
ficient. Second, the receivers have to deal with some
amount of upstream multiplexing as well. For example,
in Figure 2(b), while S3 and S4 are downstream RLI
senders, S5 is an upstream sender, a subset of whose
packets may still end up at R3.

We address the issues of downstream multiplexing de-
pending on the type of RLI sender. For identifying an
upstream sender, we can simply use the prefix-matching
trick discussed in the upstream case. From the exam-
ple, regular packets from a ToR switch T8 to R3 can be
identified by IP prefix matching. For identifying the in-
termediate routers through which packets are routed to
the receiver, we can exploit either of two approaches;
i) packet marking and ii) reverse ECMP computation.
Packet marking is a simple way to address the issue,
where the type-of-service (ToS) field in the IP header
could be used to mark packets, similar to prior solutions
for IP traceback [13]. While this is certainly an easy ap-
proach, it requires some native packet marking support
from core routers, which may or may not be feasible.

The other approach is to leverage the routing informa-
tion to isolate the exact path a given packet may have
taken from the source router (thereby identifying the in-
termediate router through which it has passed). However,
routers typically use ECMP forwarding where a packet’s
source and destination IP addresses are typically hashed
to identify the next hop. While typically switch vendors
do not actually publish the hash functions, we can po-
tentially persuade the switch vendors to reveal them, in
which case, we can ‘reverse’ engineer the intermediate
router through which a packet may have originated.

In our example, R3 uses the hash functions of edge
routers connected to core routers to determine to which
core router a particular packet is forwarded from possi-
ble edge routers. In order to decide if a regular packet
arrives at R3 through S3, R3 could use the hash func-
tion of edge routers E1, E3 and E5 for the packet, be-
cause these edge routers are connected to core routers C1
and C2. If the uplink number decided for forwarding the
packet is one connected to C1, we associate the packet
with reference packets from S3. This become definitely
more cumbersome than the packet marking approach, but
requires fewer firmware changes in the routers.

Partial Placement Complexity. We now discuss the
complexity of our approach in terms of number of routers
to upgrade. Consider k-ary fat-tree topology. We assume
that each measurement instance can play a dual role of a
sender and a receiver. In RLIR, measurement instances
are only installed at interfaces of core routers and upper
ones of ToR switches. If we are only interested in a par-
ticular pair of two interfaces at different ToR switches
like (S1, R3) pair, we need to install two measurement
instances at k/2 core routers and an instance at each ToR
switch (S1 and R3). In total, we need k + 2 instances.
For measurements between only two ToR switches, we
need k(k + 2)/2 instances (k2/2 at core routers and k at
ToR switches). More generally, in case where we mea-
sure per-flow latencies for every pair of ToR switches,
(k/2)2k instances at all core routers are required and k/2

ToR switches need to install k/2 measurement instances,
totaling (k/2)2(k + 1). On the other hand, for full de-
ployment, there are k-pods, each containing k switches,
thus installing two instances for each pair of interfaces
in each switch or router requires O(k4) and the same
order of instances are required at the core level. Thus,
depending on the deployment granularity (e.g., a pair of
two ToR switch interfaces, a pair of two ToR switches,
and so forth) that network operators want to achieve, they
can control the complexity of deployment.

3.2 Cross Traffic
The existence of cross traffic potentially impacts on the
performance of active one-way measurement architec-
ture in two ways. First, it may cause inefficiency to
adapt active probe rate based on the offered traffic load
at a sender as RLI adapts reference packet injection rate
based on an estimated utilization at the sender. Thus,
if estimated link utilization is small at the sender, it in-
creases injection rate, but adaptation may fail because it
does not know the presence of cross traffic and injects
too many reference packets. Second, cross traffic may
significantly alter delay statistics compared to ones that
one can observe when there is no cross traffic. Hence, it
may aggravate the accuracy of per-flow latency measure-
ments. To address this issue, we essentially assume worst
case link utilization and inject RLI reference packets stat-
ically according to the lowest possible rate required for
reasonable accuracy. However, we evaluate both adap-
tive and static injection schemes for the comparison pur-
pose in Section 4.

4 Evaluation
We evaluate performance of RLIR architecture in the
presence of cross traffic across multiple hops. A per-
formance metric is the relative error. Another focus is to
study the amount of interference due to high reference
packet injection rate caused by the unknown utilization
of a bottleneck link. We begin our discussion with simu-
lation environment.

4.1 Simulation Environment
Our simulation environment consists of trace and simula-
tor. A trace is fed into the in-house simulator based on an
open-source NetFlow software–YAF [2]. The simulator
basically lets packets from the trace experience process-
ing and queueing delays across multiple queues (equiva-
lently, multiple routers/switches) and estimates per-flow
latencies. We provide a detailed explanation of each
component in the following.

Trace. We use two 1 minute traces collected from an
OC-192 link [14]; one for regular traffic and the other
for cross traffic. We modify IP addresses of cross traffic
to distinguish from regular traffic. Regular traffic is one

Packet
Trace

Traffic
Divider

Switch1 Switch2

Cross
Traffic

Injector

RLI
Sender

RLI
Receiver

Cross
Traffic

Regular
Traffic

Reference packets

Figure 3: Simulation environment with two hops.

that traverses through a switch where an RLI reference
packet generator (RLI sender) is running on. Cross traffic
does not traverse through the switch but shares same sub-
path with the regular traffic to the switch where an RLI
latency estimator (RLI receiver) is running. The basic
purpose of cross traffic is to adjust link utilization at an
intermediate node for controlled experiments.

Some statistics about regular traffic are as follows. The
number of packets is about 22.4M and the number of
flows is about 1.45M. For cross traffic, there are 70.4M
packets. To control link utilization at an intermediate
node, we control the number of cross traffic packets with
different cross traffic injection models. We discuss these
models later.

Simulator. A simple block diagram for our simulator is
shown in Figure 3. The simulator reads a packet trace
and classifies packets as either regular traffic ones or
cross traffic ones based on IP addresses. Regular traffic
is directly injected to the queue of the first node and be-
comes subject to processing and queueing delays, which
are governed by queue size and packet processing time.
On the other hand, cross traffic arrives at the cross traf-
fic injector module and cross traffic injection rate is con-
trolled by the module. The controlled injection rate even-
tually determines link utilization at the queue of the sec-
ond node (the bottleneck node) along with regular traffic
from the first switch.

The cross traffic injector provides two types of traffic
selection models; uniform and bursty models. Uniform
model randomly selects cross traffic with a given prob-
ability, which can demonstrate a persistent congestion
event as we increase injection rate. Bursty model sim-
ulates a situation where cross traffic arrives in a bursty
fashion by controlling cross traffic injection duration.

An RLI sender can inject reference packets statically
or adaptively. Static injection scheme is a way to inject
a reference packet after every n regular packets, which
we call 1-and-n scheme. Adaptive scheme dynamically
adjusts the injection rate based on the link utilization of
a link where the sender is running. The injection rate
is controlled by a decreasing function of link utilization.
We configured adaptive scheme suggested in [11] by let-
ting injection rate vary between 1-and-10 and 1-and-300.

 0

 0.2

 0.4

 0.6

 0.8

 1

10
-3

10
-2

10
-1

10
0

10
1

C
D

F

Relative error

Adaptive, 93%

Static, 93%

Adaptive, 67%

Static, 67%

(a) Mean estimates, random cross traf-
fic model

 0

 0.2

 0.4

 0.6

 0.8

 1

10
-3

10
-2

10
-1

10
0

10
1

C
D

F

Relative error

Adaptive, 93%

Static, 93%

Adaptive, 67%

Static, 67%

(b) Standard deviation estimates, ran-
dom cross traffic model

 0

 0.2

 0.4

 0.6

 0.8

 1

10
-3

10
-2

10
-1

10
0

10
1

C
D

F

Relative error

Bursty, 67%

Bursty, 34%
Random, 67%

Random, 34%

(c) Comparison of mean estimates be-
tween two cross traffic models

Figure 4: Comparisons of estimation results using different injection schemes and cross traffic models.

For static scheme, we use 1-and-100. The setting of the
static scheme is for the worst link utilization case at the
bottleneck link while that of the adaptive scheme does
not care about the case. RLI receiver only produces per-
flow latency estimates of regular traffic.

4.2 Results
We summarize our results with four aspects: accuracy
of per-flow latency mean estimation, accuracy of stan-
dard deviation estimation, accuracy under bursty cross
traffic model, and impact on loss of regular packets. In
our experiments, with given regular traffic workload and
queueing parameters, we observe about 22% link utiliza-
tion, which always triggers the highest injection rate (1-
and-10) in the adaptive scheme. Thus, note that the in-
jection rate of adaptive scheme is always ten times higher
than the static scheme in our experiments. We compare
these two schemes with focus on the performance of the
architecture with the above three metrics and evaluate if
adaptive scheme with inaccurate link utilization can still
works even across multiple hops.

Accuracy of latency mean estimation. In this exper-
iment, we analyze how much accuracy is obtained by
adaptive and static scheme as the link utilization of a
bottleneck link (Switch2) increases under random cross
traffic model. In Figure 4(a), we first observe that as the
utilization increases, the accuracy of per-flow mean de-
lay estimates also increases. Note that the percentage in
the legend denotes link utilization at the second switch.
For instance, in the static scheme, 70% of flows have less
than 10% relative errors at 93% link utilization. Not sur-
prisingly, adaptive scheme obtains better accuracy than
static one due to its higher reference packet injection
rate. Median relative errors at 67% and 93% utilization
in static scheme are about 4.2% and 31%, where the dif-
ference is slightly less than an order of magnitude. For
adaptive scheme, the difference in median relative er-
ror between 67% and 93% utilization is more significant
than that by static scheme. The results show that higher

injection rate is more effective to estimate per-flow la-
tency accurately even in the presence of cross traffic.

Lower accuracy at 67% utilization is because actual
per-flow latencies at 67% utilization are far smaller than
those at 93% utilization. For instance, we observed the
average latencies as 3.0µs and 83µs approximately, for
67% and 93% link utilization respectively. Thus, the
lower accuracy at lower link utilization causes no sig-
nificant absolute errors.

Accuracy of latency standard deviation estimation.
We investigate per-flow latency standard deviation esti-
mates under the same random cross traffic model. We ob-
serve a similar trend with mean estimates. Specifically,
in adaptive scheme, while less than 10% relative error
is obtained by about 30% flows at 67% link utilization,
the same relative error is obtained by about 90% flows at
93% link utilization. Again, from the curves of adaptive
scheme, median relative errors differ by about an order
of magnitude between 67% and 93% utilization.

Accuracy under bursty cross traffic model. We con-
duct experiments with bursty cross traffic model. We
then compare bursty traffic model with random traffic
model in terms of the accuracy of per-flow latency es-
timates under the same link utilization. We set injec-
tion duration as 10 seconds for bursty traffic model and
packet selection probability as 15%, which gives us 34%
link utilization at the second switch. In a similar fashion,
we achieve 67% link utilization for both traffic models.

From Figure 4(c), we observe that bursty arrival of
cross traffic increases the accuracy of estimates signifi-
cantly. We observe about an order of magnitude decrease
of median relative error between bursty (1% median rel-
ative error) and random model (10% median relative er-
ror) at 67% link utilization. This improvement in accu-
racy is supported by the fact that the true value of average
latency is much higher for bursty model (117µs as op-
posed to 3.0µs for random one) at 67% link utilization.

These results show that RLI architecture can capture
the influence of adversary cross traffic successfully if any

 0

 0.0001

 0.0002

 0.0003

 0.0004

 0.0005

 0.0006

 0.0007

 0.82 0.84 0.86 0.88 0.9 0.92 0.94 0.96 0.98

Lo
ss

 r
at

e
di

ffe
re

nc
e

Utilization

Adaptive
Static

Figure 5: Reference packet interference.

and eventually help network operators isolate and diag-
nose problematic switches/routers across multiple hops.

Impact on packet loss. As we discussed earlier, adap-
tive scheme fails to adjust reference packet injection rate
when a bottleneck link is not the one which an RLI
sender is monitoring. As a result, the adaptive scheme
produces reference packets at higher rate, which can al-
ter the characteristics of traffic such as packet loss. Fig-
ure 5 shows packet loss increase (difference) caused by
reference packets. In the figure, static scheme introduces
extremely small perturbation with regular traffic in that
there is at most 0.0042% increase in packet loss rate at
about 97% link utilization. In case of adaptive scheme,
packet loss rate difference increases up to 0.06%. While
the increase by the adaptive scheme may look significant
in comparison with the static scheme, 0.06% increase
may still be within an acceptable range. More conser-
vatively, we can use the static scheme considering worst
case scenario since it yields reasonable per-flow latency
estimation accuracy.

5 Related Work
A directly related work is mPlane [10]. mPlane addresses
similar issues that we have for incremental deployment.
The main difference between our scheme and mPlane is
that our scheme deals with active per-flow latency mea-
surement architecture but mPlane handles passive aggre-
gate latency measurement solutions such as LDA [9].

A lot of prior work [4, 5, 15] exploited tomography
techniques to infer hop and link characteristics from end-
to-end measurements and topology information. They
only provide aggregate measurements, not per-flow ones.

Duffield et al. proposed trajectory sampling for col-
lecting packet trajectories across a network in [7]. Using
these trajectory samples to infer loss and delay at dif-
ferent measurement points has been proposed in [16, 6].
Incorporating flow key in trajectory samples also enables
per-flow latency estimation, and its efficacy was studied
by Lee et al. in [12] while comparing their approach.
In [12], the two timestamps already stored on a per-flow

basis within NetFlow were exploited to obtain a crude
estimator called Multiflow estimator.

Kompella et al. in [9] proposed a data structure called
LDA. While LDA enables high-fidelity low network la-
tency measurements in data center and algorithmic trad-
ing networks, it only provides aggregate measurements.
RLI [11] exploits delay locality property and basic dis-
cussion is provided in Section 2. While RLI provides
per-flow measurements, full deployment is costly.

6 Conclusion
Full deployment of active one-way per-flow latency mea-
surement solution such as RLI in a data center network is
most desirable to correctly localize latency-related prob-
lems in a switch or router. To reduce deployment com-
plexity and support incremental deployment, we pro-
posed a partial placement method called RLIR and eval-
uated the efficacy of the method in the presence of cross
traffic across routers through simulation. The simulation
results confirm that RLIR architecture supports partial
deployment and works accurately without losing latency
anomaly localization granularity significantly.

Acknowledgments
The authors thank the anonymous reviewers for com-
ments on previous versions of this manuscript. This
work was supported in part by NSF Awards 0831647 and
1054788, and a grant from Cisco Systems.

References
[1] Google Instant. http://www.google.com/instant.
[2] YAF: Yet Another Flowmeter. http://tools.netsa.cert.org/yaf/.
[3] M. Alizadeh, A. Greenberg, D. A. Maltz, J. Padhye, P. Patel, B. Prabhakar,

S. Sengupta, and M. Sridharan. Data center tcp (dctcp). In ACM SIG-
COMM, 2010.

[4] Y. Chen, D. Bindel, H. Song, and R. H. Katz. An Algebraic Approach to
Practical and Scalable Overlay Network Monitoring. In ACM SIGCOMM,
2004.

[5] N. Duffield. Simple network performance tomography. In ACM SIGCOMM
Conference on Internet Measurement, 2003.

[6] N. Duffield, A. Gerber, and M. Grossglauser. Trajectory engine: A backend
for trajectory sampling. In IEEE NOMS, 2002.

[7] N. G. Duffield and M. Grossglauser. Trajectory sampling for direct traffic
observation. In IEEE/ACM Transactions on Networking, 2000.

[8] J. Eidson and K. Lee. IEEE 1588 standard for a precision clock synchro-
nization protocol for networked measurement and control systems. In Sen-
sors for Industry Conference, 2002. 2nd ISA/IEEE, pages 98–105, 2002.

[9] R. R. Kompella, K. Levchenko, A. C. Snoeren, and G. Varghese. Every Mi-
croSecond Counts: Tracking Fine-grain Latencies Using Lossy Difference
Aggregator. In ACM SIGCOMM, 2009.

[10] R. R. Kompella, A. C. Snoeren, and G. Varghese. mPlane: An architecture
for scalable fault localization. In ACM ReARCH, 2009.

[11] M. Lee, N. Duffield, and R. R. Kompella. Not All Microseconds are Equal:
Fine-Grained Per-Flow Measurements with Reference Latency Interpola-
tion. In ACM SIGCOMM, 2010.

[12] M. Lee, N. Duffield, and R. R. Kompella. Two Samples are Enough: Op-
portunistic Flow-level latency estimation using Netflow. In IEEE Infocom,
2010.

[13] S. Savage, D. Wetherall, A. Karlin, and T. Anderson. Practical Network
Support for IP Traceback. In ACM SIGCOMM, 2000.

[14] C. Shannon, E. Aben, kc claffy, and D. E. Andersen. CAIDA Anonymized
2008 Internet Traces Dataset (collection).

[15] Y. Zhao, Y. Chen, and D. Bindel. Towards unbiased end-to-end network
diagnosis. In ACM SIGCOMM, 2006.

[16] T. Zseby, S. Zander, and G. Carle. Evaluation of building blocks for pas-
sive one-way-delay measurements. In Proceedings of Passive and Active
Measurement Workshop (PAM 2001), 2001.

