
Cost-Aware Live Migration of Services in the Cloud
David Breitgand Gilad Kutiel, Danny Raz

IBM, Haifa Research Lab Department of Computer Science Technion, Israel

Abstract

Live migration of virtual machines is an important com-
ponent of the emerging cloud computing paradigm.
While live migration provides extreme versatility of
management, it comes at a price of degraded service per-
formance during migration. The bulk of studies devoted
to live migration of virtual machines focus on the dura-
tion of the copy phase as a primary metric of migration
performance. While shorter down times are clearly desir-
able, the pre-copy phase imposes an overhead on the in-
frastructure that may result in severe performance degra-
dation of the migrated and collocated services offsetting
the benefits accrued through live migration.

We observe that there is a non-trivial trade-off between
minimizing the copy phase duration and maintaining an
acceptable quality of service during the pre-copy phase,
and introduce a new model to quantify this trade-off.
We then show that using our model, an optimal migra-
tion schedule can be efficiently calculated. Finally, we
simulate, using real traces, live migrations of a virtual
machine running a web server and compare the migra-
tion cost using our algorithm and commonly used live-
migration methods.

1 Introduction
Cloud computing platforms allow hosting of multiple
services on a globally shared resource pool where re-
sources are allocated to services on demand. Recent ad-
vances in the server virtualization technologies radically
improve flexibility and versatility of resource provision-
ing. This is done through the ability to collocate several
virtual machines (VM) on the same physical host, to dy-
namically change VM resource allotments and to migrate
VMs across physical servers both within the same data
center and across disparate data centers.

Live migration of VMs is an essential tool for the man-
agement of Cloud Computing. For example, using live
migration, service SLA (Service Level Agreement) com-
pliance can be improved by migrating excessive load to
a less loaded host or by migrating a VM from the host
that will go down for maintenance, thus complying with
performance and availability SLA of the service respec-
tively. However, if used carelessly on the shared net-
work infrastructure, live migration overhead may cause
the network-bound services to violate their SLAs.

The migration process consists of transferring the ser-

This research was partly supported by The Israel Science Founda-
tion ISF, and by the European Union’s Seventh Framework Programme
under grant agreements n◦ 257448, 215605.

vice’s memory image from the source host to the desti-
nation host. In the off-line migration process the source
VM is suspended, the entire VM image is copied to
the destination physical host, and then the copied VM
is restarted on the destination host. With live migra-
tion, most of the migration process takes place while
the source VM continues to run, and the service is alive.
With this method the service is suspended for a very short
period of time before it is restarted on the destination
host. Clearly, live migration has an advantage of keep-
ing the service’s availability with only a short period of
service downtime.

One approach for live migration is the pre-copy ap-
proach in which memory pages are iteratively copied
from the source machine to the destination one, all with-
out stopping the execution of the VM being migrated.
The page copying process may take several iterations
during which dirty pages are continuously transferred.
Normally, since the server’s pages are being modified
continuously, one must, at some point, stop the server
until all the pages have been fully transferred to the desti-
nation (referred in what follows as the copy phase). Sub-
sequently, the VM can be resumed at the destination host.
The actual task of migrating the pages consumes compu-
tation resources and thus may degrade the service perfor-
mance. Furthermore, if live migration is being performed
in-band (i.e., the same network bandwidth is being used
by the migration process and by the service running in
the VM) then we expect even a more severe degradation
in the QoS (quality of service) due to the fact that migra-
tion consumes some of the bandwidth used by clients of
the service.

There is a non-trivial trade-off between minimizing
the copy phase duration and maintaining an acceptable
quality of service during the pre-copy phase. In this pa-
per we concentrate on modeling and optimizing the live
migration process assuming the pre-copy approach. Our
results, however, are general and apply to post-copy mi-
gration as well.

In order to conduct a quantitative study of migration in
this context, we start by evaluating the expected degrada-
tion in service level due to bandwidth limitations. With-
out loss of generality, we consider response time SLAs
for network-bound services. As expected, the probability
of service request to be satisfied by its SLA determined
deadline, decreases with the available bandwidth. Where
the exact parameters vary from service to service. These
results give rise to a cost function model that quantifies
service degradation as a function of the residual band-

1

width (i.e., not used by the migration process).
Using this cost function, we can quantify the overall

cost of a live migration which is the sum of the pre-copy
phase cost and the down time cost, and study the algo-
rithmic aspects of finding an optimal bandwidth alloca-
tion schedule for in-band live migration. In other words,
we define the amount of bandwidth to be used for the
migration in each step (time) of the pre-copy phase1.

We first address a simpler model in which the band-
width used is fixed throughout the entire pre-copy phase.
We develop optimal strategy for this case, which is of an
independent interest, and test it using real traces. We then
use similar building blocks to develop an optimal migra-
tion strategy for the general case, where the amount of
bandwidth used for migration can vary over time.

Our main contributions are as follows:

• We formulate a novel analytical framework that al-
lows to quantify the total cost of live in-band migra-
tion including both pre-copy and copy phases;

• We develop an optimal bandwidth allocation algo-
rithm for in-band live migration;

• We perform a thorough trace-driven simulation study
of the proposed algorithms where the traces are ob-
tained from a real, albeit intentionally simplified sys-
tem.

2 Related Work
Clark et al. studied in [5] live migration of entire OS in-
stances. In their implementation they addressed several
of the issues and trade-offs involved in live local-area mi-
gration. These issues are (a) minimizing the downtime
during which services are entirely unavailable, (b) min-
imizing the total migration time, during which state on
both machines is synchronized and thus may affect reli-
ability and (c) ensuring that migration does not unneces-
sarily disrupt active services through resource contention
(e.g., CPU, network bandwidth) with the migrating OS.
The algorithm they used is as follows: in the first pre-
copy round they transfer pages using a minimum band-
width value. Each subsequent round counts the number
of pages dirtied in the previous round, and divides this
by the duration of the previous round to calculate the
dirtying rate. The bandwidth limit for the next round is
then determined by adding a constant increment to the
previous amount, compensation for the dirtying process.
They empirically determined that 50Mbit/sec is a suit-
able value for this constant.

Timothy Wood et al. [10] propose a smart stop and
copy mechanism to optimize WAN VM migration.

Voorsluys et al. [11] presented a performance evalu-
ation of the effect of live migration of virtual machines

1Clearly, the copy phase will use all the available bandwidth since
we do not have to consider the service level since the service is down.

on the performance of applications running inside Xen
VMs. They found that in most cases, migration over-
head is acceptable but cannot be disregarded, especially
in systems where service availability and responsiveness
are governed by strict SLAs. In such systems, service
providers and consumers agree upon a minimum service
level and non-compliance to such agreement may incur
penalties to providers [2].

Sherif et al. [1] characterize the parameters that affect
migration time and provide two simulation models that
are able to predict migration time to within 90% accuracy
for both synthetic and real-world benchmarks.

Ming Zhao and Renato J. Figueiredo [12] conduct an
experimental study and showed that based on a VMs mi-
gration time it is possible to estimate the expected time
of migration of other VMs having other configuration.

Checconi et al. [3] introduced a stochastic model for
the live migration process. In this model the migration
is done with a fixed bandwidth and each memory page
of the migrated VM has a different probability to be ac-
cessed during a given time frame. It is shown, under
these assumptions, that there exists an optimal ordering
of pages being migrated which minimizes the expected
migration time.

A number of other studies presented individual and
side by side measurements of VM run-time overhead im-
posed by hyper-visors on a variety of workloads [6, 4].
To the best of our knowledge, this work is the first one in
which the total cost of a live migration of virtual machine
is modeled and migration algorithms for an optimal cost
are studied.

3 The Cost Of Live Migration
As described in the introduction, in-band live-migration
consumes part of the bandwidth used to serve clients and
thus may affect user’s perspective of the service. In par-
ticular, we may expect to see a degradation in the QoS. In
order to study optimal migration strategies, we need first
to understand this phenomenon in a quantitative manner.
We assume that an SLA is associated with the service,
that specifies the maximum response time of a query to
the service2. Then, we define the Service Level (SL)
to be the percentage of requests that are being served
within this time bound (deadline). The service SL de-
pends on the workload and specifically on the request’s
rate, the service itself, and the availability of resources
(CPU, memory access, etc.) at the server. However,
it also depends on the bandwidth available on the links
from the servers to the clients.

Assume that the total bandwidth available (both for the

2This is just a one reasonable KPI, the algorithm presented in this
paper is general and holds for any other restrictions implied by the SLA

2

Figure 1: Olio Service Degradation

 0

 0.2

 0.4

 0.6

 0.8

 1

 1500 2000 2500 3000 3500 4000 4500 5000

C
os

t (
pe

rs
en

ta
ge

 o
f r

eq
ue

st
 v

ai
lo

ta
in

g
S

LA
)

Bandwidth Available For the Service (KBits / sec)

HomePage
Login

TagSearch
EventDetail

PersonDetail
AddPerson

AddEvent
Total

migration process and for the service itself) is B3 and
the migration process consuming Bm ≤ B of it, then
the residual bandwidth utilized by the running service is
Bs = B − Bm. Clearly, increasing Bm would speed up
the migration process, but at the same time it will reduce
Bs and thus may also reduce the service level during this
time. We define the cost function F (Bs) to be the portion
of the requests that are not satisfied by their deadline. In
other words, if S denote the serving time of a request
and tSLA denote the period, specified in the SLA, for
a request to be served then we can say that: F (Bs) =
P [S > tSLA].

While the algorithms presented in this paper do not
specifically depend on this cost function, it is important
to understand what is a typical cost function for a Web
based service, in order to better understand the effect of
in-band migration on the services. We conducted a set
of experiments in which we emulated users requests to
several web based services, and measured the portion of
the requests not satisfied within the SLA time bound as a
function of the residual bandwidth.

Figure 1 depicts the cost function of seven request
types that are part of the services offered by Apache Olio
[7] as a function of the available bandwidth. Olio is a
toolkit which is part of the Apache framework that helps
developers evaluate the suitability, functionality and per-
formance of various web technologies. The workload
was generated using Faban [9] by emulating 100 con-
current users. Each user performs one of a seven possi-
ble operations every 5 seconds. Operations are chosen
randomly with probabilities and deadlines as depicted in
Table 1, a detailed description of the workload can be
found in [8].

The curves, presented in Figure 1 show that if the
residual bandwidth is large enough all requests are sat-
isfied within their SLA time bound. When the residual
bandwidth decreases, the probability of a request not to
be satisfied by this time limit increases and when the
bandwidth is very limited, almost non of the requested

3For simplicity we assume that each service has a bandwidth allo-
cation that is used both for serving clients and for management tasks.

Table 1: Olio Services Distribution and Deadline

Operation Distribution Deadline
HomePage 26.15% 1 second
Login 10.22% 1 second
TagSearch 33.45% 2 second
EventDetail 24.68% 2 second
PersonDetail 2.61% 2 second
AddPerson 0.84% 3 second
AddEvent 2.84% 3 second

are satisfied by their SLA based time bound.
To construct a first order approximation of response

time and simplify the analysis, we consider M/M/1
model for the server. As our experimentation shows,
this model is sufficient to gain insights into the prob-
lem. Denote by µ(Bs) the rate at which the server is
capable of sending responses given residual bandwidth
BS , then µ(Bs) = Bs/Average Response Size. De-
note by E(S) the expected serving time of a request,
then, as known from the basic queuing theory, the prob-
ability that the time it takes to handle request is greater
than aE(S) is given by P [S > aE(S)] = e−a where
E(S) = 1

1−ρ · 1
µ , ρ = λ

µ ⇒ E(S) = 1
µ−λ . If

tSLA = aE(S) then

F (Bs) = P [S > tSLA] = e
−tSLA
E(S) = etSLA(λ−µ(Bs))

(1)
Now, given tSLA, the time limitation for a request

to be served, λ, the rate at which requests arrive to the
server and the average response size, one can find the ex-
pected cost for a given service as a function of the resid-
ual bandwidth for the service Bs.

To test this model we conducted an experiment as fol-
lows. An Apache Tomcat served a single 1 MB static
file. A client machine generated requests to this server
in a Poisson process with average rate of 20 requests per
second. The available bandwidth of the server was grad-
ually throttled while we measured the percentage of re-
quests that were not completed within the 1 second limi-
tation. The cost function for such server, using Equation:
1 is F (Bs) = e20−

Bs
8 . This cost function alongside the

measurements we performed are depicted in Figure 2.
One can see the good correlation between the modeled

function and the actual measurements. In our evaluations
throughout the rest of the paper we use the same work-
load on the server being migrated, thus, applying the cost
function F (Bs) = e20−

Bs
8 .

4 Fixed Bandwidth Migration
In this section we focus on a model where migration
bandwidth Bm remains constant throughout the pre-copy

3

Figure 2: Cost Function Model

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 160 170 180 190 200 210

C
os

t (
pe

rs
en

ta
ge

 o
f r

eq
ue

st
 v

ai
lo

ta
in

g
S

LA
)

Bandwidth Available For the Service (MBits / sec)

Mesuerments
Model

phase. Our objective is twofold: we seek (a) an optimal
Bm to minimize the total cost of the live in-band migra-
tion process, and (b) an optimal stopping condition for
the pre-copy phase expressed in terms of the number of
pages that should be transferred before the copy phase
starts.

During the pre-copy phase, pages transferred to the
destination while VM remains alive at the source may
become dirty again. To analyze this process, we de-
fine the dirtying probability of page i (denoted by pi)
to be the probability of page i to be written in a single
time unit. In practice different pages may have differ-
ent dirtying-probability and a write operation to page i
may increase the probability to observe such operation
in adjacent pages. However, to simplify the analysis of
the algorithm we assume that pi is uniform and indepen-
dent. We discuss the actual distribution of the dirtying
probability in real traces later in this section.

As explained in Section 3, the cost function is given by
F (B − Bm) = F (Bs), where F (0) = 1, i.e., when no
bandwidth is available for the service the cost function is
normalized to one. A page is clean if it was sent to the
destination and no write operation was experienced by it
since the last time it was sent; a page that is not clean is
dirty. We use clean(t) to indicate the number of clean
pages at time t.

First, we give an expression of the number of clean
pages after t time units using a bandwidth of Bm (where
Bm is expressed in pages per time unit). Assume that
we have N1 clean pages at time t = 0, then the expected
number of clean pages can be expressed in terms of t and
Bm as follows:

E(clean(t)) = N1·qt+
Bm·t−1∑

i=0

q
i

Bm = N1·qt+
(1− qt)

1− q
1

Bm

(2)
We obtain Equation 2 as follows, the probability of a

clean page to stay clean after t time units is qt and thus
if we already have N1 clean pages the expected number
of clean pages after t time units is N1 · qt. Now, using a

Figure 3: Write Frequency Distribution Over Pages

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4500

 0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

N
um

be
r

of
 W

rit
e

O
pe

ra
tio

ns
 D

ur
in

g
th

e
T

ra
ce

 P
er

io
d

Pages, Ordered By Dirtying Probability

bandwidth Bm for t time units we transfer Bm · t pages.
The first page that is transferred, becomes clean after 1

Bm

time units and thus it has a probability of qt−
1

Bm to stay
clean at the end of this process. The second page that is
transferred, becomes clean after 2

Bm
time units and thus

it has a probability of qt−
2

Bm to stay clean at the end of
this process and in general the ith page has a probabil-
ity of qt−

i
Bm to remain clean at the end of the phase.

Summing the probabilities of the Bm · t pages that being
transferred we get

∑Bm·t−1
i=0 q

i
Bm .

We now want to compute the expected time it takes to
move from a state of N1 clean pages to a state of N2 >
N1 clean pages, using bandwidth Bm. Using Equation 2
we get:

t =
1

ln(q)
· ln(N2 · (1− q

1
Bm)− 1

N1 · (1− q
1

Bm)− 1
) (3)

The expected cost of the pre-copy phase (N1 = 0, N2 =

N) is then: Costpc = 1
ln(q) · ln(1 − N · (1 − q

1
Bm)) ·

F (B − Bm) and the total cost of the migration process
is given by: Costpc +

M−N
B · F (0) where M is the total

number of pages to be migrated. One can now minimize
this value by finding the optimal bandwidth (and optimal
cost) per each N value, and then find the overall minimal
N 4.

We now test the proposed solution on a real-world ap-
plication. To do that we simulate a live migration of a
VM with 512MB RAM and link capacity of 512MBit
/ sec, running an Apache Tomcat web server as de-
scribed in Section 3, where the cost function is given by
F (Bs) = e20−

Bs
8 .

Pages of a real-world application have, of course, a
different dirtying behavior, thus we start by examining
the dirtying pattern of the Tomcat server under the de-
scribed load. We generated a trace of the write operations
to memory pages in such a VM during a period of 2 min-
utes, the number of write operations to each page during

4The more general case where several services being migrated se-
quentially can be handled in a similar manner where there is a global
cost function that is the sum of the cost functions of those services.

4

Figure 4: Comparing The Calculated Cost With The Simulated
Cost (Fixed Bandwidth Migration

 0.01563

 0.01564

 0.01565

 0.01566

 0.01567

 0.01568

 0.01569

 224 226 228 230 232 234 236 238 240 242 244

C
os

t o
f t

he
 L

iv
e

M
ig

ra
tio

n
P

ro
ce

ss

Bandwidth Used For The Migration (MBits / sec)

Calcultaed Cost
Simulated Cost

this period can be seen in Figure 3. This figure displays
the 10,000 pages (out of 133,233) with the highest dirty-
ing probability. One can see that a very small fraction
(about 1%) of the pages has a very high dirtying rate (this
group of pages was referred as Writable Working Sets at
[5]), and there is the major group of the pages with a low
dirtying probability.

Using this trace of write operations, we simulate a live
migration using a range of (fixed throughout the migra-
tion process) bandwidths and compare the simulated cost
with the calculated one. The stop-condition during the
simulations is fixed and was arbitrarily set to 256 pages.
The results can be seen in Figure 4. As one might ex-
pect, there is a difference between the calculated cost
and the simulated one. This difference is the result of
the non-independent and non-uniform dirtying probabil-
ity of a real-world application. However, one can see that
the optimal calculated bandwidth value (228Mbit/sec)
is very close to the optimal simulated bandwidth value
(227Mbit/sec). Furthermore, using the bandwidth value
resulting from calculation for the real migration will re-
sult in a cost very close to the minimal cost possible. The
algorithm described in this section will be referred from
now on as CALM-fixed (Cost Aware Live Migration).

5 Variable Bandwidth Migration
We now consider the case where the bandwidth used for
the migration (Bm) can vary over time. That is, the al-
gorithm needs to decide at each point in time how much
bandwidth to use. Recall that we start with 0 clean pages
(since no page is transfered at this time) and we need to
end the pre-copy phase with a certain number of clean
pages and then perform the copy phase. Our algorithm
works in steps, where in step i we move from i− 1 clean
pages to i clean pages, until we decide to terminate the
pre-copy phase, and we copy the rest of the pages while
the service is down.

Using Equation 3 we get that the step cost, Ci is:

Ci = F (B −Bi)
1

ln(q)
· ln(i · (1− q

1
Bi)− 1

(i− 1) · (1− q
1
Bi)− 1

)

for i > 1. If F is known, the optimal migration band-
width Bi for step i can be derived analytically. Other-
wise, Bi can be obtained using numerical methods. Now,
for each step i we also have to consider ending the pre-
copy phase. The cost of copying a single page during
the copy phase is given by F (0)

B = 1
B since during the

copy phase all available bandwidth is being fully uti-
lized by copying and the service is unavailable. Thus
mini Ci ≥ 1

B is the step in which we stop the pre-copy
phase, halt the service, and continue with the copy step.
We will refer to the above algorithm as CALM-adaptive.

Theorem 1 If the dirtying probability is uniform and in-
dependent, then the CALM-adaptive algorithm achieves
the minimal possible cost for the migration.

Proof 1 It is easy to see that if Ci ≤ 1
B then for every

j > i we also have Cj ≤ 1
B . This together with the

computation of the optimal Bi proves the theorem.

We compare the performance of CALM-adaptive to
the algorithm by Clark et. al. [5] that serves as a basis
of the XEN live migration implementation and will be
referred from now on as the XEN-basic algorithm. As
described in Section 2, XEN-basic algorithm has 4 pa-
rameters that needs to be determined: the minimum and
maximum bandwidth to be used in the migration, the
fixed bandwidth increment, and the stop condition. To
the best of our knowledge, there is no automated way to
find optimal values for these parameters and they need to
be tuned manually. In our experiment we used the pro-
posed values as described in [5]. Namely, the minimum
bandwidth was set to 100MBits/sec, there is no limitation
on the maximum bandwidth, the fixed increment was set
to 50MBits/sec, and the stop condition was set to 256KB.

The comparison is done by simulating live migration
using 3 different traces of page access. These traces were
generated from a VMs with 1GB, 512MB and 256MB
RAM respectively, each of them running Apache Tom-
cat with the load described in Section 3. We tested live
migration with total available bandwidth capacities of
1Gbit/s, 512 Mbit/s, and 256 Mbit/s. In our evaluation
we considered the overall migration cost, the overall mi-
gration time and duration of the downtime period. Table
2 presents the results of this study. We also show the
performance of the CALM-fixed migration algorithm for
reference.

As one can see, performance of CALM-adaptive algo-
rithm is significantly better in terms of cost under all con-
figurations. It can also be noticed that when the link ca-
pacity is relatively low XEN-basic algorithm has a much
shorter down-time but this comes at the cost of longer
service degradation and a higher total cost.

In Figure 5 we compare the bandwidth usage of XEN-
basic and CALM-adaptive algorithm throughout the mi-
gration process for a dirty trace generated from the VM

5

Table 2: Simulation Results

RAM Bandwidth Algorithm Cost Total Time (sec) Down Time (sec)
1GB 1GBits/sec XEN-basic 0.04 105.2 0.0424

CALM-adaptive 0.01 85.78 0.0078
CALM-fixed 0.01 19.93 0.0035

512MB 512MBits/sec XEN-basic 0.27 67.99 0.0039
CALM-adaptive 0.01 79.03 0.0078
CALM-fixed 0.02 142.55 0.0069

512MB 256MBits/sec XEN-basic 48.71 67.22 0.6412
CALM-adaptive 12.05 56.58 11.940
CALM-fixed 12.42 31.90 12.232

256MB 256MBits/sec XEN-basic 36.86 40.38 2.1160
CALM-adaptive 4.05 56.37 0.3940
CALM-fixed 4.52 35.60 4.2325

Figure 5: Bandwidth Usage During Migration

 0

 100

 200

 300

 400

 500

 600

 0 10 20 30 40 50 60 70 80

B
an

dw
id

th
 U

sa
ge

 (
M

B
its

 /
se

c)

Time (second)

XEN-Basic (512MBits/sec)
XEN-Basic (256MBits/sec)

CALM-adaptive (512MBits/sec)
CALM-adaptive (256MBits/sec)

with 512MB RAM, and two different link capacities. As
one can see, XEN-basic algorithm behaves exactly the
same (except when reaching the bandwidth limitation)
regardless of the link capacity, while CALM-adaptive
algorithm adjust itself according to the available band-
width and the cost function.

6 Conclusions
Currently, the bulk of work on live migration perfor-
mance evaluation focuses on the duration of the copy
phase. While this is well founded for out-of-band mi-
gration, for the in-band use case, this measure of perfor-
mance is insufficient since it does not account for per-
formance degradation due to possible bandwidth con-
tention. The concept of the cost function, introduced in
this paper, makes it possible to evaluate the cost of the
migration in terms of SLA violations. We introduced
an efficient algorithm which, under some assumptions,
performs a live migration with the minimal cost possi-
ble. We also provide a simpler algorithm for scenarios
where the optimal algorithm is not applicable, and a fixed
amount of bandwidth should be used. As our simulations
show, our algorithms have a good chance of outperform-
ing existing algorithms on realistic scenarios. A more
extensive performance study with other realistic work-
loads is required to validate that point. The preliminary
results presented in this work are encouraging, however.
Many interesting points are left for further study. One is
the ability to separate the pages to groups according to
their dirtying probability and tune the algorithm to ad-

dress each group separately. Another important factor is
the change in the request rate. We assumed that this rate
is fixed, but one can try to use periods in which the load
is low, and increase the migration rate during these time
periods.

References
[1] Sherif Akoush, Ripduman Sohan, Andrew Rice, An-

drew W. Moore, and Andy Hopper. Predicting the per-
formance of virtual machine migration. Modeling, Anal-
ysis, and Simulation of Computer Systems, International
Symposium on, 0:37–46, 2010.

[2] A.C. Barbosa, J. Sauvé, W. Cirne, and M. Carelli. Eval-
uating architectures for independently auditing service
level agreements. Future Generation Computer Systems,
22(7):721–731, 2006.

[3] F. Checconi, T. Cucinotta, and M. Stein. Real-Time Is-
sues in Live Migration of Virtual Machines. In Euro-
Par 2009–Parallel Processing Workshops, pages 454–
466. Springer, 2010.

[4] L. Cherkasova and R. Gardner. Measuring CPU overhead
for I/O processing in the Xen virtual machine monitor.
In Proceedings of the annual conference on USENIX An-
nual Technical Conference, page 24. USENIX Associa-
tion, 2005.

[5] C. Clark, K. Fraser, S. Hand, J.G. Hansen, E. Jul,
C. Limpach, I. Pratt, and A. Warfield. Live migration
of virtual machines. In Proceedings of the 2nd con-
ference on Symposium on Networked Systems Design &
Implementation-Volume 2, pages 273–286. USENIX As-
sociation, 2005.

[6] T. Deshane, Z. Shepherd, J.N. Matthews, M. Ben-Yehuda,
A. Shah, and B. Rao. Quantitative comparison of Xen and
KVM. Xen Summit, Boston, MA, USA, pages 1–2, 2008.

[7] The Apache Software Foundation. http:
//incubator.apache.org/olio/.

[8] The Apache Software Foundation. http:
//incubator.apache.org/olio/
the-workload.html.

[9] Sun Microsystems. http://faban.sunsource.
net/.

[10] Jacobus van der Merwe Timothy Wood, K.K. Ramakrish-
nan and Prashant Shenoy. CloudNet: Dynamic Pooling of
Cloud Resources by Live WAN Migration of Virtual Ma-
chines. In International Conference on Virtual Execution
Environments (VEE), 2011.

[11] W. Voorsluys, J. Broberg, S. Venugopal, and R. Buyya.
Cost of Virtual Machine Live Migration in Clouds: A Per-
formance Evaluation.

[12] M. Zhao and R.J. Figueiredo. Experimental study of vir-
tual machine migration in support of reservation of cluster
resources. In Proceedings of the 3rd international work-
shop on Virtualization technology in distributed comput-
ing, page 5. ACM, 2007.

6

