
On the Benefit of Virtualization: Strategies for Flexible Server Allocation

Dushyant Arora, Anja Feldmann, Gregor Schaffrath, Stefan Schmid
Deutsche Telekom Laboratories / TU Berlin, Germany

1 Introduction

Network virtualization [2] is an intriguing paradigm
which loosens the ties between services and physical in-
frastructure. The gained flexibility promises faster in-
novations, enabling a more diverse Internet and ensur-
ing coexistence of heterogeneous virtual network (VNet)
architectures on top of a shared substrate. Moreover,
the dynamic and demand driven allocation of resources
may yield a “greener Internet” without sacrificing (or, in
the presence of the corresponding migration technology:
with improved!) quality-of-service (QoS) / quality-of-
experience (QoE).

This paper attends to a fundamental challenge in the
field of network virtualization: the flexible allocation and
migration of servers. As a generic use case, we consider
a network operator offering a flexible service to a set of
dynamic or mobile users, and we present a model that
captures the main cost factors in such a system. This
allows us to shed light on the benefit of the flexible allo-
cation and the use of migration.

Although our cost model is described from a network
virtualization perspective, it is not limited to such archi-
tectures: similar tradeoffs exist, e.g., in classic cloud net-
works, in content distribution networks, in the deploy-
ment of multicast reflectors or mirrored web content, or
in cache placement. Our algorithms and insights are
quite general and applicable to various scenarios, rang-
ing from business applications such as SAP services in
the cloud, to entertainment applications such as mobile
gaming.

Concretely, the algorithms presented in this paper
guarantee a low access latency by adapting the resources
over time while taking into account the corresponding
costs: communication cost, allocation cost, migration
cost (e.g., service interruption), and cost of running the
servers. The algorithms come in two flavors, exploring
the extremal perspectives: online algorithms where allo-
cation decisions are done without any information on fu-

ture requests, and offline algorithms where the (e.g., pe-
riodic) demand is known ahead of time. Both algorithms
are applicable to various delay models (access latency,
delay due to different load functions, etc.). Moreover, we
also describe an optimal offline but static algorithm that
allows us to quantify the cost-benefit tradeoffs of dynamic
resource allocation, and thus to shed light on fundamen-
tal questions such as the use of migration compared to
solutions using static servers. For example, our simula-
tions show that the overall cost can be higher (by up to
hundred percent), if resources are static, in particular if
the demand dynamics is moderate.

The content of this workshop paper is based on the
longer arXiv report 1011.6594; please refer to the tech-
nical report for more details.

2 A Flexible Service Provider

Our work is motivated by the network virtualization
paradigm that decouples services from the underlying
physical infrastructure (the substrate) and for which we
are in the process of developing a prototype architec-
ture [8]. However, the model and tradeoffs studied in the
following are rather general: they arise in many contexts
beyond network virtualization.

We consider a service provider offering a service to
users and which can benefit from the flexibility of net-
work and service virtualization. The goal of the service
provider is to minimize the round-trip-time (RTT) of its
service users to the servers, by triggering migrations de-
pending, e.g., on (latency) measurements.

Graph Model and Access Cost. Formally, we con-
sider a substrate network G = (V,E) managed by a
physical network provider, where v ∈ V are the sub-
strate nodes and e = (u, v) ∈ E, with u, v ∈ V , are
the substrate links; we will refer to the total number of
substrate nodes by n = |V |. Each substrate node v has a
certain strength ω(v) associated with it (number of CPU
cores, memory size, bus speed, etc.). A link is charac-

terized, e.g., by a bandwidth capacity ω(e) and a latency
λ(e).1 In addition to the substrate network, there is a
set T of external terminals (the thin clients, or the users)
that access G by issuing requests for a given virtualized
service hosted on a set of virtual servers S on G. We
will assume that a service is offered redundantly by up
to k = |S| servers, and that there is at most one server
per substrate node (k ≤ n). In order for the clients in T
to access the servers S, a fixed subset of nodes A ⊆ V
serve as Access Points where clients in T can connect to
G. Due to the request dynamics, the popularity of ac-
cess points can change frequently, which may trigger the
migration algorithm.

We define σt to be the multi-set of requests at time t
where each element defines a request access point a ∈ A.
For ease of notation, when clear from the context, we will
simply write v ∈ σt to denote the multi-set of access
points used by the different requests. Our main objective
is to shed light onto the tradeoff between the access costs
Costacc of the users to the service (delay of requests),
the server migration cost Costmig, and the cost Costrun
for running the servers: While moving the servers closer
to the requester may reduce the access costs and hence
improve the quality of service, it also entails the over-
head of migration; moreover, the more active servers, the
more resources are needed (processing requests, CPU,
storage, etc.). In this paper, an approximate model is
considered where the cost of accessing the server Costacc
depends on the sum of the requests’ latencies along the
links to the corresponding servers and the latency due to
the server’s load, which, for server v and at time t, is
given by load(v, t) = f(ω(v), η(v, t)), a function of the
node strength ω(v) and the number of requests arriving
at the servers hosted by v at time t, η(v, t). For example,
a simple model where the load increases linearly would
be load(v, t) = η(v, t)/ω(v):

Costacc(t) =
∑
rt∈σt

delay(rt) +
∑
v∈V

load(v, t).

We assume that requests are routed to the closest server
(w.r.t. access cost).

Server Model and Migration. Each of the (at most
k) servers can assume three different states: not in use,
inactive, and active. If a server is not in use, there are
no costs. An inactive server comes at a certain cost Ri
per time: this cost includes storing the application soft-
ware (e.g., the game) plus certain maintenance costs. The
running cost of an active server Ra is larger, as it also
includes CPU costs, maintaining state in the RAM, or
bandwidth costs. In order to startup a server which is
not in use, a fixed creation cost c is assumed. For in-
stance, this cost captures the installation of the Linux box

1We assume that capacities are given and cannot be
changed/increased, e.g., by investing into the infrastructure.

and the template (copy if already on disk or download
from an NFS share), configuration of the template (e.g.,
setting up IP addresses manually or via DHCP), start-
ing the server etc. Finally, we assume that the cost of
changing from inactive to active state is negligible. Also
the cost of migration depends on many different factors.
While the operating system is typically replicated (copy
Linux box from disk), the virtual server’s configuration
and data/state component must be transmitted over the
network (the entire disk, or simply the /etc and /var
partition). Besides the cost for the bulk data transfer
of the server state, there are opportunistic costs that de-
pend on whether the system supports live migration or
not, possibly some requests need to be routed to other
servers during migration, there can be periods of service
interruption, etc. We will consider a scenario where mi-
gration cost can be approximated by a constant β and
where inactive servers are not migrated. How does β
relate to c? Again, it depends on the scenario. For ex-
ample, c � β for systems which support live migration
(almost no opportunistic or outage costs during migra-
tion), where there is an NFS share and only the server
state is migrated, and where new servers need to be con-
figured manually. On the other hand, for example c� β
in systems where configuration is simple and where mi-
gration happens over multiple provider domains. For the
formal description of the algorithms we will focus on the
more interesting case that β < c: if β ≥ c, migration
is never beneficial, and the problem boils down on when
and where to create and delete servers; our algorithms
can easily be adapted for these situations. Also note that
in our model, migrating a server from node v to an empty
node v′ costs β and that subsequently, node v is empty. It
is not possible to maintain a (for example inactive) copy
of the server at v “for free”; rather, this would require to
set up a new server which costs c, as the template needs
reconfiguration (e.g., new unique network addresses are
needed). However, we emphasize that our approach can
be adopted in many alternative scenarios where the cost
models are slightly different, e.g., where server copies
can be kept during migration and c denotes the cost of
investing into an additional server.

Request Model. How to model the terminal dynamics
(e.g., due to user mobility)? One could assume arbitrary
request sets σt, where σt is completely independent of
σt−1. However, for certain applications it may be more
realistic to assume that the requests move “slowly” be-
tween the access points. We can distinguish between two
different sources of request dynamics: time zone effects
(users from different countries access a service at differ-
ent times of the day) and user mobility. Note that while
users typically travel between different cities or countries
at a limited speed, these geographical movements may
not translate to the topology of the substrate network.

2

Thus, rather than modeling the users to travel along the
links of G, we may consider on/off models where a user
appears at some access point a1 ∈ A at time t, remains
there for a certain period ∆t, before moving to another
arbitrary node a2 ∈ A at time t + ∆t. Often, it is rea-
sonable to assume some form of correlation between the
individual users’ movements. For example, in an urban
area, workers commute downtown in the morning and
return to suburbs in the evening.

Online and Offline Algorithms. In the worst case,
resources in a virtual network need to be allocated on-
line, without any knowledge of the request sequence or
demand in advance. In order to focus on the main proper-
ties and tradeoffs involved in the the dynamic allocation
and migration problem, we assume a simplified online
framework. We assume a synchronized setting where
time proceeds in time slots (or rounds). In each round
t, a set of σt terminal requests arrive in a worst-case and
online fashion at an arbitrary set of access nodesA. Thus
the allocation problem is equivalent to the following syn-
chronous game, where an online algorithm ALG has to
decide on the server allocation and migration strategy in
each round t, without any information on the future ac-
cess requests. Concretely, in each round t ≥ 0: (1) The
requests σt arrive at some access nodesA. (2) The online
algorithm ALG pays the requests’ access costs Costacc(t)
to the corresponding servers. (3) The online algorithm
ALG decides where in G to allocate new or remove ex-
isting servers, which servers should be active and which
inactive, and where to migrate the servers in S. Accord-
ingly, ALG incurs running costs Costrun(t) as well as mi-
gration costs Costmig(t). To evaluate the efficiency of an
online algorithm, its performance is often compared to
the performance of a (sometimes hypothetical) optimal
offline algorithm for the given request sequence. The ra-
tio of the two costs is called the competitive ratio and
captures the “price of not knowing the future”. More-
over, an optimal offline algorithms is useful in scenarios
with predictable or periodic demand.

3 Allocation Strategies

3.1 Online Algorithms
A natural and rather general approach to design alloca-
tion algorithms is based on configurations.

Definition 3.1 (Configuration) A configuration γ de-
scribes, for each server, whether it is not in use, inactive,
or active. In case of inactive and active servers, γ speci-
fies where—i.e., on which node—the server is located.

The following algorithm ONCONF is a natural extension
of [1] to multi-server scenarios; it is based on configura-
tions. We assume that migration is cheap, i.e., that β < c;

a scenario where β > c is analogous and not investigated
further here.

Online Algorithm ONCONF: ONCONF uses a
counter C(γ) for each configuration γ. Time is divided
into epochs. In each epoch ONCONF monitors, for each
configuration γ, the cost of serving all requests from
this epoch by servers kept in configuration γ, including
the access costs (latency plus induced load) of the re-
quests, the server running costs, and possible creation
costs. ONCONF stores this cost in C(γ). The servers
are kept in a given configuration γ̂ until C(γ̂) reaches
k · c, where k is the maximal number of servers. In this
case, ONCONF changes to a configuration γ̂′ chosen uni-
formly at random among configurations with the prop-
erty C(γ) < k · c. If there is no such configuration left,
the epoch ends in that round; the next epoch starts in the
next round and the counters C(γ) are reset to zero.

We can implement ONCONF in such a way that in-
active servers are managed by a queue of constant size.
Inactive servers in the queue are managed in a FIFO man-
ner (older servers are replaced first); in addition an inac-
tive server expires after x epochs for some constant pa-
rameter x. (This also means that in configurations γ in
ONCONF, inactive servers are not included.)

During an epoch, as there are
∑k
i=1

(
n
i

)
many configu-

rations in total, ONCONF visits at most O(k log n) many
configurations (a subset [1] of logarithmic size). The cost
per epoch is at most k · c (this is overly pessimistic). An
optimal offline algorithm has cost at least min{β, c/2}
on average per epoch: in order to achieve a cost smaller
than C(γ) per epoch (for any γ!), the optimal algorithm
needs to change configuration (by migrating or creat-
ing/deleting a server). Thus, in competitive analysis par-
lor [1], we have a worst-case performance guarantee: the
competitive ratio is at most O(c/β · k2 log n).

Clearly, ONCONF needs to be optimized in many re-
spects. For instance, it can make sense to switch between
“close” (with respect to costs) configurations only, or
to deterministically switch to the configuration with the
lowest counter. However, the main problem of ONCONF
is different: due to the configuration complexity, the run-
time is only acceptable for a small number of servers k.

There are many ways to speed up the computations,
and we present one efficient variant for ONCONF: ONTH
is a sequential variant of ONCONF, where only one
server of the configuration changes state per epoch. (TH
stands for the threshold parameter c on which ONTH re-
lies.) Although no competitive ratio is derived, our simu-
lations show that ONTH performs well (see the technical
report).

3

Online Heuristic ONTH: ONTH divides time is di-
vided into two types of epochs: a “small” epoch ends
when we have accumulated a cost of y · β in a given
configuration for some constant parameter y, and a
“large” epoch ends when the accumulated access cost is
larger than the accumulated running cost (of the active
servers); concretely, we will use the following condition:
Costacc/(kcur + 1)− Costrun > c, where kcur denotes the
current number of active servers. When a small epoch
ends ONTH changes to the cheapest (w.r.t. the passed
epoch and including access, migration, and running cost)
configuration among the following: (1) γ (no change),
(2) γ but where one server s is migrated to a different lo-
cation, (3) γ but where one server s becomes inactive (at
most k options). Inactive servers are organized in a first-
in-first-out (FIFO) queue of constant size, i.e., inactive
servers which fall out of the queue are no longer in use.
Inactive servers in the queue expire after x · β rounds for
some parameter x (x = 20 in our simulation). When a
large epoch ends, a new server is activated at an optimal
position with respect to the access cost of the latest large
epoch.

3.2 Offline Algorithms

The online perspective assumed in the last section may
be overly pessimistic in reality. For example, if the re-
quests follow a regular pattern (e.g., a periodic pattern
per day or week), offline algorithms can be used for op-
timal server allocation over time. Offline algorithm are
also useful to study the theoretical benefits of dynamic
allocation compared to optimal static solutions, e.g., in
simulations; moreover, when comparing the optimal of-
fline algorithms to the online algorithms, the competitive
ratios—“the price of not knowing the future”—can be
computed.

This section presents an optimal offline algorithm OPT
for our resource allocation optimization problem. It turns
out that offline strategies can be computed for many dif-
ferent scenarios, and we describe a general algorithm
here. Algorithm OPT is based on dynamic programming
techniques and also uses the concept of configurations (cf
Definition 3.1). Recall that given a configuration γ, ac-
cess costs Costacc, migration costs Costmig, and the run-
ning costs Costrun over time can be computed.

OPT exploits the fact that the migration problem ex-
hibits an optimal substructure property: Given that at
time t, the k servers are in a configuration γ, then the
most cost-efficient path (migrations, activation and deac-
tivation of servers, creation, etc.) that leads to this con-
figuration consists solely of optimal sub-paths. That is, if
a cost minimizing path to configuration γ at time t leads
over a configuration γ′ at time t′ < t, then there cannot

be a cheaper migration sub-path that leads to γ′ at time
t′ than the corresponding sub-path.

OPT essentially fills out a matrix
opt[time][configuration] where opt[t][γ] contains
the cost of the minimal path that leads to a configuration
where the servers satisfy the requests of time t in a
configuration γ. Recall from Definition 3.1 that a
configuration γ describes for each virtual server s at
which physical node v it is hosted and whether s is not
in use, inactive, or active.

Assume that in the beginning, the system is lo-
cated in configuration γ0. Thus, initially, opt[0][γ] =
Cost(γ0 → γ) + Costrun(γ) +

[∑
v∈σ0

Costacc(v, γ)
]
,

where Cost(γ1 → γ2) denotes the cost of changing from
configuration γ1 to γ2 (cost of migrations, creation costs,
etc.), Costrun(γ) denotes the cost of running the inac-
tive and active servers for one time unit in configura-
tion γ, and

∑
v∈σ0

Costacc(v, γ) denotes the access costs
(request latency and server load) resulting from the re-
quests of σ0 accessing the active servers in configuration
γ. (W.l.o.g., we assume that the cost Costacc contains the
first wireless hop from terminal to substrate network.)

For t > 0, we find the optimal values opt[t][γ] by con-
sidering the optimal paths to any configuration γ′ at time
t − 1, and adding the migration cost from γ′ to γ. That
is, in order to find the optimal cost to arrive at a configu-
ration with servers at γ at time t:

min
γ′

opt[t − 1][γ′] + Cost(γ′ → γ) + Costrun(γ) +
∑
v∈σt

Costacc(v, γ)

where we assume that Costacc includes the first (wire-
less) hop of the request from the terminal to the substrate
network, and where Cost(γ → γ) = 0.

Observe that the computational complexity of OPT is
high for scenarios with many servers, and clustering or
sampling heuristics may be used to speed up the compu-
tations.

4 Benefit of Dynamic Allocation

We conducted several experiments to study the perfor-
mance of our algorithms and shed light onto the bene-
fits of dynamic server allocation. We studied both artifi-
cial Erdös-Rényi graphs random graphs (with connection
probability 1%) as well as more realistic graphs taken
from the Rocketfuel project (including the correspond-
ing latencies for the access cost). To simulate OPT, we
constrain ourselves to line graphs. If not stated other-
wise, we assume that β = 40, that c = 400, and that
Ra = 0.25 and Ri = 0.05; for experiments with β > c,
we set β = 400 and c = 40.

We consider two different scenarios: time zone effects
(users from different countries access the service at dif-
ferent times of the day) and user mobility.

4

Time Zones Scenario: This scenario models an ac-
cess pattern that can result from global daytime effects.
We divide a day into T time periods. For each time t, p%
of all requests originate from a node chosen uniformly
at random from the substrate network (we use the same
locations for each day). The sojourn time of the requests
at a certain location is given by a parameter λ. In addi-
tion, there is background traffic: the remaining requests
originate from nodes chosen uniformly at random from
all access points.

Commuter Scenario: This scenario models an access
pattern that can result from commuters traveling down-
town for work in the morning and returning back to the
suburbs in the evening. The scenario comes in two fla-
vors: static and dynamic.

Static Load: We use a parameter T to model the fre-
quency of the changes. At time tmod T < T/2, there are
2t mod T requests originating from access points chosen
uniformly at random around the center of the network.
In the second half of the day, i.e., for t ∈ [T/2, ..., T],
the pattern is reversed. The total number of requests per
round is fixed to 2T/2. Concretely, at time ti < T/2,
the requests originate from p = 2ti mod T of all access
points including the network center (2T/2/p requests per
access point), until single requests originate from 2T/2

access points. Then, the same process is reversed until
all 2T/2 requests originate from a single access point: the
network center. We assume that the time period between
ti and ti+1 is given by a fixed parameter λ.

Dynamic Load: The total number of requests per
round is not fixed to 2T/2. At time ti < T/2, the requests
originate from p = 2ti mod T of all access points includ-
ing the network center (one request per access point),
until single requests originate from 2T/2 access points.
Then, the same process is reversed until we have a single
request originating from a single access point: the net-
work center. We assume that the time period between ti
and ti+1 is fixed and we denote it by parameter λ.

The main objective of our algorithms is to adapt to
dynamically changing demands in an efficient manner.
Where to allocate or migrate how many servers depends
on the origins and the size of the requests, and also on
how access cost increases as a function of load. Due
to space constraints, in the following, we will focus on
the important question of the use of flexible allocation
in virtual networks. For additional simulation results
(e.g., for the competitive ratio of ONTH), see arXiv re-
port 1011.6594.

When is dynamic allocation and migration technology
most useful? As a reference point, we use the following
static (but offline) algorithm STAT.

Static Heuristic STAT: For a given request sequence
σ, STAT determines the number of servers kopt as fol-
lows. For each i ∈ {1, . . . , k}, we compute the cost of
the following greedy static configuration for σ: one ac-
tive server j ∈ {1, . . . , i} after the other is placed greed-
ily at the location which yields the lowest cost for σ,
given the already placed servers {1, . . . , j − 1}. kopt is
defined as the i with minimal cost.

Figure 1 (left) plots the ratio of the total cost incurred
by STAT and the total cost incurred by OPT in the dy-
namic load commuter scenario as a function of λ. As
can be seen, for very high dynamics as well as for very
low dynamics, the allocation flexibility is of limited ben-
efit. However, for moderate dynamics, it is worthwhile
for OPT to exploit the request patterns, and a better per-
formance can be achieved (up to a factor of two). This
result also meets our expectation. Note that the two cases
β < c and β > c are not directly comparable. In both
cases, the creation costs dominate due to a low T and
small number of inactive servers, but differ significantly
in the two scenarios, resulting in different absolute costs
and hence not directly comparable ratios.

Also in a commuter scenario with static load (Figure 1,
middle), β < c yields the lower ratio, fluctuating more or
less constantly around 1.2 until it goes down to one for
static access patterns. For β > c, flexible allocation pays
off and the ratio goes up to almost two for intermediate
λ values, but the variance is higher as well.

The dependency on λ is more accentuated in the time
zone scenario: the benefit of flexible allocation highly
depends on the dynamics. Figure 1 (right) shows that
while a very high dynamic yields a moderate ratio, the
ratio goes up quickly already for small λ, and then the
use of dynamic allocation declines more or less linearly
with lower dynamics. In contrast to the commuter sce-
nario, in the time zone scenario the requests move highly
correlated and migration is attractive.

5 Related Work

Our work is motivated by the network virtualization
paradigm which promises to overcome the “ossification”
of the Internet (see e.g., [2]). It is expected that in the fu-
ture, virtual networks will be allocated, maintained and
managed like clouds, offering flexibility and elasticity of
resources allocated for a limited time, driven by the de-
mand. Contrariwise, virtual networks can be an enabler
for novel cloud architectures.

Our work builds upon the single server architecture
studied in [1], where a competitive online algorithm has
been described to migrate a single server depending on
the dynamics of mobile users. In contrast to [1] which
attends to the question of where to migrate a server, we,

5

Figure 1: Left: The use of flexible allocation: ratio of STAT and OPT costs in dynamic load commuter scenario as a
function of λ, where runtime was 200 rounds, T = 4, network size 5, and averaged over 10 runs. Middle: The use of
flexible allocation: ratio of STAT and OPT costs in static load commuter scenario as a function of λ, where runtime
was 200 rounds, T = 4, network size five, and averaged over 10 runs. Right: Ratio of STAT and OPT cost as a function
of λ in time zone scenario (p = 50%). Runtime 200 rounds, three requests per round, network size five, and averaged
over ten runs.

in this paper, initiate the study of when to allocate addi-
tional servers. This also differs from our work on online
VNet embeddings [3] where virtual networks are stati-
cally packed in the most resource efficient locations.

Hao et al. [4] provide a motivation for our work by
showing that under certain circumstances, migration of a
Samba front-end server closer to the users can be benefi-
cial even for bulk-data applications. Of course, the ques-
tion of how to dynamically embed and migrate virtual
servers is fundamental and has been studied in several
contexts, e.g., in cloud computing or content distribu-
tion networks [7, 9]. For instance, [6] presents the Mo-
bitopolo infrastructure to facilitate flexible deployment
and migration of distributed applications.

Our problem is a special instance of a metrical task
system and is related to uncapacitated facility location
(UFL) where the number of facilities (the virtual servers)
is jointly derived along with the locations as part of a so-
lution that minimizes the combined service hosting and
access cost. Laoutaris et al. [5] propose a heuristic al-
gorithm to solve the facility location problem in a dis-
tributed manner, and allow for facility migration (un-
like in our case, the corresponding cost is proportional to
path length); by aggregate and central re-computations of
neighborhoods, an increase/decrese of resources occurs
over time. Although eventual convergence is shown, the
quality of the resulting equilibrium is not analyzed for-
mally. Zhang et al. [9] extend the problem formulation
of [5] to server loads and prove a constant (static) ap-
proximation guarantee. However, the performance over
time in a dynamic setting is unclear, and the benefits of
dynamic resource allocation cannot be assessed. More-
over, in our more granular model, there are not only fa-
cility creation but also running costs and the notion of
mobility of requests (i.e., a dynamic demand over time)

is made explicit. Finally, our algorithms use efficient in-
active states to save costs while avoiding to shut down a
server entirely.

References
[1] BIENKOWSKI, M., FELDMANN, A., JURCA, D., KELLERER,

W., SCHAFFRATH, G., SCHMID, S., AND WIDMER, J. Com-
petitive analysis for service migration in vnets. In Proc. 2nd ACM
SIGCOMM VISA (2010).

[2] CHOWDHURY, M. K., AND BOUTABA, R. A survey of network
virtualization. Elsevier Computer Networks 54, 5 (2010).

[3] EVEN, G., MEDINA, M., SCHAFFRATH, G., AND SCHMID, S.
Competitive and deterministic embeddings of virtual networks. In
ArXiv Technical Report 1101.5221 (2011).

[4] HAO, F., LAKSHMAN, T. V., MUKHERJEE, S., AND SONG, H.
Enhancing dynamic cloud-based services using network virtual-
ization. SIGCOMM Comput. Commun. Rev. 40, 1 (2010), 67–74.

[5] LAOUTARIS, N., SMARAGDAKIS, G., OIKONOMOU, K.,
STAVRAKAKIS, I., AND BESTAVROS, A. Distributed placement
of service facilities in large-scale networks. In IEEE INFOCOM
(2007).

[6] POTTER, R., AND NAKAO, A. Mobitopolo: A portable infras-
tructure to facilitate flexible deployment and migration of dis-
tributed applications with virtual topologies. In Proc. 1st ACM
Workshop on Virtualized Infrastructure Systems and Architectures
(VISA) (2009), pp. 19–28.

[7] PRESTI, F. L., PETRIOLI, C., AND VICARI, C. Distributed dy-
namic replica placement and request redirection in content delivery
networks. In Proc. 15th MASCOTS (2007).

[8] SCHAFFRATH, G., WERLE, C., PAPADIMITRIOU, P., FELD-
MANN, A., BLESS, R., GREENHALGH, A., WUNDSAM, A.,
KIND, M., MAENNEL, O., AND MATHY, L. Network virtual-
ization architecture: Proposal and initial prototype. In Proc. VISA
(2009).

[9] ZHANG, Q., XIAO, J., GÜRSES, E., KARSTEN, M., AND
BOUTABA, R. Dynamic service placement in shared service host-
ing infrastructures. In NETWORKING (2010), pp. 251–264.

6

