
Accelerating The Cloud with Heterogeneous Computing
Sahil Suneja, Elliott Baron, Eyal de Lara, Ryan Johnson

University of Toronto

Abstract
Heterogeneous multiprocessors that combine multiple
CPUs and GPUs on a single die are posed to become
commonplace in the market. As seen recently from the
high performance computing community, leveraging a
GPU can yield performance increases of several orders
of magnitude. We propose using GPU acceleration to
greatly speed up cloud management tasks in VMMs.
This is only becoming possible now that the GPU is
moving on-chip, since the latency across the PCIe bus
was too great to make fast, informed decisions about
the state of a system at any given point. We explore
various examples of cloud management tasks that can
greatly benefit from GPU acceleration. We also tackle
tough questions of how to manage this hardware in a
multi-tenant system. Finally, we present a case study
that explores a common cloud operation, memory dedu-
plication, and show that GPU acceleration can improve
the performance of its hashing component by a factor of
over 80.

1 Introduction
Over the last decade, Graphical Processing Units (GPU)
have been extensively used to speed up the performance
of applications from a wide range of domains beyond
image processing, including bioinformatics, fluid dy-
namics, computational finance, weather and ocean mod-
eling, data mining, analytics and databases, among oth-
ers.

We argue that GPUs could be used to greatly acceler-
ate common systems and management tasks in cloud en-
vironments, such as page table manipulation during do-
main creation and migration, memory zeroing, memory
deduplication, and guest domain virus scanning. This
class of tasks has so far not been amenable to GPU accel-
eration due to the need to perform DMA transfers over
the PCIe bus associated with traditional discrete GPUs.
We argue that the rollout of heterogeneous architectures,
such as the AMD Fusion and Intel Sandy Bridge, which
include a GPU on-socket with direct access to main
memory (as shown in Figure 1), is a game changer that
motivates a re-evaluation of how system-level tasks are
implemented in cloud environments.

With heterogeneous architectures rapidly becoming
mainstream, we will soon begin to see these processors
in data centers. The GPU cores they provide will cer-

Main Memory

GPU
Cores

CPU
Cores

PCIe Bus

Memory
Controller

System
Bus

AMD Fusion APU

&

Figure 1: AMD Fusion architecture [1].

tainly not be used to display graphics in a data center,
and are unlikely to be explicitly programmed for gen-
eral purpose computation by a client’s software. This
means that these GPU cores are likely to be idle or
under-utilized in data centers. We argue that these GPU
cores can be leveraged to offload administrative tasks
in the data center. Previous work demonstrates that in-
telligently scheduling a task’s execution between both
GPU and CPU cores can yield significantly better per-
formance and energy efficiency than strictly using CPU
or GPU cores alone [8]. Additionally, since the GPU
cores will have their own cache hierarchy, any memory-
intensive tasks will not pollute the CPUs’ caches.

In this paper, we give examples of system level op-
erations in a virtualization-based cloud that can benefit
from GPU acceleration, and we discuss the challenges
associated with efficiently sharing and managing the
GPU in a cloud environment. To illustrate the potential
benefits of GPU acceleration of common cloud manage-
ment tasks, we conduct a case study which uses GPU ac-
celeration to speed up the hashing component of a mem-
ory deduplication task. Experiments with two off-the-
shelf discrete GPU cards (a heterogeneous chip with an
on-socket GPU, such as the AMD Fusion, was not com-
mercially available at the time we ran our experiments)
show that when memory transfer time is not included,
it is possible to achieve speedups of more than 80 times
over sequential CPU hashing. While not definitive, these
results give a good indication of the potential perfor-
mance that an on-socket GPU with direct access to main
memory could achieve. Even with the current memory
transfer limitations, we observed a 6 fold speedup.

1



2 Accelerating The Cloud
This section details several examples of data parallel
cloud management tasks that a VMM routinely per-
forms, which can benefit from GPU acceleration.

Memory Cleanup: When a VMM destroys a VM, it
is expected that none of the potentially sensitive infor-
mation residing in the VM’s memory is leaked when it
is reused. Thus, at some point before the memory is to
be allocated to a new VM, it should be cleared out. Us-
ing a GPU with direct access to the memory in question,
a large number of memory pages could be zeroed in par-
allel. This would free the CPU to perform other hypervi-
sor management tasks or service guest VMs, and allow
these pages to be reused much sooner.

Batch Page Table Updates: These updates involve
remapping a guest OS’ pseudo-physical page frame
numbers to the actual machine page frame numbers as
the guest VM is transported to a different physical host,
such as in VM migration and cloning, or is suspended
and resumed at a later point in time either on the same or
a different host machine. This mapping process is also
required upon the creation of a fresh VM. These page
table updates are all independent of each other, and can
be accelerated via the SIMD (Single Instruction, Multi-
ple Data) processing capabilities of a GPU.

Memory Hashing: Offloading compute-intensive
hashing to a GPU provides a double benefit. Not only
does it lower CPU overhead, but the GPU can process
orders of magnitude more data per unit time; this accel-
eration would prove advantageous to at least two aspects
of the cloud infrastructure: effective memory dedupli-
cation through page sharing, and improved flexibility in
VM migration and cloning.

Page sharing [2, 5, 10] allows over-provisioning of
physical memory in a virtualized environment by ex-
ploiting homogeneity in cloud workloads, i.e. multiple
co-located VMs running the same operating system and
similar application stacks. Page sharing eliminates all
but one copy of each duplicated page, modifying guest
address translations to point to that single master copy.
One popular technique scans the system periodically and
builds a hash table of all memory pages [2, 10]; pages
which hash to the same hash table index are candidates
for page sharing. Faster hashing allows more frequent
scans, thereby discovering more opportunities for page
sharing.

Similarly, accelerated page hashing (digest genera-
tion) enables an efficient realization of content address-
able storage (CAS), which can be used to accelerate VM
migration and cloning. Through the high speed page
matching offered by CAS, it may not be necessary to re-
quest the network transfer of all memory pages during
the process of rebuilding the working memory set of a
cloned or migrated VM. These might be locally avail-

able on the host system, and a rapid local retrieval may
thus satisfy the page requirement.

Memory Compression: Another technique to ob-
serve memory savings is compressing infrequently ac-
cessed pages in memory. The data parallel nature of
this operation at the memory page level makes this yet
another candidate for GPU acceleration, allowing extra
memory to be available faster.

Virus Signature Scanning: Searching for virus sig-
natures in physical memory or in incoming network data
packets is another service that a hypervisor may provide
to all its guests. Scanning memory or packet data for
pattern matching of known signatures can be accelerated
considerably by GPU processing, leading to more ag-
gressive security monitoring [7, 9].

3 Managing a Virtualized GPU
This section outlines various hardware management
challenges that arise in heterogeneous processors. We
show that a VMM can address these challenges elegantly
on a multi-tenant system. While on-chip graphics are
the present, this discussion is certainly relevant to other
kinds of accelerators we may see in future processors.

Exploiting processor heterogeneity for hypervisor
level management tasks will usually require escalated
privileges. Thus, an important challenge lies with shar-
ing hardware resources effectively between privileged
systems code (hypervisor and control-domain functions)
and a non-privileged guest’s applications. Further, any
such sharing must maintain security and performance
isolation across multiple guest VMs. In particular, a
rogue or buggy process must not interfere with the confi-
dentiality, integrity, or availability of another which hap-
pens to share the same GPU.

An easy, but suboptimal solution is to restrict access
of the accelerator just to the hypervisor or a privileged
control-domain, such as Xen’s Dom0. Security would
not be a concern as the GPU hardware is not even ex-
posed to unprivileged guests, but these resources will
likely remain underutilized.

A better alternative would expose the GPU to the
guests in time slices. The VMM can use traditional CPU
scheduling techniques to manage execution on the GPU,
with fine-grained control over the amount of time it al-
locates for itself and its guests. Furthermore, tasks can-
not interfere with each other as the device is allocated
to only one task at a time. Again, the GPU may go un-
derutilized if that task does not make full use of the re-
sources it was granted. Although only one task runs at a
time, it is also worth noting that the VMM will still need
to impose memory protection on this task. For instance,
the VMM must prevent tasks from accessing data left
behind by previously completed or preempted tasks.

A superior policy might introduce space multiplexing,

2



partitioning GPU resources concurrently among tasks
from several guests. Space-based multiplexing could
be implemented in several ways. If hardware support
for virtualization were to become available on the GPU,
then individual GPU slices could be mapped directly
onto guests. For this to be possible, the GPU would have
to police memory accesses itself. The VMM would then
be in charge of managing slice allocation.

Given the current lack of hardware support for virtual-
ization on existing GPUs, an alternative software-based
approach would be where the VMM, or rather its priv-
ileged domain, arbitrates access to the GPU by virtual-
izing the General Purpose GPU (GPGPU) API. How-
ever, the VMM would also have to provide mechanisms
to support simultaneous execution of multiple compute
kernels. CUDA 3.0 [6], e.g., enables simultaneous ex-
ecution of tasks, but provides no memory protection to
isolate them from each other.

In a software based implementation, the guest VM
would access the GPU by sending the code of the ker-
nel to run and any associated parameters to the VMM,
which would then determine which of the kernels that
have been sent to it can execute simultaneously. To per-
form this evaluation, the VMM must be able to deter-
mine which regions of memory the kernel attempts to
access. This will likely require support from the kernel
compiler, and may also demand a more restrictive API
for the guest (e.g. disallowing arbitrary memory access
via pointer arithmetic). Once the VMM is certain of the
memory the kernel will access, it can make an appro-
priate mapping of kernels to the GPU’s execution units
that is both safe and that will give high occupancy. Fi-
nally, the VMM must then enqueue the kernels using the
GPGPU API. If this API supports concurrent kernel ex-
ecution, then the VMM will simply enqueue the kernels
using the API. If the API does not support concurrent
execution, a possible workaround could be for VMM to
recompile the kernels into a single “meta-kernel.” The
meta-kernel uses thread indexes to execute each kernel’s
code on a subset of the hardware.

An advantage of using the VMM to control access to
the GPU is that the VMM has a global view of the sys-
tem. As such, the VMM can make informed decisions
about scheduling time and space on the GPU to achieve
better system performance. In contrast, in the case of
an entirely hardware-managed virtualized GPU, where
each guest is assigned a slice, these slices may go unused
if the guest does not have work to perform at that time.

4 Case Study: VM Page Sharing
To illustrate the benefits and challenges of accelerating
hypervisor functions, we evaluated the use of GPUs to
optimize the MD5 hashing component of a page shar-
ing task. Since a heterogeneous chip with an on-socket

Work-
item 1

Private
Memory

Work-
item N...

Compute Unit 1

Local Memory

Compute Unit M

...

Compute Device

Compute Device Memory

Global Memory

Private
Memory

...

...

Work-
item 1

Private
Memory

Work-
item N

Local Memory

Private
Memory

Figure 2: The OpenCL memory hierarchy. Work-groups
are scheduled to compute units, each with their own low-
latency shared local memory. Global memory is off-chip
and has much higher latency.

GPU, e.g., AMD Fusion, was not commercially avail-
able at the time of writing, we conducted our case study
using two off-the-shelf discrete GPU cards. While this
experimental setup is not ideal, we believe that by iso-
lating the memory access and computation components
of the task we can get a rough estimate of the potential
performance of an on-socket GPU with direct access to
main memory.

4.1 General Purpose GPU Computing
We use OpenCL, a vendor-neutral heterogeneous com-
puting framework for GPGPU computing. In OpenCL,
a compute kernel defines the data parallel operation we
wish to apply to the input data. Kernels are written us-
ing C functions, but when invoked are executed across
a range of GPU threads or work-items grouped together
into work-groups. All work-items within a work-group
can access a faster shared on-chip local memory, see Fig-
ure 2. A kernel can be thought of as the body of a nested
loop, where the outer loop corresponds to work-groups
and the inner loop corresponds to work-items.

4.2 GPGPU Page Sharing
We ported the MD5 implementation by Juric [4] from
CUDA to OpenCL. The MD5 algorithm performs a se-
quence of 64 operations on each 512-bit (64-byte) chunk
of the input. The resulting hash of one chunk is then
fed as an input to the algorithm as it processes the next
chunk. Each 4K memory page can be viewed as 64
chunks of 64 bytes each.

The need to transfer the hash output of one chunk
to the next severely constrains the granularity of paral-
lelism, limiting the assignment of a single work-item per
memory page. To improve parallelism, we adopted op-

3



1 2 3 4 5 6 7 8 61 62 63 64

...
thread 1 thread 2 thread 16

02efba...34

9 10 11 12 13 14 15 16

thread 3 thread 4

1 2 3 4

thread 1

ab9802...1f

kernel 1

kernel 2

Figure 3: Our parallel hashing algorithm operating on
a single 4K page. Kernel 1 hashes 64-byte chunks into
intermediate values. Kernel 2 hashes the intermediate
values into the final value.

timizations proposed by Hu et al. [3] for hierarchical
hashing. The optimized algorithm has a much finer gran-
ularity of one 64 byte chunk per work-item, enabling 64
work-items to operate in parallel on one memory page.
While the value of the hash generated for a page is differ-
ent from the standard MD5 hash, the encryption strength
is maintained.

Assigning 1 chunk per work-item leads to 3 rounds
of hashing: 4KB is reduced to 64 16-byte hashes (1024
bytes), which in turn reduced to 256- and finally 64-byte
hashes. The number of successive kernel (hashing) calls
can be reduced by using multiple chunks per work-item.
Figure 3 demonstrates hashing a page with 4 chunks per
work-item in 2 kernel rounds.

We present two versions of the kernel as it is the GPU
architecture that drives the optimizations to extract max-
imum parallelization benefits, and no single implemen-
tation performed best on both the GPUs we used. The
kernel versions are: glmem, which accesses the global
device memory directly; and shmem, which makes use
of faster per-work-group local (shared) memory for op-
timizations.

4.3 Hypervisor Integration

Integration of the accelerated hashing scheme with a vir-
tualization environment is left for future work. We an-
ticipate that this task would be best realized outside the
hypervisor, as a user-space program in the privileged
domain. This would avoid expanding the hypervisor’s
trusted code base and having hypervisor depend on any
GPGPU framework. The user-space process would be
responsible for managing hash tables and driving GPU
computation and communication, while the actual shar-
ing of pages via pseudo-physical address to machine ad-
dress remapping, and unsharing using copy-on-write se-
mantics would still be handled by the hypervisor.

GTX 280 HD 5870
Processing cores 240 1600
Global memory size 1 GB 1 GB
Max work-group size 512 256
Wavefront size 32 64
Local memory size 16KB 32KB

Table 1: Testbed specifications.

5 Experiments
We conducted our experiments on two GPUs: NVIDIA
GeForce GTX 280 (GT200) and ATI Radeon HD
5870. The system hosting the NVIDIA GPU contains
a 2.83GHz Intel Core 2 Quad CPU (Q9550). The ATI
GPU is hosted on a system with a 2.80GHz Intel Core
i5-760 CPU. Table 1 presents a few relevant specifica-
tions of the two GPUs we used.

The benefit of offloading hash computation to the
GPU is two-fold. First, faster hashing allows for a
greater memory scan frequency, thereby exploiting more
opportunities for page sharing. Secondly, the computa-
tion offload results in a reduced load on the CPU, allow-
ing it to better service the guest VMs.

5.1 Speedup
We measure the time it takes to hash 100 MB of ran-
domly generated data consisting of 25,600 4KB pages of
memory. For comparison, our baseline sequential MD5
implementation takes 346 ms and 314 ms to complete
when running on the main CPUs of the systems hosting
the NVIDIA and ATI cards, respectively.

Tables 2 and 3 show the speedups we obtained over
the sequential CPU hashing implementation for the
NVIDIA and ATI cards respectively, when the data to be
hashed is pre-copied to the GPUs global memory, i.e.,
the memory transfer time is not included.

Implemen-
tation

Work-
group size

Chunks per
work-item

Speedup

glmem 512 1 19.5x
shmem 240 1 40x
glmem 512 4 38.5x

Table 2: Results on NVIDIA GeForce GTX 280.

Implemen-
tation

Work-
group size

Chunks per
work-item

Speedup

glmem 256 1 63x
shmem 64 1 54x
glmem 256 2 87x

Table 3: Results on ATI Radeon HD 5870.

On the NVIDIA GPU, the best speedup achieved was
40x over sequential hashing using the shmem kernel im-

4



plementation, while a glmem kernel yielded the high-
est speedup of 87x on the ATI GPU. The difference
in performance between the two GPUs is a result of
architecture-specific bottlenecks.

When the memory transfer times are included into our
total running times, the speedups observed are about 6x
for the NVIDIA GPU, and 2x for the ATI GPU. The re-
duced speedup is due to the overhead of data transfer
from the host (CPU) memory to the device (GPU) mem-
ory, before the GPU kernel initiates computation. Pro-
cessors like AMD Fusion, which house a CPU and GPU
on a single die, will enable the GPU to access host mem-
ory directly. On the other hand, we expect the integrated
GPUs to be less powerful that their discrete off-chip
counterparts, at least for the initial architectures. Thus,
we expect the on-chip performance to lie somewhere be-
tween these lower (2x-6x) and upper bounds (40x-87x).

5.2 Hashing Overhead
Table 4 shows the overhead of the CPU and GPU ver-
sions of the hashing process when they execute con-
currently with a computationally intensive process, cpu-
heavy, on the machine hosting the ATI GPU. The pro-
cess cpu-heavy performs 400 million floating point mul-
tiplications. Concurrently, in the background we hash
1.5 GB of memory. The experiment gpu-hash-i first
copies the input data to the GPU, and only then does
cpu-heavy begin its execution. Thus, gpu-hash-i does
not include memory transfer overhead. The other ex-
periment, gpu-hash-ii, begins executing cpu-heavy im-
mediately and thus includes the CPU-to-GPU memory
transfer overhead. We expect the performance of a
Fusion-like architecture to lie somewhere between what
is reflected in experiments gpu-hash-i, and gpu-hash-ii
which represents the current state of the art.

Experiment CPU
version

GPU
version

Relative
difference

gpu-hash-i 50.0% 10.7% 78.5%
gpu-hash-ii 50.3% 24.8% 50.8%

Table 4: Runtime overhead on the cpu-heavy process.

As the results indicate, offloading the background pro-
cess of hash computation to the GPU greatly reduces
the load on the CPU. The lower overhead frees the main
CPUs to better service the guest VMs, while the GPU fa-
cilitates a much more aggressive page sharing and thus
efficient memory deduplication in the cloud.

6 Conclusion
With new heterogeneous multiprocessors on the hori-
zon, we argue their potential to benefit various aspects
of virtualization driven clouds. To summarize, incorpo-
rating GPU processing to the cloud infrastructure bene-

fits the cloud service providers by accelerating hypervi-
sor level management tasks, increasing the flexibility of
the cloud infrastructure by facilitating improved VM mi-
gration and cloning, and providing better resource uti-
lization. This enables higher server consolidation ratios,
lower costs by shutting down idle servers and could de-
crease the size of the data center. The users experience
improved VM performance and less usage cost due to
better resource consolidation in the cloud hosts (pay-per-
use cloud service model).

Our case study explores in detail the benefits of using
heterogeneous hardware for memory deduplication in
cloud via virtual machine page sharing. While we exper-
iment with discrete graphics processors, we expect com-
parable results for on-chip graphics processing without
the latency issues of a discrete processor.

We are working towards integrating our GPGPU
driven memory hashing implementation as a scanning-
based page sharing module on top of Satori’s copy-on-
write disk sharing implementation in Xen. In the future,
we plan to validate our findings on a heterogeneous ar-
chitecture like Fusion, as well as focus on the various
other candidates for specialized hardware acceleration
inside the cloud infrastructure. Finally, we will research
mechanisms for managing heterogeneous hardware.

References
[1] Advanced Micro Devices. AMD Fusion Family of APUs

Technology Overview.
http://sites.amd.com/us/Documents/
48423B fusion whitepaper WEB.pdf, 2010.

[2] D. Gupta, S. Lee, M. Vrable, et al. Difference Engine:
Harnessing Memory Redundancy in Virtual Machines. In 8th
USENIX Conference on Operating Systems Design and
Implementation, 2008.

[3] G. Hu, J. Ma, and B. Huang. High Throughput Implementation
of MD5 Algorithm on GPU. In International Conference on
Ubiquitous Information Technologies Applications, ICUT, 2009.

[4] M. Juric. Notes: CUDA MD5 Hashing Experiments.
http://majuric.org/software/cudamd5/.

[5] G. Miłós, D. G. Murray, S. Hand, and M. A. Fetterman. Satori:
Enlightened Page Sharing. In USENIX Annual Technical
Conference, 2009.

[6] NVIDIA. CUDA Toolkit 3.2.
http://developer.nvidia.com/
object/cuda 3 2 downloads.html.

[7] E. Seamans and E. Alexander. Fast Virus Signature Matching
on the GPU. In GPU Gems 3, chapter 35. 2008.

[8] M. Silberstein and N. Maruyama. An exact algorithm for energy-
efficient acceleration of task trees on CPU/GPU architectures. In
4th Annual International Systems and Storage Conference, 2011.

[9] R. Smith, N. Goyal, J. Ormont, et al. Evaluating GPUs for
Network Packet Signature Matching. In IEEE International
Symposium on Performance Analysis of Systems and Software,
2009.

[10] C. A. Waldspurger. Memory Resource Management in VMware
ESX Server. In 5th Symposium on Operating Systems Design
and Implementation, 2002.

5


